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Abstract: Malaria is a potentially fatal infectious disease caused by the Plasmodium parasite. The
mortality rate can be significantly reduced if the condition is diagnosed and treated early. However,
in many underdeveloped countries, the detection of malaria parasites from blood smears is still
performed manually by experienced hematologists. This process is time-consuming and error-prone.
In recent years, deep-learning-based object-detection methods have shown promising results in
automating this task, which is critical to ensure diagnosis and treatment in the shortest possible time.
In this paper, we propose a novel Transformer- and attention-based object-detection architecture
designed to detect malaria parasites with high efficiency and precision, focusing on detecting several
parasite sizes. The proposed method was tested on two public datasets, namely MP-IDB and
IML. The evaluation results demonstrated a mean average precision exceeding 83.6% on distinct
Plasmodium species within MP-IDB and reaching nearly 60% on IML. These findings underscore
the effectiveness of our proposed architecture in automating malaria parasite detection, offering a
potential breakthrough in expediting diagnosis and treatment processes.

Keywords: computer vision; deep learning; image processing; malaria parasite detection; early
malaria diagnosis

1. Introduction

Malaria, a widespread disease, is induced by the Plasmodium parasite and is transmit-
ted to humans via bites from infected female Anopheles mosquitoes. In the year 2019, there
were approximately 229 million reported cases of malaria globally, leading to 409,000 fatali-
ties. Significantly, 94% of both malaria cases and associated deaths were concentrated in
Africa, with children below the age of five identified as the most-susceptible demographic,
constituting 67% of the total malaria-related deaths worldwide.

Although methods for the clinical diagnosis of malaria, such as molecular diagnostics
with Real-Time Polymerase Chain Reaction (RT-PCR) [1], have been proposed in recent
years, microscopy is the most-appropriate method for the detection of malaria in the field [2]
and for blood diseases or infections in general. They are detected through the analysis of
blood cells using peripheral blood slides under a light microscope. Thus, in addition to the
diagnosis of malaria infection [3–5], some examples include the detection of leukemia [6–9]
or the counting of blood cells [10–14].

Malaria, a disease caused by parasites belonging to the genus Plasmodium, manifests
in humans through the invasion of Red Blood Cells (RBCs). Transmission occurs via the
bites of infected female Anopheles mosquitoes, commonly known as “malaria vectors”.
There are five main types of parasites responsible for human malaria: P. falciparum (P.f.), P.
vivax (P.v.), P. ovale (P.o.), P. malariae (P.m.), and P. knowlesi (P.k.), with the first two posing
the greatest threat [15,16].
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The life stages of these parasites within the human host include the ring, tropho-
zoite, schizont, and gametocyte phases. Human malaria, as defined by the World Health
Organization (WHO), is considered a preventable and treatable condition if diagnosed
promptly. Failure to address the disease promptly may lead to severe complications such
as disseminated intravascular thrombosis, tissue necrosis, and splenic hypertrophy [16–19].

Nevertheless, the symptoms induced by malaria often closely resemble those as-
sociated with diseases such as viral hepatitis, dengue fever, and leptospirosis, thereby
complicating the diagnostic process [2,20]. Several diagnostic methods have been devel-
oped to overcome this problem. Nevertheless, the currently available diagnostic tools often
neglect or fail to distinguish between non-falciparum types [2]. In addition, several factors
complicate the identification of these species. For example, parasitemia is typically very
low in P.v.- and P.m.-infected individuals [21]; P.v. and P.o. are characterized by the slow
development of some of their sporozoites (early stage of schizonts), forming hypnozoites,
which are difficult to detect [22]. Infections with non-falciparum species are often asymp-
tomatic, which makes their detection even more difficult because infected people do not
seek treatment at a health facility due to the lack of symptoms. These reasons include the
need to keep infectious diseases under control, especially in underdeveloped countries
with no medical centers nearby or capable of handling many patients [16].

