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Abstract: A three-dimensional (3D) video is a special video representation with an artificial stereo-
scopic vision effect that increases the depth perception of the viewers. The quality of a 3D video is
generally measured based on the similarity to stereoscopic vision obtained with the human vision
system (HVS). The reason for the usage of these high-cost and time-consuming subjective tests is
due to the lack of an objective video Quality of Experience (QoE) evaluation method that models
the HVS. In this paper, we propose a hybrid 3D-video QoE evaluation method based on spatial
resolution associated with depth cues (i.e., motion information, blurriness, retinal-image size, and
convergence). The proposed method successfully models the HVS by considering the 3D video
parameters that directly affect depth perception, which is the most important element of stereoscopic
vision. Experimental results show that the measurement of the 3D-video QoE by the proposed hybrid
method outperforms the widely used existing methods. It is also found that the proposed method has
a high correlation with the HVS. Consequently, the results suggest that the proposed hybrid method
can be conveniently utilized for the 3D-video QoE evaluation, especially in real-time applications.

Keywords: 3D video; stereoscopic vision; human vision system; quality of experience; 3D-video QoE
evaluation metric; numerical methods

1. Introduction

The Quality of Experience (QoE) of a video is a measure that states the satisfaction
level from a viewer’s perspective. Hence, this measurement is viewer-centric and focuses
on measuring the overall satisfaction and acceptability of a video by taking a holistic
approach by evaluating all QoE factors that can affect a viewer’s appreciation positively
and/or negatively [1].

The QoE is based on real and end-user experiences. Therefore, the QoE is directly
affected by objective and subjective parameters. The objective parameters are the parame-
ters that originate from Quality of Service (QoS) factors and depend mostly on network
performance, software, and hardware features. On the contrary, the subjective parameters
are determined by the influence of the viewers‘ individual preferences, expectations, previ-
ous video experiences, etc. So, the subjective parameters are more difficult to categorize
compared to the objective parameters. However, they are more likely to arise from different
perception characteristics that people have (e.g., age, eyesight, mobility, perspective, etc.).
For this reason, it is indisputable that the measurement of the subjective parameters is more
arduous because they are more abstract. In addition, the other challenge is the design of a
comprehensive QoE metric. To be able to design a comprehensive QoE metric, a sufficient
number of QoE factors is required. These factors are possibly controlled, measured, or
simply collected and reported [2].
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The video quality perceived by a viewer is considered the most important part of
the QoE [3]. Three-dimensional videos are special types of video representations that can
enable a feeling of being in the same space while viewing them due to the addition of depth
perception with the depth cues being forward. It is clear that in addition to the quality, a
vital factor affecting the QoE in 3D videos is the perception of depth enabled by the viewer.
Therefore, the key to increasing the QoE of 3D videos for a viewer is to enable 3D video
representations that will create a plausible depth perception in the viewer.

As is known, depth perception is the main result of the stereoscopic vision process
carried out by the HVS [4,5]. Except for people with various visual impairments or losses,
every person with normal vision has an HVS that combines monocular and binocular depth
cues to achieve stereoscopic vision. Although this system works according to the same
principles in every human, the perceived depth may be relativistic because of different
perception characteristics and visual experiences. In other words, it is possible to have
different QoE evaluations about a 3D video when viewed by different viewers due to
different credibility perceptions enabled. This is a major obstacle to performing an accurate
QoE evaluation for the 3D videos.

Currently, the QoE evaluation for 3D videos can be performed by using two meth-
ods [5]. One of them relies on the subjective evaluation in which real human observers
assess the 3D-video QoE. It is a fact that the subjective quality evaluation is vital for ac-
curately assessing the 3D-video QoE. However, the subjective evaluation is difficult to
perform due to being time consuming and costly and its unsuitability for real-time appli-
cations [6,7]. The other one relies on the objective QoE in which iterative mathematical
and statistical metrics are utilized during the evaluation process. The objectivity of these
metrics stems from their rational expansions that are accepted by the researchers and enable
reliable and objective evaluations on a regular basis. These metrics mostly do not consider
the most important characteristics of the HVS for 3D-video perception. Therefore, they
generally do not achieve a high correlation with real-human quality evaluations [8].

The subjective and the objective image or video QoE metrics existing in the litera-
ture can be categorized as full reference (FR), reduced reference (RR), and no reference
(NR) [9–12]. The FR ones cannot be used without the original video, and the RR ones re-
quire video features obtained from the original video. Therefore, it is not possible to run the
FR and the RR metrics simultaneously with a streaming video. On the other hand, the NR
metrics do not require an original video or video features obtained from the original video
for the QoE evaluation. It means that they can run simultaneously with a streaming video.
However, the FR and the RR metrics can contain more information for the QoE evaluation
than the NR metrics. Therefore, the FR, the RR, and the NR metrics have superiorities
over each other in terms of the QoE evaluation. Another problem with the subject is that
researchers feel obliged to select one of these three approaches when developing metrics.
Also, it has been observed that pseudo reference image (PRI) quality-evaluation metrics
have been developed in recent years. Contrary to conventional FR, RR, and NR metrics,
the PRI metrics use a new type of reference. In conventional metrics, the reference is the
original image, which is assumed to have a perfect quality or some derived characteristics
of the original image. However, in the PRI metrics, the reference, which is called the pseudo
reference image, is generated from the distorted image by further degrading it in several
ways and to certain degrees [13,14]. With this approach, the PRI metrics have brought a
new breath to the image-quality-evaluation field.

On the other hand, image-quality-evaluation approaches need to be developed accord-
ing to the characteristics of the digital images obtained by different rendering methods.
In general, it is possible to classify digital images into three types according to rendering
methods: Natural Scene Image (NSI), Computer Graphic Image (CGI), and Screen Content
Image (SCI). The NSIs are digital images captured from the real world and may be de-
graded by physical reasons such as a low-quality lens, being out-of-focus, motion blur, and
insufficient and inappropriate lighting conditions and aerial conditions. CGIs are created
or animated by using computer software and are widely used in video games, animations,
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simulators, etc. They may be degraded by rendering artifacts. SCIs are composite images
and consist of texts, graphics, icons, etc. Also, they sometimes contain NSI and CGI regions
so that they may be degraded by NSI and CGI degraders. Computer-generated SCIs and
CGIs have more noise-free smooth areas, high-saturation color content, repeated patterns,
and low- or high-frequency contents [15,16]. As can be seen, it is significant to measure the
quality of images that are likely to be dominated by different defects due to differences
in the rendering methods by using the video-quality-evaluation method specific to the
image’s type. Otherwise, the quality measurements may be inaccurate.

There are also metrics developed to deal with some physical drawbacks that reduce
the visual quality and the viewer’s depth perception. One of them is the metric that is
developed for measuring the light field. What exactly we can see depends on our precise
position in the light field. The light field records the total of all light rays in 3D space that
flow through every point and in every direction. Therefore, the light field contains very
rich information. A light-field image contains many depth cues to make depth estimation
possible. The light-field quality metrics measure the light-field qualities of the light-field
images [17–20].

Additionally, in order to increase the viewer’s depth perception, developing objective
quality-evaluation metrics for dehazed images has been a leading light recently. There
are many image-dehazing algorithms to remove the haze from the images captured in
hazy conditions and preserve the intrinsic image structures. To assess and compare the
image-dehazing algorithms, subjective and objective methods can be used. Since subjective
evaluation is a time-consuming process and difficult to apply, objective quality-evaluation
metrics are more preferable for the researchers [21,22].

Audio–visual content-quality-evaluation issues have also been researched for decades
because visual signals are rarely presented without accompanying audio. The distortions
that may separately (or conjointly) afflict the visual and audio signals collectively shape
the user-perceived Quality of Experience (QoE) [23–25].

Lastly, with the recent rapid developments in the field of virtual reality, developing a
360-degree image (also known as an omnidirectional, panoramic, or virtual-reality image)
quality-evaluation metric has been a remarkable research area. Three hundred and sixty-
degree images and videos include visual information covering the entire 180 × 360◦

viewing spherical. Hence, compared to conventional 2D spaces, there are many challenges
to developing a quality metric for immersive multimedia. Especially, ultrahigh or even
higher resolution requirements and degradations in 360-degree images/videos are the
main two challenges. In the quality-evaluation field of 360-degree images and videos,
multichannel convolutional neural networks (CNNs) have been successfully used due to
their good performance [26–28].

In light of the above explanations, it can be clearly comprehended that the objective
QoE metrics, which are frequently used today, are not adequate for the 3D-video QoE
evaluation. Hence, there is a need to develop a 3D-video QoE evaluation metric that has a
high correlation with the HVS. While developing this metric, a QoE-based approach that
examines with the effects of real visual experiences and different perception characteristics
of humans on depth perception should be utilized. On the other hand, designing a hybrid
3D-video QoE evaluation combining the superiorities of the FR, the RR, and the NR metrics
is a remarkable advantage. The development of a 3D-video QoE evaluation metric with
all these properties contributes to the production of more scientific studies on ubiquitous
3D-video technologies.

Considering all of these facts, a hybrid 3D-video QoE evaluation metric relying on
the depth cues associated with the spatial-resolution feature of a 3D video, which is quite
effective at influencing the depth-perception experience of a 3D viewer, is proposed in
this study. These depth cues are determined as the blurriness and motion information
extracted from the 2D-texture videos and retinal-image size and convergence extracted
from the depth maps (DMs). As the first step of the proposed-metric-development process,
prediction models are developed for these depth cues. Due to the nonobjective features of
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the 3D videos, such as the perceived depth and naturalness, which differ from person to
person, subjective tests are applied to evaluate the QoE of the 3D videos. Then, the depth
cues and the Mean Absolute Score (MOS) values obtained from the subjective tests are
subjected to a correlation analysis to form the proposed hybrid 3D-video QoE evaluation
metric. The performance-evaluation results derived by using the proposed metric prove its
effectiveness in assessing the 3D-video QoE.

The rest of this paper is organized as follows: Section 2 includes state-of-the-art studies.
Section 3 explains the proposed hybrid 3D-video QoE evaluation metric. Section 4 includes
the results and the discussions. This paper is ended with the conclusions and future works
given in Section 5.

