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Abstract: The present study explores the efficacy of Machine Learning and Artificial Neural Net-
works in age assessment using the root length of the second and third molar teeth. A dataset of
1000 panoramic radiographs with intact second and third molars ranging from 12 to 25 years was
archived. The length of the mesial and distal roots was measured using ImageJ software. The dataset
was classified in three ways based on the age distribution: 2–Class, 3–Class, and 5–Class. We used
Support Vector Machine (SVM), Random Forest (RF), and Logistic Regression models to train, test,
and analyze the root length measurements. The mesial root of the third molar on the right side was a
good predictor of age. The SVM showed the highest accuracy of 86.4% for 2–class, 66% for 3–class,
and 42.8% for 5–Class. The RF showed the highest accuracy of 47.6% for 5–Class. Overall the present
study demonstrated that the Deep Learning model (fully connected model) performed better than the
Machine Learning models, and the mesial root length of the right third molar was a good predictor
of age. Additionally, a combination of different root lengths could be informative while building a
Machine Learning model.

Keywords: age estimation; artificial intelligence; Deep Learning; root length; forensic odontology;
Machine Learning

1. Introduction

Age estimation plays a remarkable role in forensic medicine. From identifying indi-
viduals and casualties in natural disasters to decrypting medico-legal cases, it effectively
assists in narrowing search possibilities [1–3]. Age estimation methods also help to assess
instances of legal maturity in judging prosecution as a juvenile or as an adult, which aids
in deciding the severity of punishment for criminal offenses. Teeth are preferred for age
estimation as they have high durability and resistance to heat, chemicals, putrefaction,
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and other factors. Many fields, such as anthropology, archaeology, forensic science, pedi-
atric dentistry, and orthodontics, use developing teeth to measure and estimate age and
maturity [4,5].

Age estimation using teeth can be performed through visual, radiographic, chem-
ical, and histological methods [5]. Radiographic methods are based on estimating the
stages of dental development by identifying the mineralization of the crown and root
apex maturation [6]. The visual technique is based on the eruption order of teeth and
morphological indicators of aging, such as attrition, deposition of secondary dentin, and
color changes. The histological methods require the extraction/sectioning of the tooth,
whereas the chemical examination of dental hard tissues determines changes in ion levels
with age [7]. Morphological features, such as the amount of occlusal attrition, coronary
secondary dentin deposition, cementum apposition on the root apex, root resorption, and
dentinal transparency are used in Gustafson’s age estimation method [8]. Similarly, Moore,
Fanning, and Hunt have studied 14 stages of mineralization of developing teeth using
panoramic and lateral oblique radiographs. Kvaal et al. and Cameriere et al. have used
pulp size measurements through intra–oral periapical radiographs [9–11].

The late adolescence to early adulthood transition phase has vital implications in
medico–legal cases. Nearly all permanent teeth would have completed their eruption
process at this age except for the third molars. Hence, this transition age primarily depends
on the chronology of the mineralization of third molars [12]. However, in most conditions,
third molars are either congenitally missing, impacted, extracted, or malpositioned, making
them less suitable for age assessment [13]. Previous studies have determined the second
molar’s maturation stages as a valid marker for age assessment. Hence, in this transition
phase of adolescence to early adulthood, using the third and second molar can prove
beneficial in age estimation [8]. Although earlier studies have employed the subjective
analysis of root forms and compared them with compiled charts, they were associated with
subjective bias [9–11,14]. To overcome these subjective errors, observer–independent and
objective methods are essential. Measurements allow for the development of mathematical
models and parametric statistics. Root length measurements in age estimation in permanent
teeth can eliminate methodological variations.