Manual microscopy of Peripheral Blood Smears (PBSs) has several advantages for
malaria diagnosis, including low cost, portability, specificity, and sensitivity [23]. However,
there are many problems associated with this method. Examples include technical skills
in slide preparation; lysis of red blood cells and related changes in parasite morphology
(leading to errors in species identification); quality and illumination of the microscope; the
staining procedure; the competence and care of the microscopist; and finally, the level of
parasitemia [2].

Moreover, the manual process is typically laborious and time-intensive, and incorrect
diagnoses may result in unwarranted drug administration, with potential exposure to
associated side effects or severe disease progression.

Further problems for this type of analysis are caused by the fact that, in many cases,
only microscopy or rapid tests are available as diagnostic tools. Several pieces of research
have shown consistent errors in Plasmodium species identification by microscopists, such
as missed P.o. infections with low parasite densities, P.f.-infected specimens misidentified
as P.m., and P.o. slides misidentified as P.v., which could lead to ineffective treatment
administration and increase the risk of severe malaria. Furthermore, it is common to fail
to distinguish early trophozoites of P.v. from those of P.f., especially when parasitemia
is low, as well as P.m. from other Plasmodium species using a microscopic method [24].
The similar morphologies of the malaria species can also lead to mixed infections, mostly
misdiagnosed [2]. These events can also lead to a worsening of the clinical picture.

Accurate and timely malaria diagnosis is crucial for effective treatment and preventing
severe complications. While traditional methods like microscopy remain the gold standard,
recent developments in deep learning, specifically deep Convolutional Neural Networks
(CNNs), have shown promising results in malaria cell image analysis.

Several studies have explored the application of deep CNNs in malaria diagnosis at
the single-cell level, emphasizing the importance of accurately identifying whether a cell is
infected with the malaria parasite [25–30].

Despite the advances produced by these methods, the use of datasets composed of
images presenting monocentric cells represents an overly ideal scenario in which salient
and highly discriminating features can be extracted from the images. Of course, this is
valid under the assumption that pathologists take crops manually or that detection systems
provide perfect crops. However, this assumption is not verified in real-world application
scenarios because the systems are fully automated, and therefore, the crops cannot always
be accurate or perfectly centered [31–35].
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Other challenges exist, such as discriminating between different Plasmodium species
and managing the complexities associated with low parasitemia levels and asymptomatic
infections. Consequently, the exact localization of parasites within cells, obtained through
precise bounding box detection, could offer valuable insights for in-depth studies and
detailed diagnosis [5,36,37]. Therefore, integrating deep learning techniques with object
detection capabilities becomes essential in this context. This integration allows accurate clas-
sification of infected cells and precise localization of parasites within these cells, providing
comprehensive information for detailed analysis and diagnosis.

The challenges expressed motivated this work. Its objective was to devise a methodol-
ogy named the Parasite Attention Module (PAM), which was seamlessly incorporated into
the You Only Look Once (YOLO) architecture. This methodology was designed to automat-
ically detect malaria parasites, addressing the limitations associated with the prevailing
gold-standard microscopy technique. Specifically, the main contributions of this research
are summarized as follows: (i) the development of a novel Transformer- and attention-
based object-detection architecture based on the latest version of YOLO for malaria parasite
detection; (ii) the investigation and extension of the proposal to the four different species
for mixed or intra-species detection; (iii) the evaluation of two different datasets, including
intra-dataset experimentations, based on the different species.

The rest of this article is organized as follows. First, the related work is presented in
Section 2, and then, the materials and methods are described in Section 3. The proposed
architecture is described in Section 4, while the experiments and results are presented
in Section 5, along with a discussion of every investigation. Finally, the conclusions are
drawn in Section 6.

2. Literature Review

In recent years, the field of computer vision has proposed various Computer-Aided
Diagnosis (CAD) solutions aimed at automating the detection of malaria parasites. These
endeavors seek to alleviate the challenges associated with manual analysis, offering a
more-reliable and standardized interpretation of blood samples. This automation, in turn,
can potentially mitigate diagnostic costs [37,38].