2. State-of-the-Art Studies

In this section, we provide an overview of the existing studies in the literature in
two parts, adhering to the reference-classification approach in Section 1. In the first part,
the FR and the RR metrics are presented together, which need to take the original video or
some features of the original video as a reference, respectively. The second part includes the
NR metrics, which do not need any references for the video-quality-measurement process.
Finally, we present an evaluation of the state-of-the-art studies to identify the literature gap.

2.1. Reference-Based Metrics

In [29], the use of objective two-dimensional (2D) video-quality metrics for the 3D-
video-quality assessment (VQA) is discussed, and a perceptual-based objective metric that
mimics the HVS is proposed. In this study, the luminance component is taken as an input
parameter in the development of the metric. According to the experimental results, it is
found that using 2D- and 3D-video-quality evaluations is appropriate since the proposed
Perceptual Quality Metric (PQM) mimics the MOS and has greater alignment with it
compared to the Video Quality Metric (VQM). To the FR metric in [30], the HVS properties,
such as the contrast-sensitive function and luminance masking, are taken into account, and
in order to analyze the perceptual similarity of the blocks in the left and right views of the
stereoscopic video frames, 3D-DCT transform is used. In [31], a 3D structural-similarity
(3D-SSIM) approach is proposed. The proposed algorithm regards a video signal as a 3D
volume image and combines a local SSIM-based quality measure with local information
content and distortion-based pooling methods. The proposed metric in [32] uses blocking
artifacts, blurring in edge regions, and the video-quality difference between two views. The
proposed metric in [33] uses the color-video information and the depth information as the
input parameters. The color-quality metric (CQM) for 3D videos proposed in [34] takes the
luminance coefficient into consideration as it is much more sensitive than the chrominance
coefficient of a frame for the HVS. In [35], the proposed metric focuses on the interview
correlation of the spatial–temporal structural information extracted from adjacent frames.
In [36,37], the proposed FR 3D-video-quality metric is modeled around the HVS, fusing
the information of both the left and right channels and considering color components, the
cyclopean views of the two videos, and the disparity. Since the metric also considers the
screen size, video resolution, and the distance of the viewer from the screen, it is possible
to use this metric in different applications. In [38,39], an RR stereoscopic VQA metric is
proposed, which comprises spatial neighboring information from the contrast of grey-level
co-occurrence matrices for both color and depth and edge properties.

In [40], an FR stereoscopic video-quality-assessment (SVQA) metric based on the
Stereo Just-Noticeable Difference (SJND) model that works by using contrast, spatial
masking, temporal masking, and binocular masking factors to mimic the HVS is proposed.
In [41], an FR stereoscopic VQA metric is proposed by using measurements of structural
distortions, blurring artifacts, and content complexity. In the FR metric proposed in [42],
human stereoscopic vision is modeled by combining left-eye-view and right-eye-view
information through 3D-DCT transformation, and the contrast sensitivity of the HVS is
considered as well as the depth information of the scene. The metric proposed in [43]
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is developed by incorporating the stereoscopic visual-attention (SVA) metric into the
stereoscopic video-quality-assessment (SVQA) metric in order to benefit the image-quality-
evaluation metrics. The proposed metric in [44], in which the SSIM metric is adapted to
stereoscopic videos, is the product of approaches that combine SSIM maps and depth maps
with local and global weighting methods. In [45], with the approach that the 3D distortions
affecting the 3D video quality should also be taken into account when developing a 3D
VQA metric, the proposed metric uses texture distortions (i.e., ghost effects and contour
artifacts) and depth distortions as the input parameters. In [46], an FR 3D VQA metric
based on the dependencies between motion and its binocular disparities was developed.
This metric calculates the spatial, temporal, and depth features and uses them in the
ultimate quality calculation. The proposed metric in [47] is used for the quality evaluation
of various asymmetrically compressed stereoscopic 3D videos. It is observed that the
results obtained from the proposed 2D-to-3D metric are more successful than the results
obtained from the direct averaging method. The metric proposed in [48] uses two important
phenomena (i.e., binocular suppression and recurrent excitation) to model the HVS better
and improve depth perception. The FR 3D-video-quality metric proposed in [49] is based on
measuring the directional dependency between the motion and depth sub-band coefficients
of stereoscopic 3D videos. The proposed metric in [50] evaluates the quality of 3D videos
synthesized with DIBR from three aspects: the quality of unoccluded regions, quality
of first-order similarity, and quality of second-order similarity using an energy-based
sequence-mapping strategy. Another SSIM-based metric in [51] uses the perceptually
significant features, contrast, and motion characteristics that have an impact on the HVS.

2.2. NR Metrics

In [52,53], an objective metric (3VQM) is proposed for Depth-Image-Based Rendering
(DIBR)-based stereoscopic 3D videos. According to this metric, firstly, the ideal depth map
is estimated, which is then used to derive three distortion measures (temporal outliers—TO,
temporal inconsistencies—TI, and spatial outliers—SO) to objectify the visual discomfort
in the stereoscopic videos. The combination of the three measures constitutes a vision-
based quality measure for 3D DIBR-based videos. In the metric proposed in [54], the
four factors (temporal variance, disparity variation in the intraframes, disparity variation in
the interframes, and disparity distribution in the frame-boundary areas) that affect human
perception and visual comfort are examined. In [55], motion and parallax information
obtained from depth maps and their histograms are the main parameters of the proposed
stereoscopic VQA metric. The results show good performance for video sequences that
contain annoying effects for the human eye.

In [56], an NR stereoscopic VQA metric that considers the correlation between the
packet loss and perceptual video quality in the network is proposed. The metric yields
better results than existing objective metrics so that it can be used in real time when
monitoring network statistics. The NR metric proposed in [57], which can be used in
the quality measurement of 3D videos that are corrupted or degraded after transmis-
sion, uses disparity-index-based dissimilarity measurements and edge-detection-based
perceptual-difference measurements. Experimental results demonstrate the effectiveness
of the proposed metric. In [58], a stereoscopic VQA metric is proposed to quantify the
perceived quality of transmitted and degraded stereoscopic videos. The extracted features
are accumulated according to the binocular suppression that is performed by measuring
dissimilarity based on the disparity index and perceptual-difference measurement based
on edge detection. According to the results, considering the effect of binocular rivalry in a
stereoscopic video-quality metric seems to be effective at reflecting the HVS sensitivity and
increasing the overall quality.

The proposed NR metric in [59], which examines the effect of the variable network
conditions on the 3D-video quality, uses the frame rate, bit rate, and network-packet-loss
rate. In [60], the proposed NR metric considers the motion vector lengths and depth infor-
mation for the 3D-video-quality evaluation. In [61], an NR 3D objective VQA metric that
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estimates the 3D quality by taking into account the spatial distortions, excessive disparity,
depth representation, and temporal information of the video is proposed. The metric is
resolution- and frame-rate-independent. To estimate the amount of spatial distortion in
the video, the proposed metric computes blockiness. In [62], an extended NR objective 3D
VQA metric that can run in real time is proposed. For this purpose, the network-packet loss,
video-transmission bit rate, and frame-rate parameters are used as the input parameters.

In [63], a stereo VQA metric by modeling the binocular perception effect in multiviews,
including the spatial domain, temporal domain, and the spatial–temporal domain, is
proposed. In [5], a depth-perception quality metric is applied to a blind stereoscopic video-
quality evaluator to obtain an NR stereoscopic video-quality metric. The proposed NR
metric in [64] is based on modeling the joint statistical dependencies between the motion
and depth sub-band coefficients. In the proposed metric in [65], the components in the
spatial and frequency domains associated with the HVS are used for the 3D VQA. In [66],
the proposed NR stereoscopic VQA metric utilizes the 3D saliency map of the sum map
first and then uses the sparse representation to decompose the sum map of 3D saliency into
coefficients and calculates the features based on sparse coefficients to obtain the effective
expression of the videos’ message.

The study in [67] introduces a 3D convolutional-neural-network-based SVQA frame-
work that can model not only local spatiotemporal information but also global temporal
information with cubic-difference video patches as the input. In [68], a blind NR 3D VQA
metric, which is based on the HVS mechanism and natural video statistics of 3D-video
characteristics, is proposed. In [69], a stereoscopic VQA metric based on motion perception
is proposed. In [70], a comprehensive stereoscopic VQA metric based on the joint contri-
bution of multiple-domain information and a new interframe cross about spatiotemporal
information is proposed.

Apart from these studies, the study in [71] examines the added value of using stereo
saliency prediction in FR and NR quality-evaluation cases.

2.3. Evaluation of the State-of-the-Art Studies

As can be seen from the elucidations above, there are three important limitations
regarding the QoE evaluation of 3D videos from the depth-perception perspective. One of
them is that it is very difficult to measure the depth cues with current rational methods and
scientific approaches in 3D videos. Only a limited number of factors can be considered from
a large number of factors affecting the human 3D-video QoE, and these factors are evaluated
only within the limits permitted by well-known scientific approaches. Another limitation
is that the results obtained from objective 3D-video QoE metrics do not correspond exactly
to the 3D-viewing perception of an end user. Therefore, it would not be wrong to state that
the most important problem with objective 3D QoE evaluation metrics is the lack of a high
correlation with the human depth-viewing perception. The last major problem relies on
the fact that the researchers’ habit of designing their proposed metrics relies solely on the
traditional FR, RR, or NR approaches.

Considering the handicaps elucidated above, the 2D + DM-formed 3D-video QoE
evaluation metric proposed in this study is designed by using spatial-resolution-associated
depth cues, which have the ability to directly affect the depth perception of the viewer
(i.e., the blurriness and motion information measured on the 2D-texture videos and the
retinal-image size and convergence measured on the DM sequences). Moreover, while
developing the proposed metric with an innovative approach, the NR and the RR types
are integrated together to make a hybrid metric. In light of these facts, it could be easily
stated that a remarkable hybrid 3D-video QoE evaluation metric, which uses depth cues
from two difficult sources and is obtained by getting rid of the routine FR, RR, and NR
classification approach that the researchers are stuck in, is developed in the proposed study.
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3. Proposed Hybrid 3D-Video QoE Evaluation Method

In this paper, we propose a hybrid 3D-video QoE evaluation metric that utilizes
depth cues associated with spatial resolution (i.e., blurriness and motion information
extracted from the 2D-texture videos, retinal-image size, and convergence extracted from
the depth maps).