An Artificial Neural Network (ANN) uses mathematical models and algorithms to
analyze and interpret data. Machine Learning (ML) is a type of data analysis that “learns”
intrinsic statistical patterns to make predictions on unseen data. Deep Learning is a Machine
Learning technique that employs multi–layer mathematical operations to learn and infer
complicated inputs, such as images [15]. Neural networks rely on training data to learn and
improve their accuracy over time. Once these learning algorithms are tuned for precision,
they are powerful tools in artificial intelligence, allowing for classifying and clustering
data at a high velocity. Neural networks were limited by computing power. However, ad-
vancements in Big Data analytics and access to higher computing resources have permitted
more extensive, more sophisticated neural networks. Deep Learning is a subset of Machine
Learning that aids image classification, language translation, and speech recognition. It can
solve any pattern recognition problem without human intervention [16,17]. Tasks in speech
recognition or image recognition can take minutes rather than hours compared with manual
identification by human experts [18]. Deep Learning’s application in forensic medicine has
been explored over recent years due to its advantages of accuracy and precision in age and
gender estimation [18–20].

A previous study utilized X–ray images of teeth along with Machine Learning tech-
niques to achieve 97% accuracy in age estimation, which implies that Machine Learning
can be applied effectively in forensic investigations to obtain accurate and quick results [19].
Gender determination on panoramic radiographs using neural networks also exhibited
good gender prediction compared with other methods, such as logistic and discriminant
analysis [20]. Age estimation using artificial intelligence through first molar images of
both the right and left sides of the maxilla and mandible has also yielded highly accurate
results [21]. Deep Convolutional Neural Networks using orthopantomography have also
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been applied to estimate the age of children using the features of teeth [21]. Hence, the
present study is carried out to explore the efficacy of Machine Learning and Deep Learning
in age estimation using the second and third molar root lengths. Clinical judgments with
the help of Machine Learning models in the health care system using interpretable and
precise models are beneficial and in demand. Hence, using the above background, the
present study was planned to explore the use of machine learning.

2. Materials and Methods
2.1. Study Design

This retrospective study was carried out from the archives of the Oral and Maxillofacial
Radiology section (from March 2017 to March 2021) at Manipal College of Dental Sciences,
Manipal. We selected 1000 digital panoramic radiographs of individuals aged between
12 and 25 years. Radiographs of individuals belonging to the southern part of the state
(South Indian population) were considered after verifying their address from medical
records. The difference between the date of birth provided in the dental record and the date
on which the radiograph was taken was considered to calculate the age of the individual.
Radiographs with diagnostically acceptable images of intact mandibular second and third
molars were included in the study. Radiographs with the third and second molars missing
or obscured due to artifacts, trauma, or fracture lines of the mandible passing through
these molars were excluded. The radiographs that showed various lesions, syndromes, and
developmental disorders were also excluded.

The study was conducted after receiving approval from the Institutional Ethics Com-
mittee (I.E.C. No: 249/2021).

2.2. Measurements

The lengths of the roots of the right and left mandibular second and third molars were
measured using ImageJ, a Java–based image processing software developed at the National
Institute of Health and the Laboratory for Optical and Computational Instrumentation.
(Figure 1). A scale for measurement was set using a fixed distance in pixels and a known
distance in millimeters (mm). The length of the root was measured by dividing the crown
and root portion by a horizontal line passing through the cement–enamel junction (C.E.J.)
on the mesial and distal portion of the crown.
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Figure 1. Measurement of mesial and distal root lengths of left mandibular second and third molars
in (a) 12–years–old female patient and (b) 20–years–old male patient.

Measurements were made by drawing a vertical line from this dividing line to the
visible apex of the root, as shown in Figure 1. Mesio–buccal and distobuccal root lengths of
both the right and left second and third mandibular molars were measured (Figure 1) and
tabulated on an M.S. Excel spreadsheet along with the age and gender of the individual.
All the measurements were made by a trained dental graduate (Observer 1—J.S.). The
measurements were made after reaching a consensus with two oral radiologists (V.P. and
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R.V.) and a trained dental graduate (J.S.). Intra–observer reliability was derived by repeating
the measurements of ten percent of the sample size by Observer 1 (J.S.) on a different day.
The intra–observer correlation coefficient was calculated to assess the agreement, and it
was found to be in very good agreement, with a value of 0.96.