Before the emergence of deep learning techniques, malaria parasite detection in im-
ages relied on classical methods involving multiple steps: image preprocessing, object
detection or segmentation, feature extraction, and classification. Techniques like mathe-
matical morphology for preprocessing and segmentation [31,32], along with handcrafted
features [33,34], have been used to train machine learning classifiers. The landscape of
computer vision approaches for malaria parasite detection underwent a significant trans-
formation with the introduction of AlexNet’s Convolutional Neural Network (CNN) [39],
marking a paradigm shift.

Various deep learning approaches have been proposed as alternatives to classical methods
for this task, as evidenced by numerous studies published in the last decade [5,25,30,36,37,40].

In the context of deep learning approaches, existing works on malaria can be divided
into two categories. Works that perform classification on images containing single cells aim
to identify the most-appropriate classifier to discriminate between parasitized and healthy
cells by proposing custom CNN architectures or using off-the-shelf CNNs [25–30,41].
Additionally, Rajaraman et al. explored the performance of deep neural ensembles [30].
These methods typically use the NIH [29] dataset as a reference. More recently, Sengar
et al.examined the use of vision Transformers on the same dataset [42].

On the other hand, works proposing full pipelines typically propose parasite de-
tection from whole images and rely on several existing datasets, such as BBC041 [36],
MP-IDB [43,44], IML [40], or M5 [37].
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Arshad et al. proposed a dataset containing P. vivax malaria species in four life cycle
stages. The authors presented a deep-learning-based life cycle stage classification, where
the ResNet-50v2 network was selected for single-stage multi-class classification [40].

Sultani et al. collected a new malaria image dataset with multiple microscopes and
magnifications using thin-blood smear slides. They obtained two variations of the dataset,
one from Low-Cost Microscopes (LCMs) and another from High-Cost Microscopes (HCMs),
aiming to replicate the challenges associated with real-world image acquisition in resource-
limited environments. To address the malaria detection task, the authors used several object
detectors. In addition, they also discussed the issue of microscope domain adaptation
tasks and tested some off-the-shelf domain adaptation methods. The optimal performance
emerged through the application of ranking combined with triplet loss, with the HCM
serving as the source domain and the LCM as the target domain [37].

Since malaria parasites consistently target erythrocytes, automated malaria detection
systems must analyze these cells to determine infection and classify the associated life
stages. Existing literature only addresses the classification problem without considering
the detection problem. Additionally, considerable emphasis has been placed on developing
mobile devices to facilitate cost-effective and rapid malaria diagnosis, particularly in
underdeveloped regions where access to more-expensive laboratory facilities is limited [34].

Regarding dataset utilization, some studies have employed the same datasets as
utilized in this investigation. As of the current writing, a limited number of studies
have used MP-IDB [5,44,45], whereas IML has only been utilized by its proposers [40].
Maity et al. implemented a semantic segmentation technique followed by the application of
a Capsule Network (CapsNet) for the categorization of P.f. rings [5], whereas Rahman et al.
conducted a comparative evaluation involving various off-the-shelf networks for binary
classification purposes [45].

The principal distinctions between our study and the existing state-of-the-art method-
ologies stem from deploying a detector with a dual objective: identifying distinct types of
malaria-infected RBCs and discriminating various life stages within a unified framework.

Compared to the works defined so far, this work aimed to provide a lightweight and
effective method to detect malaria parasites of any species and life stage.

3. Materials and Methods

This section presents the materials and methods used in this study. Specifically,
Section 3.1 gives an overview of the employed datasets. Then, Section 3.2 describes object
detection with a specific focus on the YOLO family. Section 3.3 explains the modules
composing the proposed architecture’s structure, and finally, Section 3.4 presents the
metrics adopted to evaluate the experimental results.

3.1. Datasets

MP-IDB [4] comprises 210 images encompassing four distinct species of malaria
parasites. The distribution is as follows: 104 images for P. falciparum, 37 for P. malariae, 29 for
P. ovale, and 40 for P. vivax. Each parasite species exhibits four distinct life stages, namely
ring, trophozoite, schizont, and gametocyte. Each image is accompanied by its associated
ground truth, indicating the presence of one or more life stages. The entire dataset was
captured at a resolution of 2592× 1944 px with a color depth of 24 bit.