We have a salient reason for our focus on the depth cues associated with spatial
resolution in this study. In 3D videos, the depth-perception satisfaction of a viewer is at
the forefront. Therefore, the viewer unwittingly encounters many depth cues. Because
of having a high depth-cue density, it is a rule of thumb in developing a 3D-video QoE
evaluation metric to design it based on the QoE factors that increase the depth perception
of the viewer. Since a significant amount of these are closely related to spatial resolution, it
is appropriate to start with the spatial resolution.

Spatial resolution can be defined as the number of pixels used for displaying a certain
area of a digital image that shows a plane defining a finite volume in unlimited space.
In a digital image, the smaller the area a pixel occupies on an object, the more pixels are
used to represent that object. Accordingly, as the number of pixels per area (i.e., the spatial
resolution) in a digital image increases, it is possible to display more detail [72].

Considering a digital image with different spatial-resolution versions, objects are
represented with a greater number of pixels in the higher-spatial-resolution version of this
image. Therefore, the pixel-related losses in the objects are less and the lines that highlight
the objects appear more. As the objects become apparent, it becomes easier to distinguish
them from their background and other objects. Thus, the viewer’s depth perception
increases. In contrast, in the lower-spatial-resolution version, objects are represented with
fewer pixels due to the use of larger pixels. The increase in pixel-related losses in objects
results in the loss of detail in the image and a decrease in the viewer’s depth perception [72].

On the other hand, depth cues in 2D color videos and associated DM sequences cause
the viewer to perceive more or less depth depending on the spatial resolution. As a matter
of fact, the HVS obtains better-quality stereoscopic vision by perceiving the monocular and
binocular cues that create depth perception more and more comfortably in the version with
high spatial resolution. On the contrary, in the version with low spatial resolution, the cues
that create depth perception disappear or become unnoticeable enough to the viewer. In
this case, it is not possible to obtain a superior-quality stereoscopic view [73].

For the reasons explained above, the spatial resolution of the 3D videos is an impor-
tant player that directly affects a viewer’s depth-perception experience. Therefore, the
development of a 3D-video QoE evaluation metric, considering the role of this player in
obtaining stereoscopic vision in the HVS, draws the attention of this research study.

The framework of the proposed 3D-video QoE evaluation metric is illustrated in
Figure 1. As shown in the framework, we prefer using a 3D-video representation that is
the product of the 2D + DM method. The 2D + DM method has become one of the most
preferred 3D-video-creation techniques due to its support for coding, transmission, and
compression technologies [74].

As can also be seen from Figure 1, due to the usage of 3D videos obtained with the
2D + DM method in this study, the proposed metric has two main elements, with one from
the 2D-texture video (MC) and the other from the DM (MD). It is clear that these elements
have their own effects on the viewer’s perception of depth, and each contributes separately
to the artificial stereoscopic vision. A change in one of these elements directly causes
the viewer’s depth perception to change. The reflection of this change in the artificial
stereoscopic vision occurs independently of the other element. Therefore, there is an
additive relationship between these elements, and this relationship can be illustrated in a
metric created based on superposition theory. In light of these explanations, the proposed
metric combines these two elements as follows:

M3D = MC + MD (1)

where M3D is the proposed metric’s expansion.
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The MC element provides the effects of two depth cues, blurriness and motion in-
formation, in the texture video and the spatial resolution of the 2D-texture video on the
depth perception of the viewers. The MD component provides the contributions of the
two monocular cues in the DM (i.e., the retinal-image size and convergence) and the spatial
resolution to the depth perception of the viewers. The M3D value ranges from 0 to 15.

3.1. Proposed Models for the Depth Cues

As we state in Section 3, while we construct the proposed metric, we prefer using
the 3D-video representation form, which is the product of the 2D + DM method. The 2D-
texture videos are the main components of the 3D videos. While the main QoE factors that
create depth perception in the viewer are depth cues hidden in the 2D-texture videos, the
helping-component DM sequences have depth-information pixels corresponding to each
pixel in the associated 2D-texture video. The quality of the 3D-video viewing experience of
the viewers increases significantly with the effective use of these QoE factors or bringing
these factors into the foreground. Therefore, it is indisputable that the QoE of the 3D videos
that succeed in showing more realistic scenes to the viewer because of being equipped with
depth cues is high.

The 2D + DM-formed 3D videos are tailor-made for measuring the depth cues. They
allow for measuring the depth cues in the 2D-texture videos and DM sequences separately
and provide the possibility to measure depth cues from two separate sources.

3.2. Blurriness

The blur defect, which directly affects the video quality of digital images, manifests
itself as the reduction in high-frequency components containing edge information in the
image. Accordingly, in digital images, the values of the neighbor pixels in the blurred parts
of the images converge.
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The ambiguity that occurs especially in the edge information of the objects causes the
shapes of the objects to not be understood by the viewer or the objects to be indistinguish-
able from each other or the background. This situation dramatically reduces the perception
of depth of the viewer. Therefore, blurriness is an unacceptable flaw in 3D videos that can
be associated with the spatial resolution of these videos.

In this study, to scale the blurriness, the total standard deviation of the 2D-texture
videos is normalized by the spatial resolution and frame rate as follows:

B =
f

∑
i=1

√√√√ 1
N

N

∑
j=1

(
xj − x

)2 F
S

(2)

where B is the blurriness, i is the frame number, f is the total number of frames, j is the
pixel number, N is the total number of pixels, xj is the pixel value, x is the mean of the pixel
values in the frame, F is the frame rate, and S is the spatial resolution. Table 1 presents the
blurriness measurements of 2D-texture videos calculated by using Equation (2). According
to Table 1, the measurements show that the amount of blurriness in versions of a selected
2D-texture video (e.g., Breakdance) with any specific spatial resolution (e.g., SD) and with a
gradually increasing compression ratio from QP = 25 to QP = 45 is close. It is also seen that
the amount of blurriness in the versions of a selected 2D-texture video (e.g., Ballet) encoded
with any specific compression ratio (e.g., QP = 25) and whose spatial resolution changes
gradually from SD to QCIF fluctuates. These observations clearly state the correlation
between blurriness and spatial resolution.

Table 1. Blurriness measurements per QP and spatial resolution for the 2D-video sequences.

2D Video Video Size
Quantization Parameter (QP)

25 30 35 40 45

Breakdance

Original 0.260 0.259 0.258 0.256 0.236
SD 0.258 0.258 0.257 0.255 0.253
CIF 0.258 0.257 0.256 0.255 0.253

QCIF 0.256 0.255 0.255 0.254 0.251

Butterfly

Original 0.092 0.092 0.092 0.091 0.090
SD 0.089 0.089 0.089 0.088 0.088
CIF 0.086 0.086 0.086 0.086 0.086

QCIF 0.083 0.083 0.083 0.083 0.083

Windmill

Original 0.200 0.200 0.199 0.199 0.197
SD 0.198 0.198 0.197 0.197 0.195
CIF 0.196 0.196 0.196 0.195 0.194

QCIF 0.192 0.192 0.192 0.192 0.191

Chess

Original 0.335 0.335 0.335 0.335 0.335
SD 0.365 0.365 0.365 0.365 0.365
CIF 0.379 0.379 0.379 0.379 0.379

QCIF 0.378 0.378 0.378 0.378 0.379

Interview

Original 0.199 0.199 0.199 0.198 0.197
SD 0.197 0.197 0.197 0.196 0.195
CIF 0.190 0.190 0.190 0.190 0.189

QCIF 0.183 0.183 0.184 0.183 0.183

Advertisement

Original 0.282 0.281 0.281 0.281 0.280
SD 0.289 0.288 0.288 0.288 0.287
CIF 0.288 0.288 0.288 0.287 0.286

QCIF 0.286 0.286 0.285 0.285 0.285

Farm

Original 0.298 0.298 0.298 0.298 0.298
SD 0.297 0.297 0.297 0.297 0.297
CIF 0.296 0.296 0.296 0.296 0.296

QCIF 0.293 0.293 0.294 0.293 0.293
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Table 1. Cont.

2D Video Video Size
Quantization Parameter (QP)

25 30 35 40 45

Football

Original 0.206 0.207 0.206 0.206 0.204
SD 0.205 0.205 0.205 0.204 0.203
CIF 0.202 0.202 0.202 0.202 0.201

QCIF 0.197 0.197 0.198 0.198 0.197

Newspaper

Original 0.278 0.278 0.278 0.278 0.278
SD 0.356 0.356 0.356 0.365 0.356
CIF 0.363 0.363 0.363 0.362 0.362

QCIF 0.362 0.362 0.362 0.362 0.361

Ballet

Original 0.641 0.640 0.638 0.635 0.628
SD 0.655 0.653 0.650 0.644 0.631
CIF 0.656 0.654 0.650 0.645 0.632

QCIF 0.657 0.654 0.651 0.645 0.632

3.3. Motion Information

One of the most remarkable parameters affecting the depth perception of a viewer is
the motion information of a 3D video. The motion information is a parameter that depends
on the motion density of video frames.

The motion density in a frame is directly proportional to the spatial resolution of the
frame. This is because the higher the spatial resolution of the frame, the higher the motion
density of the frame.

Optical-flow vectors are used to measure the motion density of the frames. In the
calculation of optical-flow vectors, dense or sparse optical-flow algorithms are used. The
dense optical flow is based on the global calculation of the amount of displacement of each
pixel in an image sequence that occurs between the current frame and the previous frame.
Therefore, every pixel that is displaced and not displaced is included in the calculation.
The sparse optical flow, on the other hand, is based on the local calculation of the displace-
ment of only displaced pixels in an image sequence between the current frame and the
previous frame.

In this study, we use an optical-flow vector calculated by using the Horn and Schunck
method, which is a dense optical-flow algorithm, to measure the motion information.