2.3. Data Processing

The output was classified into three categories, namely 2–Class, 3–Class, and 5–Class,
depending on the age distribution, as shown in Figure 2. The dataset included 1000 patients,
with information on distal and mesial root lengths from second and third molars on the left
and right sides.
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Figure 2. Block diagram illustrating the various steps involved in building a Deep Learning–based
tool for automated analysis and classification of data into the specified categories.

We used 75% of the data for training and 25% for testing. Missing data imputation
was conducted by replacing the empty spaces with the mean of that particular column
wherever data were missing. The data were normalized by making the observed values’
mean and standard deviation 0 and 1, respectively. We also used Linear Discriminant
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Analysis (LDA) as the feature extractor as an alternative to the strategy with no feature
selection in building a Deep Learning model.

2.4. Computational Techniques

Our research utilized explanatory methods, such as SHAP, which aids in understand-
ing ML model prediction [22], and we also used Support Vector Machine (SVM), Random
Forest (RF), and Logistic Regression (LR) algorithms for classification, training, testing, and
analyzing the data [23–25]. Different regressors were used to compute the predicted value
versus the true value using a Random Forest (RF) Regressor; Extra Tree Regression (ETR);
XGBoost Regressor, which is a decision tree–based ensemble Machine Learning algorithm;
and a Gradient Boosting Regressor [26–29].

Linear Discriminant Analysis (LDA) is a feature extraction strategy that uses knowl-
edge from all classes to create a new axis to project data in such a way that the intra–
class variance is significantly reduced while the inter–class average distance is enhanced.
As an alternative to the strategy with no feature selection, we also used LDA as the
feature extractor.

The Deep Learning model is used to obtain various outputs and compare their results
to fine–tune the considered models. The ideal and optimum neural network design in this
study was determined using AutoKeras, an autoML platform built on the Keras framework.
A two–layer fully connected network was constructed by Autokeras (layer 1: 32 neurons;
layer 2: 16 neurons), which was then succeeded by a final classification layer with just
1 neuron and a sigmoid function. To reduce overfitting, a dropout layer (0.2) was inserted
after layer 2. The network was trained using binary cross–entropy loss with a batch size
of 16. The Deep Learning model was trained by splitting the training data (75% of the
original dataset) further into training data for DL (75%) and validation data for DL (25%).

2.5. Performance Measurement

A confusion matrix is useful in visualizing the predictive performance of a Machine
Learning model with respect to the actual labels. Precision and recall can be computed
directly from the confusion matrix. Hence, Accuracy, AUC, Recall, and Precision were
used to evaluate the developed model. The commonly used diagnostic evaluation tool
is the AUC–ROC (area under the curve–receiver operating characteristic) score. It is a
measure of how effectively a model can distinguish between classes. The true positive rate
(sensitivity) is plotted as a function of the false positive rate (100 specificity) at various
threshold settings, and the area the curve covered is called the AUC–ROC score. AUC has
a value ranging from 0 and 1. A model with 100% false predictions has an AUC of 0.0,
while a model with 100% accurate predictions has an AUC of 1.0. Statistical significance of
the improvement in AUC between different methods and classifiers was calculated using
standard error (SE) and a 2-tailed p-value of 0.05 [30,31].

The regression model performance was assessed using mean absolute error (MAE),
root mean square error (RMSE), and R square, which are critical to evaluate the performance
of any regression model. RMSE and MAE measure the distance between real and predicted
value, hence the model predictiveness increases with decreasing RMSE and MAE. Pearson’s
correlation was used to find the correlation between the root length and patient age. This
method is used to analyze whether a strong relationship exists between the dependent
and independent variables. Hence, the correlation coefficient r is used to measure the
strength of the relationship among various variables. This analytical technique is based
on the premise that determining the significance of a pertinent attribute in the data can
be conducted by analyzing the strength of the association between dependent and target
variables [32–35].