IML [40] contains images of blood samples taken with a camera mounted on an XSZ-
107 series microscope at a 100× magnification. The dataset contains 345 images with an
average of 111 blood cells. Only P. vivax is represented.

Sample images from both datasets are presented in Figure 1.
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Figure 1. Comprehensive overview of the investigated datasets. The figure presents a detailed
overview of the two datasets investigated in this study: MP-IDB and IML. MP-IDB encompasses
four distinct malaria species—P. falciparum, P. malariae, P. ovale, and P. vivax. In contrast, the IML
dataset exclusively consists of samples related to P. vivax. Notably, the MP-IDB dataset demonstrates
intra-species variations, while the datasets differ significantly from each other.

3.2. Object Detectors

Modern detectors are based on deep learning methods and are divided into two
categories: one-stage and two-stage. Two-stage architectures, such as Faster R-CNN [46],
first extract Regions Of Interest (ROIs) and, then, perform classification and bounding
box regression in a coarse-to-fine process. In contrast, one-stage detectors, including the
SSD [47], FPN [48], and YOLO family [49–52], produce bounding boxes and classes directly
from predicted feature maps with predefined anchors.

One-stage detectors are faster and more compact, making them more suitable for
time-critical applications and computationally constrained edge devices [53,54].

Recently, the success of Transformers in image recognition has led to the development
of several end-to-end Detection Transformers (DETRs). Despite their high recognition
accuracy, DETRs are hampered by their complex architectures and slow convergence
problems [53].

To overcome these limitations, in this paper, we propose a modified version of the
one-stage detector YOLOv8 to be efficient and accurate, especially on small parasite objects.

YOLO

Instead of the traditional two-step approach based on a region-selection method,
the YOLO family of detectors uses an end-to-end differentiable network that integrates
bounding box estimation and object identification. YOLO divides the input image into
S× S constant-size grids, and a CNN predicts the bounding boxes and classes for each
grid. If the confidence of a bounding box is above a certain threshold, it is selected to locate
the object in the image. The CNN performs only one pass to make predictions and, after
non-maximum suppression, produces known objects and their bounding boxes, ensuring
that each object is detected only once.

YOLOv8 is a family of architectures and models for object detection pre-trained on the
Common Object in Context (COCO) dataset [55].

This family comprises five distinct models that share a common architecture, but
diverge in breadth, depth, and the number of trainable parameters. The models denoted as
YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x
(extra-large), are each pre-trained on images with resolutions of either 640× 640 or 1280×
1280 px. Notably, in terms of trainable parameters, YOLOv8n encompasses 3.2 million,
YOLOv8s 11.2 million, YOLOv8m 25.9 million, YOLOv8l 43.7 million, and YOLOv8x
68.2 million.
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The YOLOv8 architecture is composed of three integral components, similar to other
single-stage object detectors, namely the backbone, neck, and prediction head.

The backbone is a pre-trained network specialized in extracting features from the
input image. This process involves reducing the spatial resolution of the image while
concurrently increasing the resolution of the extracted features.

The neck component combines the extracted features and generates three distinct
scales of feature maps, commonly referred to as feature pyramids. This design enhances
the model’s ability to generalize effectively to objects of varying sizes and scales.

Subsequently, the prediction head employs anchor boxes on the feature maps, facilitat-
ing the detection of objects based on the previously generated feature maps.

Similarly to YOLOv5, the YOLOv8 architecture uses the CSPDarknet53 architecture
with a Spatial Pyramid Pooling (SPP) layer [56] as the backbone, uses the Path Aggregation
Network (PANet) [57] as the neck, and the YOLO detection head [49].

Despite the significant improvement in detection speed, it is a well-known fact that
YOLO architectures struggle to detect small objects, compared to two-stage detectors [49,54].
This particular problem was addressed as one of the objectives of this paper. In fact, the
considered scenario included cases where small parasites appear. The smallest ones, i.e., the
smallest rings, are sometimes not large enough to be considered by a generic detector.