The motion information is calculated by normalizing the average of the total motion
density in a video sequence as follows [75]:

M =
∑

f
i=1 Π(i)

f
× F

S
(3)

where M is the motion information, i is the number of frames, f is the total number of
frames, Π(i) is the motion density of the i-th video frame, F is the frame rate, and S is the
spatial resolution. Π(i) is calculated according to the following equation [75]:

Π(i) =
n

∑
d=1
|Vd(xi, yi)| (4)

where d is a feature point in the frame, n is the number of feature points in the frame,
and Vd(xi, yi) is the motion vector of the i-th frame at feature point d. Table 2 shows the
motion-information measurements of 2D-texture videos computed by using Equation (3).
In Table 2, it is noticeable that as the compression ratio gradually increases (from QP = 25
to QP = 45) in the SD, CIF, or QCIF spatial-resolution forms of each 3D video, the motion
amount gradually decreases. A strong relationship between the motion information and
compression ratio can be observed clearly. In addition, as the spatial resolution gradually
changes (from QCIF to SD) at any QP value, the motion amount gradually increases. As
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can be seen, there is another strong relationship between the motion information and
spatial resolution.

Table 2. Motion-information measurements per QP and spatial resolution for the 2D-video sequences.

2D Video Video Size
Quantization Parameter (QP)

25 30 35 40 45

Breakdance

Original 0.311 0.333 0.309 0.282 0.224
SD 0.326 0.326 0.297 0.270 0.210
CIF 0.265 0.260 0.240 0.222 0.169

QCIF 0.216 0.214 0.203 0.187 0.143

Butterfly

Original 1.610 1.627 1.596 1.520 1.426
SD 1.673 1.687 1.656 1.581 1.478
CIF 1.146 1.144 1.114 1.081 1.027

QCIF 0.791 0.783 0.764 0.737 0.701

Windmill

Original 0.153 0.152 0.145 0.137 0.110
SD 0.130 0.130 0.125 0.119 0.101
CIF 0.067 0.067 0.067 0.067 0.061

QCIF 0.035 0.036 0.036 0.036 0.033

Chess

Original 0.280 0.281 0.279 0.276 0.301
SD 0.254 0.254 0.251 0.252 0.270
CIF 0.168 0.170 0.170 0.168 0.172

QCIF 0.120 0.122 0.121 0.117 0.116

Interview

Original 0.114 0.109 0.101 0.090 0.078
SD 0.119 0.114 0.106 0.095 0.082
CIF 0.066 0.064 0.061 0.057 0.050

QCIF 0.038 0.037 0.036 0.033 0.031

Advertisement

Original 0.292 0.300 0.304 0.298 0.283
SD 0.308 0.314 0.321 0.314 0.307
CIF 0.231 0.236 0.241 0.240 0.234

QCIF 0.176 0.179 0.180 0.180 0.174

Farm

Original 1.033 1.043 1.026 0.970 0.878
SD 1.142 1.141 1.119 1.053 0.956
CIF 0.767 0.767 0.755 0.723 0.661

QCIF 0.465 0.467 0.465 0.459 0.432

Football

Original 1.336 1.443 1.337 1.257 1.296
SD 1.466 1.520 1.319 1.172 1.170
CIF 1.271 1.271 1.043 0.856 0.812

QCIF 0.636 0.640 0.566 0.468 0.440

Newspaper

Original 0.465 0.455 0.437 0.400 0.347
SD 0.355 0.352 0.343 0.319 0.281
CIF 0.192 0.192 0.191 0.185 0.169

QCIF 0.102 0.102 0.103 0.102 0.099

Ballet

Original 0.247 0.265 0.255 0.221 0.203
SD 0.248 0.239 0.232 0.210 0.190
CIF 0.180 0.168 0.163 0.153 0.140

QCIF 0.119 0.114 0.114 0.103 0.090

3.4. Retinal-Image Size

According to Emmert’s law [76], the distance between an object and its viewer can be
calculated by using the actual size of the object and the size of its image on the viewer’s
retina (see Figure 2).
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The mathematical expression of this law is given by the following equation:

P = R× D (5)

where P is the size of the object, D is the distance of the object to the viewer’s eye, and R is
the size of the image of the object formed on the retina. Since the P does not change, the
R decreases when the D increases and vice versa. In other words, when the object moves
away from the viewer and the depth increases, the retinal-image size of the object decreases,
and the viewer perceives it as smaller. On the contrary, when the object moves nearer to
the viewer and the depth decreases, the retinal-image size of the object increases, and the
viewer perceives it as larger. This interesting phenomenon occurs as the change in the pixel
values of the DM sequences of 3D videos occurs. While an object moves farther or nearer,
the depth-pixel values change between 0 and 255 depending on the depth of the object, and
the depth-pixel colors take gray tones. White corresponds to the nearest distance and black
corresponds to the farthest distance (see Figure 3).
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In light of this information, it is proposed to use the change in the depth-pixel values
in the DM to compute the retinal-image size in this study. This change can be calculated
with the Mean Absolute Deviation (MAD) method for each DM frame as follows:

R =
∑m

i=1 ∑n
j=1
∣∣Xi,j − X

∣∣
m× n

(6)

where Xi,j is the depth-pixel value at point (i, j); X is the average of the depth-pixel value of
the frame of the DM sequence; and m and n are the width and height, respectively. Table 3
presents the retinal-image-size measurements of the DM sequences calculated considering
Equation (6) and shows that the retinal-image-size measurements in the versions of a
selected DM (e.g., Advertisement) with any specific spatial resolution (e.g., SD) and with
a gradually increasing compression ratio from QP = 25 to QP = 45 gradually increase or
tend to increase. This fluctuation means that there is no significant relationship between



J. Imaging 2023, 9, 281 13 of 28

the retinal-image size and compression ratio. It is highly considered that this lack of
relationship is caused by spatial and temporal distortions due to encoding, compressing,
resizing, upsampling, downsampling, or other similar reasons in the DM sequences. Table 3
also shows that the retinal-image-size measurements in the versions of a selected DM
(e.g., Butterfly) encoded with any specific compression ratio (e.g., QP = 25) and whose
spatial resolution changes gradually from SD to QCIF gradually increase or tend to increase.
This proves a strong relationship between the retinal-image size and spatial resolution.

Table 3. Retinal-image-size measurements per QP and spatial resolution for the DM sequences.

DM Sequence DM Size
Quantization Parameter (QP)