2.6. Feature Importance

In the present study, the Shapley Additive Explanations, or SHAP technique, is used to
analyze each feature’s value affecting the anticipated output to comprehend the suggested
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classification models. SHAP was created based on Shapley’s values. As a concept for
a cooperative game theory solution, it was initially presented by Lloyd Shapley in 1951.
SHAP analyzes each feature and its importance to the model output based on Shapley data.
In the SHAP summary plot, the X and Y axes, respectively, depict the SHAP and feature
values, and a color map is used to indicate the SHAP values of each feature (blue and red
illustrate low and high tooth length values, respectively [36,37].

3. Results

Figure 3 displays correlations among the demographic factor (age) and clinical pa-
rameters (root length). The correlation plot showed limited correlation between age and
root length. The left and right third molar mesial and distal teeth showed a moderate (0.7)
correlation with age.
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The classification performance of the established algorithms is described in Tables 1 and 2,
respectively. Table 1 shows the classification performance analysis of the LDA with the
feature extractor. The SVM demonstrates the highest accuracy of 86.8%, 66%, and 44% in
2–Class, 3–Class, and 5–Class, respectively, whereas it is observed that the accuracy is lesser
in the RF classifier. This output is due to the denser network of SVMs compared with the
RF. The Recall of the SVM is to be the best in comparison with all classes and classifiers,
making it the most suitable. When compared with the SVM, RF had the highest AUC (0.83).
However, across all employed classifiers, the AUC improvement is statistically significant.

Table 2 shows the classification performance analysis of the LDA with no feature
extractor. The SVM showed the highest Accuracy of 86.4% and 66% in 2–Class and 3–Class,
respectively, whereas an Accuracy of 42.8% was obtained for 5–Class. The RF showed the
highest Accuracy of 47.6% for 5–Class.

The SVM had the highest Accuracy of all three; however, the Precision of the RF in
3–Class made it the best performer for 3–Class, with the SVM regaining the best precision
in 5–Class. Hence, the specific models can be used in the following class distributions:
2–Class—SVM; 3–Class—RF; and 5–Class—SVM.
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Table 1. Classification performance analysis—LDA feature extractor.

Class Division Classifier Accuracy AUC Recall Precision

2–Class
SVM 86.8 0.82 0.93 0.89
RF 86.0 0.83 0.90 0.90

Logistic Regression 84.8 0.81 0.90 0.88

3–Class
SVM 66.0

–
0.58 0.50

RF 60.0 0.69 0.67
Logistic Regression 60.4 0.69 0.62

5–Class
SVM 44.0

–
0.50 0.50

RF 42.4 0.42 0.43
Logistic Regression 40.4 0.51 0.46

LDA: Linear Discriminant Analysis; SVM: Support Vector Machine; AUC: Area under the ROC curve; RF:
Random Forest.

Table 2. Classification performance analysis—no feature extractor.

Class Division Classifier Accuracy AUC Recall Precision

2–Class
SVM 86.4 0.82 0.93 0.88
RF 85.6 0.80 0.93 0.87

Logistic Regression 84.0 0.79 0.90 0.87

3–Class
SVM 66.0

–
0.58 0.50

RF 60.0 0.60 0.65
Logistic Regression 60.4 0.67 0.62

5–Class
SVM 42.8

–
0.50 0.49

RF 47.6 0.47 0.44
Logistic Regression 40.4 0.47 0.44

SVM: Support Vector Machine; AUC: Area under the ROC curve; RF: Random Forest.

The Deep Learning classification (Table 3) shows the highest Accuracy, AUC, and
Recall in comparison with the other Machine Learning models considered in the study.

Table 3. Classification performance analysis—Deep Learning.

Class Division Model Accuracy AUC Recall Precision

2–Class Classification using
Deep Learning 87.2 0.88 0.96 0.87

AUC: Area under the ROC curve.

Figure 4 is a plot showing the Accuracy of the Deep Learning network training and
the validation. It is observed that the Accuracy increases with an increase in epochs with
respect to the training dataset, and the validation Accuracy changes from 94% to 87.2%.
Hence, the training and validation Accuracy is balanced, indicating that the network is not
of high bias or variance.