3.3. Core Modules and Mechanisms

In this section, we review the several key components and state-of-the-art mechanisms
adopted in order to enhance the existing baseline architecture. To better visualize the
relationships and hierarchy discernible among these components, we provide a schematic
representation in Figure 2.

Figure 2. Overview of the modules and mechanisms’ hierarchy proposed in this study to enhance the
performance of YOLOv8. Here, NAM stands for Normalized Attention Module, while CBAM refers
to Convolutional Block Attention Module. Further, C2f is a fast implementation of the Cross-Stage
Partial (CSP) Bottleneck with 2 convolutions, while C3 indicates a CSP Bottleneck with 3 convolutions.
Finally, C3STR refers to the integration of the Swin Transformer Block in place of the C3 module’s
Bottleneck.

3.3.1. Attention Mechanisms

The concept of attention, a vital cognitive function in human perception, involves
selectively focusing on the salient parts of a scene, enabling efficient processing of visual
information [58]. This ability allows humans to filter relevant information with limited
computational resources, enhancing both efficiency and accuracy in perception [59].

In recent years, attention mechanisms have found applications in various computer
science domains, including natural language processing and Computer Vision (CV) [59]. In
these contexts, attention acts as a technique to emphasize specific parts of input data when
generating output, essentially assigning importance weights to different input features.

In the realm of object detection, attention mechanisms guide the model’s focus to-
ward image regions likely to contain relevant objects. This selective attention significantly
enhances object detection accuracy by reducing irrelevant information processed by the
model. An approach in computer vision involves utilizing CNNs with attention mod-
ules [60]. These modules consist of learnable weights that prioritize different regions of the
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input image. Through training, the model adapts these weights, learning to concentrate on
crucial image regions for a given task.

With regard to CV tasks, attention mechanisms can be broadly classified into channel,
spatial, temporal, branch, channel and spatial, and spatial and temporal attention [61]. For
the purpose of this work, we provide a concise definition of the channel and spatial attention
mechanisms. On the one hand, channel attention dynamically modifies the importance
of each channel, resembling the selection of specific objects and, thus, determining what
deserves attention. This adjustment follows the concept that, in deep neural networks,
distinct channels within various feature maps typically signify separate objects [61]. Hu
et al. [62] introduced channel attention and proposed SENet for this task.

On the other hand, spatial attention involves creating an attention mask that spans
various spatial domains within an image. This mask is generated to highlight essential
regions. These highlighted regions are either selected directly as important spatial areas
based on the generated attention mask or the attention mechanism predicts the most-
relevant spatial positions directly [61]. This process enables deep learning models to focus
on specific parts of an image, improving their ability to recognize objects and understand
the context within complex visual data.

3.3.2. Convolutional Block Attention Module (CBAM)

To enhance informative channels and important regions of CNNs, Woo et al. [58]
proposed the Convolutional Block Attention Module (CBAM). It sequentially stacks channel
and spatial attention modules, which decouple the channel and spatial attention maps
for computational efficiency. Additionally, CBAM leverages spatial global information by
introducing global pooling.

CBAM has two sequential sub-modules, channel and spatial. Given an input feature
map X ∈ RC×H×W , CBAM sequentially infers a 1D channel attention vector sc ∈ RC and a
2D spatial attention map ss ∈ RH×W .

The channel attention module learns to weigh the importance of different channels in a
feature map based on their relevance. In contrast, the spatial attention module understands
to selectively emphasize important spatial regions of the feature map. This combination
permits the highlighting of proper channels and enhancing informative local regions.

CBAM can also be represented in the notation expressed by Equation (1):

Wc = σ(MLP(Apool(X))), (1)

where Apool denotes a global average pooling operation that aggregates the spatial di-
mensions of the feature map, MLP denotes a two-layer feedforward network with ReLU
activations, and σ represents the sigmoid activation function.