25 30 35 40 45

Breakdance

Original 3.291 × 10−7 3.290 × 10−7 3.279 × 10−7 3.244 × 10−7 3.246 × 10−7

SD 6.364 × 10−7 6.361 × 10−7 6.343 × 10−7 6.278 × 10−7 6.282 × 10−7

CIF 2.520 × 10−6 2.521 × 10−6 2.513 × 10−6 2.498 × 10−6 2.501 × 10−6

QCIF 9.979 × 10−6 9.979 × 10−6 9.939 × 10−6 9.861 × 10−6 9.893 × 10−6

Butterfly

Original 6.835 × 10−8 6.857 × 10−8 6.952 × 10−8 7.076 × 10−8 7.245 × 10−8

SD 9.518 × 10−8 9.536 × 10−8 9.600 × 10−8 9.802 × 10−8 1.005 × 10−7

CIF 3.767 × 10−7 3.793 × 10−7 3.810 × 10−7 3.918 × 10−7 4.019 × 10−7

QCIF 1.489 × 10−6 1.503 × 10−6 1.513 × 10−6 1.529 × 10−6 1.580 × 10−6

Windmill

Original 1.232 × 10−7 1.232 × 10−7 1.235 × 10−7 1.235 × 10−7 1.254 × 10−7

SD 1.573 × 10−7 1.582 × 10−7 1.579 × 10−7 1.578 × 10−7 1.604 × 10−7

CIF 6.272 × 10−7 6.312 × 10−7 6.294 × 10−7 6.297 × 10−7 6.404 × 10−7

QCIF 2.495 × 10−6 2.509 × 10−6 2.502 × 10−6 2.509 × 10−6 2.550 × 10−6

Chess

Original 9.743 × 10−8 9.670 × 10−8 9.753 × 10−8 9.787 × 10−8 1.008 × 10−7

SD 1.252 × 10−7 1.243 × 10−7 1.252 × 10−7 1.253 × 10−7 1.291 × 10−7

CIF 5.027 × 10−7 4.996 × 10−7 5.040 × 10−7 5.025 × 10−7 5.164 × 10−7

QCIF 2.030 × 10−6 2.009 × 10−6 2.032 × 10−6 2.022 × 10−6 2.065 × 10−6

Interview

Original 7.915 × 10−8 7.929 × 10−8 8.014 × 10−8 8.236 × 10−8 8.405 × 10−8

SD 8.240 × 10−8 8.259 × 10−8 8.340 × 10−8 8.556 × 10−8 8.731 × 10−8

CIF 3.287 × 10−7 3.296 × 10−7 3.333 × 10−7 3.425 × 10−7 3.491 × 10−7

QCIF 1.309 × 10−6 1.320 × 10−6 1.337 × 10−6 1.369 × 10−6 1.389 × 10−6

Advertisement

Original 4.246 × 10−8 4.285 × 10−8 4.348 × 10−8 4.451 × 10−8 4.577 × 10−8

SD 6.156 × 10−8 6.191 × 10−8 6.248 × 10−8 6.385 × 10−8 6.595 × 10−8

CIF 2.470 × 10−7 2.474 × 10−7 2.492 × 10−7 2.567 × 10−7 2.632 × 10−7

QCIF 1.011 × 10−6 1.023 × 10−6 1.034 × 10−6 1.056 × 10−6 1.084 × 10−6

Farm

Original 1.217 × 10−7 1.214 × 10−7 1.206 × 10−7 1.203 × 10−7 1.226 × 10−7

SD 1.562 × 10−7 1.558 × 10−7 1.546 × 10−7 1.543 × 10−7 1.568 × 10−7

CIF 6.233 × 10−7 6.216 × 10−7 6.167 × 10−7 6.156 × 10−7 6.254 × 10−7

QCIF 2.472 × 10−6 2.467 × 10−6 2.443 × 10−6 2.446 × 10−6 2.483 × 10−6

Football

Original 1.214 × 10−7 1.224 × 10−7 1.223 × 10−7 1.231 × 10−7 1.241 × 10−7

SD 1.551 × 10−7 1.563 × 10−7 1.563 × 10−7 1.573 × 10−7 1.586 × 10−7

CIF 6.220 × 10−7 6.269 × 10−7 6.268 × 10−7 6.309 × 10−7 6.363 × 10−7

QCIF 2.497 × 10−6 2.517 × 10−6 2.519 × 10−6 2.534 × 10−6 2.557 × 10−6

Newspaper

Original 1.646 × 10−7 1.659 × 10−7 1.670 × 10−7 1.692 × 10−7 1.718 × 10−7

SD 3.258 × 10−7 3.268 × 10−7 3.278 × 10−7 3.311 × 10−7 3.354 × 10−7

CIF 1.310 × 10−6 1.314 × 10−6 1.317 × 10−6 1.329 × 10−6 1.348 × 10−6

QCIF 5.285 × 10−6 5.298 × 10−6 5.312 × 10−6 5.358 × 10−6 5.438 × 10−6

Ballet

Original 4.583 × 10−7 4.585 × 10−7 4.577 × 10−7 4.568 × 10−7 4.546 × 10−7

SD 8.847 × 10−7 8.849 × 10−7 8.835 × 10−7 8.820 × 10−7 8.773 × 10−7

CIF 3.559 × 10−6 3.560 × 10−6 3.555 × 10−6 3.547 × 10−6 3.535 × 10−6

QCIF 1.412 × 10−5 1.413 × 10−5 1.411 × 10−5 1.410 × 10−5 1.407 × 10−5
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3.5. Convergence

The position of objects affects the viewing angle of the eyes. Convergence is seeing an
object that is moving closer to the viewer’s eyes with a greater angle. Therefore, convergence
is a factor that directly increases the depth perception of the viewer. As seen in Figure 4, the
viewing angle for an object positioned at d distance from the viewer is calculated as follows:

α = 2 tan−1(
x

2d
) (7)

where α is the viewing angle and x is the distance between two human eyes. In the literature,
the x distance between two human eyes is adopted as 65 mm [77].
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The viewing angles differ for objects located at the same distance from the eye but
with different volumes and surface areas. In Figure 4, two objects with different surface
areas (S1 > S2) are positioned at the same distance d from the viewer. Accordingly, the
viewing angle for the object with a larger surface area (α1) will be smaller than the viewing
angle for the object with a smaller surface area (α2). This is similar for DM sequences with
different spatial resolutions.

According to the geometric analysis in Figure 4, if the viewers watch SD-, CIF-, and
QCIF-sized DM sequences of a 2D-texture video, they perceive that the distance of the
objects does not change, but the objects in the DM sequences are reduced in size and settle
in farther locations. This means that DM sequences with a lower spatial resolution are
viewed with a larger viewing angle.

In order to obtain convergence in this study, the viewing angles are calculated by using
Equation (7) for each frame of the DM sequences, and the total viewing angle is normalized
as follows:

C =
∑

f
i=1 αi

f × S
(8)

where C is the convergence, i is the number of frames, f is the total number of frames, S is
the spatial resolution, and α is the angle of convergence. Table 4 presents the convergence
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measurements of DM sequences computed considering Equation (8) and shows that the
convergence measurements in the versions of a selected DM (e.g., Interview) with any
specific spatial resolution (e.g., SD) and with a gradually decreasing compression ratio from
QP = 25 to QP = 45 fluctuate. Similar to the retinal-image-size clause, this fluctuation also
means that there is no significant relationship between convergence and the compression
ratio because of the reasons explained before. Table 4 also shows that the convergence
measurements in the versions of a selected DM sequence (e.g., Windmill) encoded with any
specific compression ratio (e.g., QP = 25) and whose spatial resolution changes gradually
from SD to QCIF gradually increase or tend to increase. So, a strong relationship between
convergence and the spatial resolution can be observed.

Table 4. Convergence measurements per QP and spatial resolution for the DM sequences.

DM Sequence DM Size
Quantization Parameter (QP)

25 30 35 40 45

Breakdance

Original 2.035 × 10−10 2.035 × 10−10 2.034 × 10−10 2.030 × 10−10 2.031 × 10−10

SD 3.949 × 10−10 3.950 × 10−10 3.946 × 10−10 3.939 × 10−10 3.940 × 10−10

CIF 1.582 × 10−9 1.582 × 10−9 1.581 × 10−9 1.577 × 10−9 1.578 × 10−9

QCIF 6.362 × 10−9 6.362 × 10−9 6.350 × 10−9 6.329 × 10−9 6.335 × 10−9

Butterfly

Original 1.618 × 10−10 1.162 × 10−10 1.627 × 10−10 1.637 × 10−10 1.635 × 10−10

SD 2.138 × 10−10 2.140 × 10−10 2.145 × 10−10 2.162 × 10−10 2.157 × 10−10

CIF 8.559 × 10−10 8.577 × 10−10 8.599 × 10−10 8.672 × 10−10 8.648 × 10−10

QCIF 3.420 × 10−9 3.433 × 10−9 3.442 × 10−9 3.452 × 10−9 3.448 × 10−9

Windmill

Original 2.795 × 10−10 2.799 × 10−10 2.781 × 10−10 2.772 × 10−10 2.790 × 10−10

SD 3.578 × 10−10 3.583 × 10−10 3.559 × 10−10 3.548 × 10−10 3.573 × 10−10

CIF 1.432 × 10−9 1.435 × 10−9 1.425 × 10−9 1.421 × 10−9 1.433 × 10−9

QCIF 5.750 × 10−9 5.759 × 10−9 5.721 × 10−9 5.702 × 10−9 5.767 × 10−9

Chess

Original 3.151 × 10−10 3.114 × 10−10 3.104 × 10−10 3.047 × 10−10 3.003 × 10−10

SD 4.041 × 10−10 3.994 × 10−10 3.977 × 10−10 3.900 × 10−10 3.844 × 10−10

CIF 1.617 × 10−9 1.599 × 10−9 1.593 × 10−9 1.560 × 10−9 1.536 × 10−9

QCIF 6.482 × 10−9 6.401 × 10−9 6.390 × 10−9 6.249 × 10−9 6.134 × 10−9

Interview

Original 1.972 × 10−10 1.975 × 10−10 1.981 × 10−10 1.989 × 10−10 1.998 × 10−10

SD 2.028 × 10−10 2.031 × 10−10 2.034 × 10−10 2.045 × 10−10 2.054 × 10−10

CIF 8.117 × 10−10 8.129 × 10−10 8.156 × 10−10 8.189 × 10−10 8.226 × 10−10

QCIF 3.244 × 10−9 3.248 × 10−9 3.261 × 10−9 3.275 × 10−9 3.287 × 10−9

Advertisement

Original 1.178 × 10−10 1.183 × 10−10 1.193 × 10−10 1.207 × 10−10 1.233 × 10−10

SD 1.524 × 10−10 1.530 × 10−10 1.542 × 10−10 1.560 × 10−10 1.594 × 10−10

CIF 6.094 × 10−10 6.118 × 10−10 6.166 × 10−10 6.242 × 10−10 6.374 × 10−10

QCIF 2.437 × 10−9 2.449 × 10−9 2.469 × 10−9 2.497 × 10−9 2.553 × 10−9

Farm

Original 2.182 × 10−10 2.181 × 10−10 2.178 × 10−10 2.185 × 10−10 2.200 × 10−10

SD 2.799 × 10−10 2.800 × 10−10 2.795 × 10−10 2.804 × 10−10 2.823 × 10−10

CIF 1.122 × 10−9 1.122 × 10−9 1.120 × 10−9 1.124 × 10−9 1.131 × 10−9

QCIF 4.518 × 10−9 4.517 × 10−9 4.504 × 10−9 4.520 × 10−9 4.551 × 10−9

Football

Original 2.694 × 10−10 2.685 × 10−10 2.681 × 10−10 2.666 × 10−10 2.646 × 10−10

SD 3.445 × 10−10 3.433 × 10−10 3.428 × 10−10 3.400 × 10−10 3.384 × 10−10

CIF 1.378 × 10−9 1.373 × 10−9 1.371 × 10−9 1.364 × 10−9 1.353 × 10−9

QCIF 5.514 × 10−9 5.494 × 10−9 5.485 × 10−9 5.458 × 10−9 5.415 × 10−9

Newspaper

Original 7.960 × 10−11 7.980 × 10−11 7.990 × 10−11 8.020 × 10−11 8.050 × 10−11

SD 1.554 × 10−10 1.555 × 10−10 1.556 × 10−10 1.560 × 10−10 1.566 × 10−10

CIF 6.223 × 10−10 6.225 × 10−10 6.225 × 10−10 6.240 × 10−10 6.261 × 10−10

QCIF 2.493 × 10−9 2.492 × 10−9 2.493 × 10−10 2.497 × 10−9 2.505 × 10−9
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Table 4. Cont.

DM Sequence DM Size
Quantization Parameter (QP)

25 30 35 40 45

Ballet

Original 2.313 × 10−10 2.316 × 10−10 2.315 × 10−10 2.313 × 10−10 2.316 × 10−10

SD 4.493 × 10−10 4.498 × 10−10 4.496 × 10−10 4.492 × 10−10 4.496 × 10−10

CIF 1.803 × 10−9 1.805 × 10−9 1.804 × 10−9 1.803 × 10−9 1.805 × 10−9

QCIF 7.240 × 10−9 7.247 × 10−9 7.246 × 10−9 7.239 × 10−9 7.243 × 10−9

3.6. Subjective Tests

Subjective test results, conducted within the framework of standards adopted by
major standard bodies, are in fact derived directly from the human vision system. Thus, it
becomes possible to consider the relative effect of the depth cues on the viewers by using the
subjective test results represented by the MOSs. In this study, subjective tests are conducted
to construct a relationship between the MOS values and the proposed metric. After the
tests, the 95% confidence intervals [78] are also computed together with the MOS values.