The confusion matrix from the best predictive model of the 2–Class, 3–Class, and
5–Class models is shown in Figure 5. Figure 5A illustrates the confusion matrix of the best
2–Class model, where the misclassification rate of the samples from the age 20–25 subjects
(Group 1) is very low compared with ages 12–19 (Group 0). The confusion matrix from
the best 3–Class predictive model is displayed in Figure 5B, which shows that all samples
from age 23 and above (Group 2) were misclassified. As the samples were grouped with
a three–year difference, the 5–Class confusion matrix (Figure 5C) became more diverse.
There is a good amount of false positive and false negative samples in the age groups 18–20
(Group 2) and 21–23 (Group 3).
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Figure 6 depicts the ROC curve from the best Machine Learning and Deep Learning
models for two–class classification. The Deep Learning model’s AUC (0.88) improvement
was compared with the best model from the LDA feature selector (RF: 0.83 AUC) and no
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feature selector (SVM: 0.82 AUC). The Deep Learning model was not statistically significant
at p = 0.05 compared with LDA (p = 0.129) and no feature selector (p = 0.074).
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As shown in Table 2, the SVM gives the highest accuracy in all the classes, except
Deep Learning in 2–Class. SHAP was used to assess the best Machine Learning and Deep
Learning model’s predictive performance (shown in Figure 7). Figure 7a shows the SHAP
value with respect to the length of the mesial and distal roots. In the case of 2–Class, RF
performance is the second best, which is observed in comparison with the smaller number
of positive SHAP values (Figure 7b) using the SVM. In the case of the 3–Class classification,
as shown in Figure 7c, the SVM classifier provides the best result. The SHAP plot (Figure 7d)
from the Deep Learning model showed the right side third molar mesial root as the top
distinguishable feature.
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4. Regression

Figure 8a shows the output of the RF Regressor, and the plot shows the data points are
more focused on the mid–R square value. Figure 8b shows that the Extra Tree Regressor
has a more scattered plot, with the R square value going down.

J. Imaging 2023, 9, x FOR PEER REVIEW 11 of 15 
 

 

Random Forest Regressor and Extra Tree Regressor models had an R square value of 

0.58; however, the Extra Tree Regressor generated lower MAE and RMSE scores. 

 

Figure 8. Plot of prediction versus true value: (A) Random Forest Regressor and (B) Extra Tree Re-

gressor. 

5. Discussion 

Teeth are a reliable adjunct in age estimation as they are easily obtained as evidence 

even after other body parts have disintegrated. The development of human dentition ex-

hibits a chronological pattern, with crown formation to root completion exhibiting se-

quential calcification. They further follow age–wise eruption and exfoliation patterns. Pre-

vious studies in the literature have used these factors for estimating age [5–8]. However, 

the length of the root as an indicator of age has not been explored to date. 

The roots of the second and third permanent molars are the only dental structure that 

continues their development throughout adolescence after all the other teeth have erupted 

[12,13,38]. The root formation of the second permanent molar completes at the age of 14–

16 years, while the root of the third permanent molar continues to grow even after the 

complete development of the second permanent molar [39,40]. This pattern of growth 

makes them a viable tool for age estimation. Although a few studies are using the mor-

phological features of second and third permanent molars for the prediction of age [12,39–

41], no studies have used the root length in age estimation. Hence, in the present study, 

we evaluated the efficacy of root length in the age assessment amongst individuals in the 

transition phase of early childhood to late adolescence. Haaviko et al. [42] developed an 

age estimation method based on the recognition of 12 radiographic stages of 4 teeth. Wil-

mott et al. [43] employed Haaviko’s method and found that the stage wise assessment of 

root formation estimated age more accurately than eruption level. Maber M et al. [38] 

stated that the second molar showed higher accuracy, while Mesotten et al. [44] and Gunst 

K et al. [41] reported third molar root formation as an appropriate indicator of age estima-

tion [41,44]. Hence these patterns of accuracy determined by these researchers justify the 

usages of mandibular second and third permanent molars. 