The spatial attention module operates on the feature map X and the channel attention
weights Wc. It first computes a set of spatial attention weights Ws by passing the feature map
through a convolutional layer with a sigmoid activation function, as shown in Equation (2):

Ws = σ(Conv7x7(Apool(X)⊗Wc)), (2)

where ⊗ denotes elementwise multiplication, Conv denotes a convolutional layer, and
Apool is as defined above. The spatial attention weights are then used to modulate the
feature map as follows (defined in Equation (3)):

Y = Ws ⊗ X, (3)

where Y denotes the output feature map.

3.3.3. Normalized Attention Module

The Normalized Attention Module (NAM), proposed for neural networks, represents
a lightweight and efficient attention mechanism. This module combines the channel and
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spatial attention mechanisms into a unified module, utilizing the batch normalization
scaling factor to measure the importance of both channels and pixel regions [63].

This module can be described by the following notation:

Mc = sigmoid(Wγ(BN(F1))) (4)

Ms = sigmoid(Wλ(BNs(F2))) (5)

where Wγ and Wλ are scaling factors, BN is a batch normalization module, and F1, F2 are
the input feature maps.

3.3.4. Swin Transformer

This is one of the most-recent Vision Transformer architectures, which has shown
impressive results in object detection tasks [64] and is the current state-of-the-art on the
COCO test–dev dataset. The core idea of the Swin Transformer is to use hierarchical
partitioning of image feature maps, allowing for efficient computation and scalability to
larger input resolutions. In particular, the Swin Transformer Block replaces the standard
self-attention mechanism with a shifted window-based self-attention. This allows the
attention mechanism to be computed more efficiently, as the computational complexity
is reduced from quadratic to linear with respect to the input resolution. Additionally, the
Swin Transformer Block introduces a hierarchical structure, which allows for multi-scale
feature representation, which is critical for capturing information at different levels of
abstraction in an image.

3.3.5. C2f and C3 Modules

The C2f and C3 modules are core modules of the YOLO architecture. On the one
hand, the C3 module belongs to the YOLOv5 architecture and is one of its core architectural
Blocks. It basically indicates a CSP Bottleneck with three convolutions. On the other hand,
the C2f module belongs to the YOLOv8 architecture and serves as an architectural upgrade,
replacing the C3 module. The C2f module is faster and lighter, which is achieved by using
a lower number of convolutional filters. It is a CSP Bottleneck with two convolutions.

3.3.6. C2f

The C2f module consists of a 1× 1 convolution layer called cv1, which reduces the
input channels to twice the hidden channels, and a 1× 1 convolution layer called cv2, which
reduces the input channels to the desired output channels. It also includes a sequence of
Bottleneck Blocks for further processing. The forward pass involves applying cv1 to the
input tensor x, splitting the output into two parts, processing them through the Bottleneck
Blocks, and finally, concatenating the outputs and passing them through cv2 to obtain the
final output.

3.3.7. C3

The C3 module is similar to C2f, but with an additional 1× 1 convolution layer called
cv2. It includes a 1× 1 convolution layer cv1, another cv2, and a 1× 1 convolution layer
called cv3 for reducing the concatenated input channels to the desired output channels. The
forward pass involves applying cv1 and cv2 to the input tensor separately, concatenating
the outputs, processing them through the Bottleneck Blocks, and passing the result through
cv3 to obtain the final output.

3.3.8. C3 Swin Transformer Block

This is a C3 module with a Swin Transformer Block in place of the Bottleneck compo-
nent. Some works, such as [65], have added the Swin Transformer Block to the YOLOv5
architecture, while we included the C3 Swin Transformer Block (C3STR) module within
our architectures.



J. Imaging 2023, 9, 266 9 of 19

3.4. Metrics

The assessment of object-detection methods often involves the use of the mean average
precision metric and its variations, as described in COCO [55]. Precision is calculated based
on the concept of the Intersection over Union (IoU), which measures the accuracy of
detection by comparing the overlapping area between the predicted bounding box and the
actual object to the total combined area.