The subjective tests were carried out independently of the metric design and by using
10 different 2D + DM-formed 3D videos (Breakdance, Ballet, Windmill, Newspaper, Inter-
view, Advertisement, Butterfly, Chess, Farm, and Football) in different spatial resolutions
(i.e., SD, CIF, and QCIF) encoded with 25, 30, 35, 40, and 45 Quantization Parameters (QPs).
An autostereoscopic display of 23′ is utilized to present 2D + DM-form-based 3D videos
during the experiments.

Before the subjective tests, the participants are sufficiently informed about the features
of the test and scoring. The scores given by the observers range from one to five. A
five indicates that perception is at the highest level, and a one indicates that it is at the
lowest level. The observers are not informed about the order, coding parameters, and
features of the test videos.

The observers participating in the tests do not have expertise in 3D videos. The
observers participated in the test sitting 3 m away from the autostereoscopic screen. The
tests are always carried out in the same test environment. To create the 3D videos, the same
sized and encoded DM sequences and 2D-texture videos are used.

During the tests, the Single Stimulus Continuous Quality Evaluation (SSCQE) method
is used for quality evaluation. The observers only evaluate the quality and depth perception
of the encoded 3D video and the overall 3D-video quality separately without taking a 3D
video as a reference. While making this evaluation, the observers benefited from their
previous experiences. Inconsistent scores were obtained in all test results based on the
ITU-R BT.500-13 standard [78]. Thus, the results of 2 of the 23 observers who participated
in the test are determined to be inconsistent. The test results of the remaining 21 observers
are used to calculate the MOS values.

4. Modeling of MC and MD

4.1. Modeling of MC

As stated above, the MC element, which represents the 2D-texture video QoE evolution
component, combines two depth cues, namely the blurriness and motion information
existing in a 2D (i.e., texture) video and the spatial resolution of the 2D video. In order to
form a model for this element, the results of the subjective tests are integrated with the
MC element to obtain a more-efficient 3D-video-quality metric. During this integration
process, the best correlation between the subjective test results and the MC element is taken
to determine the mathematical equation of MC. The Pearson correlation method is used
for this correlation calculation. The common feature of the depth cues is that they change
when the spatial resolution changes. Therefore, a multiplicative relationship between the
depth cues and the spatial resolution is considered to be the best reflection of the viewers’
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depth perception considered in the proposed model. With this approach, the mathematical
equation of MC is determined as follows:

MC = kC × B×M× SC (9)

where B and M are the blurriness and motion-information depth cues, respectively, and SC
is the spatial resolution of the 2D-texture video. In addition, the kC constant coefficient in
Equation (9) is selected as 10−4 for all 2D videos in order to keep the M3D values within
the specified interval.

4.2. Modeling of MD

As discussed above, the MD element, which states the DM-quality-evolution element,
provides the contributions of the two monocular cues in the DM (i.e., the retinal-image size
and convergence) and the spatial resolution to the depth perception of a viewer. To be able
to construct a model for this element, similar to the process conducted for the MC element,
the results of the subjective tests are integrated with the MD element that is adopted as
the product of the two monocular cues and the spatial resolution of the DM sequences
so as to make more contributions to the proposed metric. Similar to the MC model, the
common feature of the monocular cues is that they vary when the spatial resolution varies,
and a multiplicative relationship between the monocular cues and the spatial resolution is
a useful assumption to reflect the viewers’ depth perception for the proposed model.

In this sense, the MD element’s mathematical model is formulated as follows:

MD = kD × R× C× SD (10)

where R and C are the retinal-image size and convergence monocular-depth cues, respec-
tively, and SD is the spatial resolution of the DM. Also, the kD constant coefficient in
Equation (10) is selected as 2.5× 108 for all DMs in order to keep the M3D values within
the specified interval.

5. Results and Discussions

In this study, the last 150 frames of ten different 2D + DM-formed 3D videos (Break-
dance, Ballet, Windmill, Newspaper, Interview, Advertisement, Butterfly, Chess, Farm,
and Football) with different spatial resolutions (i.e., SD, CIF, and QCIF) and encoded with
25, 30, 35, 40, and 45 QPs are used to derive results from the proposed metric. The pub-
licly available original versions of these videos were provided by the I-Lab, Center for
Vision, Speech, and Signal Processing at the University of Surrey, UK, for research purposes.
In order to evaluate the performance of the proposed metric, the MOS values and the
quality-evaluation results of widely used 2D-video quality-evaluation metrics, namely
the VQM, Peak Signal-to-Noise Ratio (PSNR), and structural-similarity metric (SSIM), are
also calculated by using the same 3D videos. All video-quality measurements are set at a
precision of four digits after the decimal point.

Tables 5–14 show the quality measurements of the videos used in terms of the MOS,
VQM, PSNR, and SSIM results. The confidence-interval values for the MOS results are also
presented in the tables. According to the MOS, VQM, PSNR, and SSIM results, it can be
clearly observed that as the compression ratio gradually increases (from QP = 25 to QP = 45)
in the SD, CIF, or QCIF spatial-resolution forms of each 3D video, the 3D-video QoE by the
viewer decreases. This clearly shows the effects of the video spatial resolution and video
compression ratio on the 3D-video QoE. The results obtained from the proposed metric
bear a resemblance to the MOS results as well as the VQM, PSNR, and SSIM techniques.
As can also be observed in the tables, the highest quality measurements calculated by the
objective VQM, PSNR, and SSIM methods are obtained from the lowest compression ratio
(QP = 25) versions of the SD, CIF, and QCIF spatial-resolution videos. As the compression
ratio increases gradually, it is observed that the video quality decreases slightly at each
compression level compared to the previous compression level. A similar situation is also
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observed in the gradual decrease in the MOS measurements obtained from subjective tests.
From this point on, we will discuss the M3D measurements of the proposed metric.

Table 5. Breakdance 3D-video QoE measurements.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Breakdance

25

SD

3.4401 4.8796 56.5618 0.9989 3.032 ± 0.32
30 3.4332 4.8291 53.5868 0.9984 2.844 ± 0.29
35 3.1140 4.7497 50.4148 0.9975 2.688 ± 0.35
40 2.8213 4.6262 47.1143 0.9960 2.500 ± 0.33
45 2.1744 4.4271 43.6735 0.9934 2.375 ± 0.28

25

CIF

0.7920 4.9037 56.9623 0.9991 3.032 ± 0.34
30 0.7777 4.8638 54.1026 0.9987 2.844 ± 0.35
35 0.7248 4.8078 50.9981 0.9978 2.688 ± 0.31
40 0.6745 4.7133 47.6829 0.9962 2.500 ± 0.27
45 0.5342 4.5608 44.2103 0.9931 2.375 ± 0.32

25

QCIF

0.5422 4.9125 56.8838 0.9993 3.032 ± 0.31
30 0.5406 4.8809 54.2220 0.9989 2.844 ± 0.33
35 0.5308 4.8346 51.3094 0.9983 2.688 ± 0.36
40 0.5156 4.7579 48.1342 0.9969 2.500 ± 0.34
45 0.4883 4.6352 44.6945 0.9942 2.375 ± 0.37

Table 6. Ballet 3D-video QoE measurements.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Ballet

25

SD

6.6267 4.8773 53.7605 0.9991 3.407 ± 0.27
30 6.3759 4.8239 53.2095 0.9987 3.250 ± 0.29
35 6.1400 4.7416 49.9250 0.9979 3.126 ± 0.32
40 5.5372 4.6091 46.4618 0.9965 3.032 ± 0.35
45 4.9082 4.4217 42.9127 0.9941 2.907 ± 0.36

25

CIF

1.3605 4.9039 56.5066 0.9993 3.407 ± 0.42
30 1.2735 4.8588 53.5567 0.9989 3.250 ± 0.39
35 1.2735 4.7992 50.2766 0.9981 3.126 ± 0.37
40 1.1640 4.7027 46.7613 0.9968 3.032 ± 0.33
45 1.0611 4.5688 43.2264 0.9942 2.907 ± 0.35

25

QCIF

0.8464 4.9150 56.5325 0.9995 3.407 ± 0.29
30 0.8380 4.8773 53.6213 0.9992 3.250 ± 0.32
35 0.8354 4.8303 50.5181 0.9987 3.126 ± 0.34
40 0.8143 4.7481 46.9328 0.9976 3.032 ± 0.28
45 0.7891 4.6356 43.4891 0.9956 2.907 ± 0.35

Table 7. Interview 3D-video QoE measurements.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Interview

25

SD

0.9474 4.2200 41.4998 0.9966 4.001 ± 0.27
30 0.9075 4.1903 41.3180 0.9959 3.907 ± 0.33
35 0.8448 4.1317 40.9247 0.9944 3.813 ± 0.31
40 0.7592 4.0538 40.1647 0.9917 3.688 ± 0.29
45 0.6530 3.8449 38.7946 0.9864 3.625 ± 0.32
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Table 7. Cont.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Interview

25

CIF

0.1345 4.3272 42.7706 0.9975 4.001 ± 0.28
30 0.1303 4.3058 42.5561 0.9969 3.907 ± 0.26
35 0.1253 4.2687 42.1289 0.9958 3.813 ± 0.31
40 0.1164 4.2066 41.2602 0.9936 3.688 ± 0.29
45 0.1037 4.0760 39.7609 0.9891 3.625 ± 0.33

25

QCIF

0.0447 4.4151 42.3809 0.9973 4.001 ± 0.34
30 0.0445 4.4017 42.2283 0.9970 3.907 ± 0.31
35 0.0443 4.3779 41.9024 0.9962 3.813 ± 0.29
40 0.0439 4.3343 41.2490 0.9948 3.688 ± 0.30
45 0.0432 4.2470 40.0028 0.9915 3.625 ± 0.28

Table 8. Newspaper 3D-video QoE measurements.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Newspaper

25

SD

5.1342 4.0684 35.8210 0.9933 3.688 ± 0.41
30 5.0837 4.0339 35.6992 0.9918 3.626 ± 0.40
35 4.9536 3.9709 35.4685 0.9889 3.500 ± 0.38
40 4.7325 3.8708 35.0251 0.9836 3.344 ± 0.36
45 4.0618 3.7132 34.2498 0.9765 3.250 ± 0.34