When the sample of root lengths was divided as per the age into different groups, the 

classification with two groups (Class 2 with Group 0 having 12–18 years and Group 1 

having 19–25 years) showed the highest accuracy of 86.8% (SVM), 86.0% (RF), and 84.8% 

(LR). Group 0 with ages ranging from 12 to 18 years had 0.29 percent of patients misclas-

sified, whereas Group 1, which has ages from 19 years and above, had only 0.07 percent 

of patients misidentified, indicating that Group 0 teeth lengths could be close to Group 1. 

Figure 8. Plot of prediction versus true value: (A) Random Forest Regressor and (B) Extra Tree Regressor.

Table 4 shows the results obtained from various regressors used in the present study
with R square values ranging from 0.56 to 0.58.

Table 4. R square value for regressors.

Regressor R Square Value MAE RMSE

Random Forest Regressor 0.58 1.83 2.40
Extra Tree Regressor 0.58 1.81 2.38
XGBoost Regressor 0.57 1.83 2.41

Gradient Boosting Regressor 0.57 1.85 2.41
XGBoost: extreme gradient boosting.

Random Forest Regressor and Extra Tree Regressor models had an R square value of
0.58; however, the Extra Tree Regressor generated lower MAE and RMSE scores.

5. Discussion

Teeth are a reliable adjunct in age estimation as they are easily obtained as evidence
even after other body parts have disintegrated. The development of human dentition
exhibits a chronological pattern, with crown formation to root completion exhibiting
sequential calcification. They further follow age–wise eruption and exfoliation patterns.
Previous studies in the literature have used these factors for estimating age [5–8]. However,
the length of the root as an indicator of age has not been explored to date.

The roots of the second and third permanent molars are the only dental structure
that continues their development throughout adolescence after all the other teeth have
erupted [12,13,38]. The root formation of the second permanent molar completes at the
age of 14–16 years, while the root of the third permanent molar continues to grow even
after the complete development of the second permanent molar [39,40]. This pattern of
growth makes them a viable tool for age estimation. Although a few studies are using
the morphological features of second and third permanent molars for the prediction of
age [12,39–41], no studies have used the root length in age estimation. Hence, in the present
study, we evaluated the efficacy of root length in the age assessment amongst individuals
in the transition phase of early childhood to late adolescence. Haaviko et al. [42] developed
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an age estimation method based on the recognition of 12 radiographic stages of 4 teeth.
Wilmott et al. [43] employed Haaviko’s method and found that the stage wise assessment
of root formation estimated age more accurately than eruption level. Maber M et al. [38]
stated that the second molar showed higher accuracy, while Mesotten et al. [44] and
Gunst K et al. [41] reported third molar root formation as an appropriate indicator of age
estimation [41,44]. Hence these patterns of accuracy determined by these researchers justify
the usages of mandibular second and third permanent molars.

When the sample of root lengths was divided as per the age into different groups, the
classification with two groups (Class 2 with Group 0 having 12–18 years and Group 1 having
19–25 years) showed the highest accuracy of 86.8% (SVM), 86.0% (RF), and 84.8% (LR).
Group 0 with ages ranging from 12 to 18 years had 0.29 percent of patients misclassified,
whereas Group 1, which has ages from 19 years and above, had only 0.07 percent of patients
misidentified, indicating that Group 0 teeth lengths could be close to Group 1. Group 0
showed more variation in root lengths compared with Group 1. This could be attributed to
the fact that a majority of root formation occurs from 12 to 18 years of age.