25

CIF

0.7252 4.0660 35.6577 0.9917 3.688 ± 0.33
30 0.7252 4.0507 35.5944 0.9915 3.626 ± 0.29
35 0.7252 4.0205 35.4349 0.9902 3.500 ± 0.31
40 0.6999 3.9645 35.0834 0.9866 3.344 ± 0.32
45 0.6422 3.8515 34.4194 0.9804 3.250 ± 0.30

25

QCIF

0.1768 4.0558 35.2781 0.9892 3.688 ± 0.29
30 0.1773 4.0504 35.2539 0.9894 3.626 ± 0.31
35 0.1781 4.0343 35.1658 0.9892 3.500 ± 0.34
40 0.1781 4.0066 34.9285 0.9879 3.344 ± 0.33
45 0.1770 3.9303 34.9087 0.9843 3.250 ± 0.36

Table 9. Windmill 3D-video QoE measurements.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Windmill

25

SD

1.0434 4.4358 45.1454 0.9963 3.969 ± 0.26
30 1.0445 4.3923 43.5693 0.9953 3.844 ± 0.23
35 1.0045 4.3052 41.6618 0.9934 3.751 ± 0.28
40 0.9569 4.1879 39.7736 0.9902 3.594 ± 0.31
45 0.8033 3.9880 37.6751 0.9845 3.500 ± 0.29

25

CIF

0.1566 4.4552 45.4161 0.9961 3.969 ± 0.30
30 0.1570 4.4276 44.0346 0.9955 3.844 ± 0.32
35 0.1553 4.3616 42.3003 0.9940 3.751 ± 0.34
40 0.1546 4.2743 40.4856 0.9913 3.594 ± 0.36
45 0.1433 4.1308 38.3891 0.9859 3.500 ± 0.31

25

QCIF

0.1079 4.4626 45.2037 0.9955 3.969 ± 0.29
30 0.1091 4.4407 43.9034 0.9950 3.844 ± 0.27
35 0.1082 4.3906 42.3530 0.9940 3.751 ± 0.32
40 0.1080 4.3181 40.7104 0.9921 3.594 ± 0.33
45 0.1089 4.2043 38.8237 0.9879 3.500 ± 0.30
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Table 10. Advertisement 3D-video QoE measurements.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Advertisement

25

SD

3.6042 4.8873 56.6045 0.9995 4.219 ± 0.42
30 3.6778 4.8289 53.1858 0.9990 4.063 ± 0.39
35 3.7451 4.7360 49.6790 0.9982 3.844 ± 0.33
40 3.6653 4.5838 45.7916 0.9966 3.719 ± 0.35
45 3.5679 4.3204 41.5741 0.9932 3.563 ± 0.38

25

CIF

0.6777 4.9107 56.7655 0.9996 4.219 ± 0.36
30 0.6909 4.8654 53.4021 0.9993 4.063 ± 0.33
35 0.7072 4.7999 49.9854 0.9986 3.844 ± 0.31
40 0.7017 4.6908 46.1555 0.9974 3.719 ± 0.29
45 0.6829 4.4971 42.0431 0.9945 3.563 ± 0.27

25

QCIF

0.1433 4.9176 56.5843 0.9997 4.219 ± 0.34
30 0.1454 4.8774 53.2847 0.9995 4.063 ± 0.37
35 0.1461 4.8215 50.0120 0.9990 3.844 ± 0.35
40 0.1468 4.7272 46.2116 0.9981 3.719 ± 0.38
45 0.1430 4.5706 42.2322 0.9962 3.563 ± 0.33

Table 11. Butterfly 3D-video QoE measurements.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Butterfly

25

SD

6.0256 4.8873 56.6045 0.9995 4.219 ± 0.35
30 6.0710 4.8289 53.1858 0.9990 4.063 ± 0.38
35 5.9588 4.7360 49.6790 0.9982 3.844 ± 0.32
40 5.6684 4.5838 45.7916 0.9966 3.719 ± 0.34
45 5.2647 4.3204 41.5741 0.9932 3.563 ± 0.37

25

CIF

1.0064 4.9107 56.7655 0.9996 4.219 ± 0.40
30 1.0032 4.8654 53.4021 0.9993 4.063 ± 0.42
35 0.9786 4.7999 49.9854 0.9986 3.844 ± 0.39
40 0.9498 4.6908 46.1555 0.9974 3.719 ± 0.43
45 0.8998 4.4971 42.0431 0.9945 3.563 ± 0.37

25

QCIF

0.1985 4.9176 56.5843 0.9997 4.219 ± 0.35
30 0.1970 4.8774 53.2847 0.9995 4.063 ± 0.33
35 0.1936 4.8215 50.0120 0.9990 3.844 ± 0.37
40 0.1886 4.7272 46.2116 0.9981 3.719 ± 0.32
45 0.1821 4.5706 42.2322 0.9962 3.563 ± 0.30

Table 12. Chess 3D-video QoE measurements.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Chess

25

SD

3.7715 4.8789 54.5879 0.9991 4.407 ± 0.33
30 3.7714 4.8166 50.9710 0.9982 4.188 ± 0.30
35 3.7181 4.7283 47.3275 0.9965 4.032 ± 0.29
40 3.7373 4.5733 43.5673 0.9929 3.875 ± 0.32
45 4.0090 4.3055 39.6801 0.9859 3.751 ± 0.35

25

CIF

0.6665 4.9000 54.7785 0.9993 4.407 ± 0.36
30 0.6731 4.8405 51.2166 0.9986 4.188 ± 0.38
35 0.6718 4.7685 47.6791 0.9973 4.032 ± 0.41
40 0.6663 4.6611 44.0473 0.9944 3.875 ± 0.37
45 0.6809 4.4613 40.2214 0.9886 3.751 ± 0.39
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Table 12. Cont.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Chess

25

QCIF

0.1987 4.9089 54.6848 0.9996 4.407 ± 0.33
30 0.1984 4.8524 51.1796 0.9990 4.188 ± 0.31
35 0.1982 4.7830 47.6853 0.9980 4.032 ± 0.35
40 0.1923 4.6834 44.1676 0.9959 3.875 ± 0.34
45 0.1913 4.5261 40.4934 0.9915 3.751 ± 0.38

Table 13. Farm 3D-video QoE measurements.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Farm

25

SD

13.7420 4.8592 55.3304 0.9989 4.063 ± 0.31
30 13.7356 4.3882 44.3243 0.9956 3.938 ± 0.34
35 13.4822 4.6924 49.1877 0.9969 3.844 ± 0.36
40 12.6759 4.5258 45.9308 0.9944 3.719 ± 0.29
45 11.5130 4.2681 42.2888 0.9897 3.563 ± 0.35

25

CIF

2.3161 4.8730 53.6109 0.9990 4.063 ± 0.32
30 2.3176 4.4372 44.6049 0.9957 3.938 ± 0.29
35 2.3176 4.7578 49.1674 0.9974 3.844 ± 0.35
40 2.1857 4.6416 46.3153 0.9954 3.719 ± 0.31
45 2.0014 4.4426 42.9054 0.9910 3.563 ± 0.28

25

QCIF

0.4162 4.8496 51.0768 0.9988 4.063 ± 0.32
30 0.4179 4.4530 44.4586 0.9955 3.938 ± 0.33
35 0.4156 4.7571 47.6791 0.9976 3.844 ± 0.29
40 0.4109 4.6676 45.5833 0.9958 3.719 ± 0.27
45 0.3928 4.5059 42.8398 0.9920 3.563 ± 0.30

Table 14. Football 3D-video QoE measurements.

Video
Quantization

Parameter
(QP)

Spatial
Resolution
(2D + DM)

M3D VQM PSNR SSIM MOS

Football

25

SD

12.1641 4.8734 55.2868 0.9987 3.407 ± 0.23
30 12.6200 4.8057 52.1508 0.9976 3.251 ± 0.26
35 10.9462 4.7125 49.0173 0.9959 3.157 ± 0.28
40 9.6997 4.5733 45.7945 0.9935 2.969 ± 0.22
45 9.6318 4.3229 41.9282 0.9890 2.844 ± 0.25

25

CIF

2.6262 4.9018 55.9488 0.9991 3.407 ± 0.27
30 2.6288 4.8516 53.0047 0.9984 3.251 ± 0.25
35 2.6288 4.7890 49.9781 0.9973 3.157 ± 0.22
40 1.7745 4.6903 46.7740 0.9953 2.969 ± 0.24
45 1.6785 4.5151 44.4051 0.9916 2.844 ± 0.28

25

QCIF

0.4051 4.9066 55.8213 0.9993 3.407 ± 0.30
30 0.4077 4.8604 53.0627 0.9988 3.251 ± 0.32
35 0.3708 4.8119 50.2311 0.9980 3.157 ± 0.35
40 0.3219 4.7342 47.1955 0.9965 2.969 ± 0.38
45 0.3076 4.5929 43.4736 0.9935 2.844 ± 0.37

Table 5 shows the quality measurements of the video “Breakdance”. The M3D mea-
surement values obtained from the proposed metric are similar to both the objective
video-quality measurements and subjective MOS measurements. In other words, as with
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other video-quality-measurement methods, the highest quality measurements in the pro-
posed metric are obtained from the lowest compression ratio (QP = 25) version of the SD,
CIF, and QCIF spatial-resolution videos. As the compression ratio gradually increases, the
M3D measurement decreases. The same situation is observed for the video “Interview”
in Table 7.

Table 6 gives the quality measurements of the video “Ballet”. The M3D measurements
obtained from the proposed metric generally show similarity to both the objective video-
quality measurements and subjective MOS values. Only the M3D measurements for the
QP = 30 and QP = 35 compression ratios at the CIF spatial resolution are equal. Here, the
M3D measurement value for the QP = 35 compression ratio is expected to be low, but not
lower than the M3D measurement value for the QP = 40 compression ratio, or the M3D
measurement value for the QP = 30 compression ratio is expected to be high, but not higher
than the M3D measurement value for the QP = 25 compression ratio. These expectations of
the M3D measurements are true for all of the QP-related results, and this equality arises
due to the fact that there are no huge deviations in the M3D measurement values for both
compression ratios QP = 30 and QP = 35.

In Table 8, the quality measurements for the video “Newspaper” are given. The M3D
measurements taken at the SD spatial resolution have a similar variation to other objective
video-quality measurements and especially the MOS values. But the M3D measurements
taken at the CIF spatial resolution for QP = 25, QP = 30, and QP = 35 are equal. Also,
some deviations are observed in the M3D and SSIM measurements at the QCIF spatial
resolution. These equalities in the CIF spatial resolution and deviations in the QCIF spatial
resolution result from compression and downsampling processes for this video. However,
these results look insignificant considering the number precision.

Table 9 demonstrates the quality measurements for the video “Windmill”. According
to Table 9, only the M3D measurements taken at the SD and CIF spatial resolution for the
QP = 25 and QP = 30 compression ratios show insignificant deviations that are not possible
to be perceived by the HVS. Also, some insignificant deviations are observed at the QCIF
spatial resolution.

Table 10, which gives the quality measurements of the video “Advertisement”, shows
that the M3D measurements are not compatible with other objective video-quality measure-
ments and the MOS values. The M3D measurements have huge deviations at all spatial
resolutions for all compression ratios. But the video “Advertisement” is a CGI-based
video, so the deviations most likely arise from the rendering method. The NSI-based
video-quality-evolution metrics do not give accurate results in the quality measurements of
the CGI-based videos.

The quality measurements of the video “Butterfly” are given in Table 11. According to
this table, only the M3D measurements taken at an SD spatial resolution for the QP = 25
and QP = 30 compression ratios show deviation. This issue is most likely caused by errors
in the compression process. The rest of the M3D measurements are aligned with the other
objective quality measurements and the MOS values.

The measurements of the video “Chess” in Table 12 show that only the M3D mea-
surements taken at the QCIF spatial resolution show similar variations to other objective
video-quality measurements and the MOS values. But, there are significant deviations in
the SD and QCIF spatial resolutions for all the compression ratios. These deviations are
most likely caused by the rendering method, which makes “Chess” a CGI-based video.
And, the quality of a CGI-based video should be measured by using a CGI-based video-
quality-evaluation metric.

Table 13 gives the quality measurements of the video “Farm”. This table shows that
only M3D measurements taken at the SD spatial resolution are aligned with the other
objective video-quality measurements and the MOS values. Although there are bias-like
deviations at the CIF and QCIF spatial resolutions, these deviations are too insignificant to
be perceived by the HVS. On the other hand, the VQM, PSNR, and SSIM measurements
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have deviations at all spatial resolutions and for all compression ratios because of the errors
in the encoding, compressing, and resizing processes.

Lastly, it is observed in Table 14 showing the measurements of the video “Football”
that the M3D measurements taken at the SD spatial resolution for the QP = 25 or QP = 30
compression ratios show deviations. Also, although there is another deviation at the CIF
and QCIF spatial resolutions, they are very small and thus cannot be perceived by the HVS.

As a general assessment according to the M3D measurements, the quality estimates of
the proposed metric show significant similarities with the VQM, PSNR, and SSIM measure-
ments and especially the MOS values. Approximately 80% of the results obtained from the
proposed metric vary in accordance with the MOS, VQM, PSNR, and SSIM variances. The
majority of the remaining 20% show insignificant variances that cannot be noticed by the
HVS. It is considered that these cases are caused by spatial and temporal distortions due to
encoding, compressing, resizing, upsampling, downsampling, pixel losses, or other similar
reasons in the 2D-texture videos and DM sequences of the 3D videos used. Particularly, the
effects of the change in the compression ratio on DM sequences are remarkable. In addition,
the artifacts observed in some DM sequences led to inaccurate calculations of the depth
cues and had disruptive effects on the M3D measurements (see Figure 5).
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Figure 5. Some artifacts in the DMs of (a) Newspaper, (b) Breakdance, (c) Chess, and (d) Farm. The
red rectangles/squares highlight some remarkable artifacts on the DM sequences.

Moreover, the 3D-video QoE evaluation-performance efficiency of the M3D over the
VQM, PSNR, and SSIM metrics can be observed from the correlation coefficient (CC) results
calculated by using the MOS results. The CC results calculated by using the Pearson
method and showing the relationship between the M3D quality estimations and the MOS
values are given in Table 15. The average CC results of the M3D and the MOS are computed
as 0.775 for all the 3D videos, QPs, and spatial resolutions. However, the CC results of
the M3D and the VQM, PSNR, and SSIM metrics are computed as 0.784, 0.772, and 0.838,
respectively. From this point on, we will take a deeper look at Table 15.
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Table 15. Correlation between the M3D measurements and the values of the MOS, VQM, PSNR,
and SSIM.

3D Video Spatial
Resolution

Correlation
between

the M3D and
the MOS

Correlation
between

the M3D and
VQM

Correlation
between

the M3D and
PSNR

Correlation
between

the M3D and
SSIM

Breakdance
SD 0.924 0.994 0.953 0.996
CIF 0.919 0.994 0.952 0.998

QCIF 0.920 0.996 0.956 0.998

Ballet
SD 0.956 0.998 0.990 0.993
CIF 0.956 0.984 0.971 0.970

QCIF 0.925 0.992 0.957 0.995

Windmill
SD 0.887 0.979 0.916 0.987
CIF 0.785 0.920 0.840 0.952

QCIF 0.255 0.273 0.260 0.332

Newspaper
SD 0.907 0.982 0.991 0.978
CIF 0.854 0.976 0.981 0.986

QCIF 0.286 0.106 0.282 0.264

Interview
SD 0.977 0.978 0.985 0.983
CIF 0.962 0.993 0.994 0.990

QCIF 0.944 0.998 0.997 0.993

Advertisement
SD 0.134 0.450 0.239 0.513
CIF 0.328 0.007 0.228 0.106

QCIF 0.111 0.187 0.033 0.289

Butterfly
SD 0.880 0.984 0.922 0.989
CIF 0.940 0.997 0.966 0.992

QCIF 0.959 0.998 0.982 0.987

Chess
SD 0.525 0.783 0.601 0.826
CIF 0.562 0.684 0.590 0.699

QCIF 0.876 0.926 0.905 0.912

Farm
SD 0.939 0.675 0.646 0.936
CIF 0.901 0.540 0.651 0.914

QCIF 0.862 0.405 0.620 0.855

Football
SD 0.911 0.880 0.914 0.880
CIF 0.906 0.902 0.882 0.903

QCIF 0.959 0.939 0.959 0.925

For the videos “Breakdance”, “Ballet”, “Interview”, “Football”, and “Butterfly”, the
M3D measurements have high correlation coefficients with the objective VQM, PSNR,
and SSIM metrics and subjective MOS measurements. This means that there are strong
linear relationships between the M3D measurements and the other video-quality measure-
ments used.

The lowest correlation coefficients between the M3D measurements and the other
video-quality measurements are observed in the video “Advertisement”. The correlation
coefficients of the video “Advertisement” are generally below the value 0.3 so that there
are weak linear relationships between the M3D measurements and other video-quality
measurements. This also means that an increase in any video-quality measurement does
not mean a higher M3D measurement and vice versa.

For the videos “Farm” and “Chess”, half of the CC results are between 0.3 and 0.7,
and the remaining half are above 0.7. As the CC results between 0.3 and 0.7 (half) indicate
moderate linear relationships between the M3D measurements and the VQM, PSNR, SSIM,
and MOS measurements, the CC results above 0.7 indicate strong linear relationships
between the M3D measurements and the VQM, PSNR, SSIM, and MOS measurements.
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For the videos “Windmill” and “Newspaper”, the CC results of the QCIF versions
are generally below 0.3 so that there are weak linear relationships between the M3D mea-
surements and the VQM, PSNR, SSIM, and MOS measurements. As mentioned above,
this situation arises from the negative reflections on the M3D of the errors that occur in
processes such as encoding, resizing, and downsampling. The CIF and SD versions have
high CC results, which mean strong linear relationships between the M3D measurements
and the VQM, PSNR, SSIM, and MOS measurements.

In light of the CC results in Table 15 and the explanations above, it is understood that
there is a useful correlation between M3D quality estimations and the measurements of the
MOS, VQM, PSNR, and SSIM; also, this correlation is worth considering when developing
a new hybrid 3D-video-quality metric based on spatial resolution and depth cues.

6. Conclusions and Future Works

Researchers use subjective tests in general to evaluate the quality of 3D videos. How-
ever, subjective tests have significant disadvantages such as a high cost, being time con-
suming, and its unsuitability for real-time applications. For this reason, there is a great
need for an objective and hybrid 3D-video QoE evaluation metric that is highly correlated
with the HVS and has excellent alignment with the MOS. Therefore, for such a metric to be
developed, it is a must to consider the effects of depth cues and spatial resolution, which
directly affect the viewer’s depth perception.

In this study, a hybrid 3D-video QoE evaluation metric was developed that employs
the effects of spatial-resolution-associated blurriness, motion information, retinal-image
size, convergence, and parameters on the depth perception of the viewers to be used in the
quality evaluation of 3D videos obtained by using the 2D + DM method, which may be a
preferred method by the researchers. Blurriness and motion information were derived from
the 2D color-texture video while the retinal-image size and convergence are derived from
the DM. Also, spatial resolution is derived from both the color-texture video and the DM.

This study emphasizes the critical role of the depth cues associated with spatial reso-
lution in designing an effective 3D-video QoE metric. The results show that the proposed
hybrid metric is quite successful and can be utilized to predict the 3D-video QoE. Obtaining
successful results from the proposed metric proves that it is an appropriate approach to use
depth cues and spatial resolution together as input parameters while developing a 3D-video
QoE evaluation metric. Especially, a high correlation with the HVS also proves the validity
of the proposed metric’s estimations. The proposed metric will allow researchers to avoid
the high cost of subjective tests and save time. Also, it is feasible to use the proposed metric
in real-time applications as it is a hybrid metric. For these reasons, it will accelerate the
studies on 3D-video technologies and encourage future studies.

It has to be noted that the predicted MOS values are eligible to be enhanced. In future
work, it is possible to fine tune the formulas by optimizing the coefficients, developing
different models for measuring the depth cues, changing existing depth cues with other
depth cues, and/or adding extra depth-cue elements to the proposed metric to further
improve the results.
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