The three–group classification (Class 3 with Group 0 having 12–16 years, Group
1 having 17–21 years, and Group 2 having 22–25 years) depicted an accuracy of 66.0%
(SVM), 60.0% (RF), and 60.4% (LR). The five–group classification (Class 5 with Group 0
having 12–14 years, Group 1 having 15–17 years, Group 2 having 18–20 years, Group 3
having 21–23 years, and Group 4 having 24–25 years) showed an accuracy of 44.0% (SVM),
42.4% (RF), and 40.4% (LR). This showed that when the sample was divided into multiple
smaller age groups, decreased accuracy was noted. This is because in Machine Learning,
most of the Group 2 samples were predicted to be Group 1 due to the greater fluctuation
of the root length below the age of 21 years. Therefore, the Machine Learning classifier
was unable to differentiate much between the smaller classification—Class 5 in comparison
with Class 3 and Class 2—resulting in a reduction in classification performance. However,
the poor performance for 5–Class classification does not inherently imply that the proposed
classification strategy is insufficient; it could be the consequence of the limited sample size
in each group when dividing the data into five classes.

The correlation plot showed a low–to–moderate correlation (0.7) among the root
lengths. Hence, combining different root lengths in age estimation can be more beneficial
while building Machine Learning models. The SVM showed the highest accuracy, which
can be attributed to the denser network of the SVM compared with the RF. The recall
value of the SVM is also best in comparison with all classes. Linear Discriminant Analysis
(LDA) is a feature extraction strategy that uses knowledge from all classes to create a new
axis to project data in such a way that the intra–class variance is significantly reduced
while the inter–class average distance is enhanced [32,33]. The incorporation of the LDA
feature–extracting technique to find the subset of features of the data has proven to be
efficient and has resulted in an increase in classification accuracy of 10%. LDA feature
selection was compared with the “no feature selector” approach. It was observed that
the accuracy decreased if there was no feature extractor. Hence, the LDA extractor was
the preferred method [24,25,27]. The SVM had the highest accuracy of all three; however,
the precision of the RF in 3–Class made it the best performer for 3–Class, with the SVM
regaining the best precision in 5–Class. This shows that the specific models (2–Class: SVM;
3–Class: RF; and 5–Class: SVM) can be used in the following class distributions.

SHAP was used to explain the Machine Learning models [32]. SHAP analysis offered
two significant benefits. SHAP provided the knowledge of which features had the strongest
influences on the multiclass classifier model. Second, SHAP offered an explainability for
the black box Machine Learning and Deep Learning models, aiding in the development
of confidence and acceptability for these models. It is important to note that the patterns
demonstrated in the SHAP values depicted the trend learned by the Machine Learning
model rather than the actual features themselves [32].

In the present study, it was evident that the right third molar–mesial root was the most
important feature for age prediction through both the SVM and RF classifiers. A higher
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value of the right third molar–mesial root length was a strong predictor of age 19 and above,
whereas the lower value of the right third molar mesial root length corresponded to ages
12–18 years. For classification models with 2–Class, 3–Class, and 5–Class, the right third
molar mesial root ranked as the most significant feature for age prediction.

In the present study, regression algorithms were also analyzed to evaluate the continu-
ous prediction of age from the length of the teeth. Regression models achieved moderate
results on the separated test set. The Extra Tree Regressor achieved the best regression
performance of 0.58 R square, 1.81 MAE, and 2.38 RMSE. The present study utilized the
dataset from one institute and employed the manual measurement of teeth length. The
multi–institute data will be helpful for validation, which is a limitation of the present study.
In the future, the development of an automated tool to assess teeth length will enhance
rapid processing and may further improve the performance of the predictive models. In
this study, among the second and third molars’ mesial and distal roots, the right side of the
third molar’s mesial root proved to be a good age predictor.

6. Conclusions

The study demonstrated how interpretable Machine Learning and Deep Learning
models could be applied to predict age using second and third molar root lengths. The
findings of the present investigation showed that the Deep Learning model performed
better than the Machine Learning model and the right third molar mesial root length was a
good predictor of age. To further improve, diversify, and clinically deploy the algorithms,
an extension of the training data set to include more radiographs from multiple sources is
required. The findings demonstrate the great prospect of neural network–based Machine
Learning and Deep Learning models for assisting dentists in legal response, archaeology,
and forensic sciences. Further research is required to extend and include more extensive
human–machine comparison investigations. This reproducible approach will aid in the
legal, archaeology, and forensic science domains for age estimation.
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