To determine the accuracy of detection results, a specific threshold is set for the IoU.
If the IoU exceeds this threshold, the detection is considered accurate and classified as a
True Positive (TP). On the other hand, if the IoU falls below the threshold, the detection
is labeled as a False Positive (FP). Additionally, if the model fails to detect an object that
exists in the ground truth, it is referred to as a False Negative (FN).

Experimental evaluations were conducted using five variations of the mean average
precision metric:

• AP was evaluated with 10 different IoUs varying in a range of 50% to 95% with steps
of 5%;

• AP50 was evaluated with a single value o the IoU corresponding to 50%;
• APs is the AP determined for small objects (with area < 322 px);
• APm is the AP determined for medium objects (with 322 < area < 962 px);
• APL is the AP determined for large objects (with area > 962 px).

4. The Proposed Network: YOLO-PAM

In addition to proposing an efficient and precise malaria-parasite-detection system,
this study aimed to overcome the limitations of existing state-of-the-art methods. Our
objective was threefold: First was to achieve the speed and compactness typical of one-
stage detectors while maintaining high accuracy without the need for a secondary stage,
i.e., the classification stage. Second, we integrated Transformer models, steering clear of
an end-to-end DETR framework to avoid excessive complexity and sluggish convergence.
Last, we tackled the detection of the parasites of varying the sizes, from small to large,
within a unified system, eliminating the need for an additional specialized subsystem.

Our methodology primarily focused on enhancing the efficiency and accuracy of
the medium-sized one-stage detector, YOLOv5m6. Selected for its characteristics, this
model comprised 35.7 million trainable parameters and was pre-trained on images sized at
1280× 1280 pixels. Modifying its final layer equipped it to effectively detect all four phases
of the malaria life cycle. This model balances network depth and parameter count, making
it highly suitable for low-end computational resources and mobile devices [66].

Our proposed YOLO-PAM model aimed for a lighter approach compared to YOLOv5m6.
To achieve this, we adopted the same fundamental concepts of YOLOv5m6 for the YOLOv8m
architecture. We also reduced the model’s width to 3/4 of its original, resulting in fewer fil-
ters used and enabling faster training and inference. The architectural proposal is illustrated
in Figure 3.

A key contribution involved strategically integrating multiple CBAM attention mod-
ules within vital components of the baseline architecture, such as the backbone and neck,
influencing the prediction heads. This enhancement builds upon prior research [58], demon-
strating the efficacy of these modules in improving classification and detection tasks. We
made specific modifications to the original YOLOv8 architecture:

1. We excluded prediction heads designed for large objects, retaining those tailored for
medium-sized ones. This decision aimed to prevent unnecessary computational over-
head associated with handling excessively large objects and directed the architectural
focus towards the precise dimensions of the objects in the images, specifically those of
small and medium size in terms of pixel count.

2. Moreover, an additional head was incorporated to use features from the lower layers
of the model’s backbone. These layers offer less-refined features, but possess higher
resolution, a critical aspect for the precise detection of smaller objects, for example.



J. Imaging 2023, 9, 266 10 of 19

Leveraging lower backbone layers allows the extraction of high-resolution features,
essential for discriminating objects occupying minimal pixels. Higher layers excel in
discerning medium-sized objects, but might lose the details of smaller objects due to
the reduced feature map resolution caused by the convolution.

3. A further contribution entailed the integration of features extracted from the C3STR
layers with those acquired from the C3 layers immediately followed by the CBAM
layers. Subsequently, a NAM module was applied to introduce further attention to
the resulting feature maps. This procedure endowed the prediction heads with the
utmost refined features the model could generate, a detail highlighted by the orange
arrows in the schematic representation illustrated in Figure 3.

Figure 3. The proposed YOLO-PAM architecture.

In contrast to alternative strategies that integrate Transformers and attention mech-
anisms by substituting the last C3 layer with Transformer Blocks [65,67], our approach
diverged significantly. Our objective was to preserve the distinctive locally specialized fea-
tures intrinsic to CNNs while incorporating global features extracted through vision Trans-
formers. This approach involved merging these two feature types within the model heads,
enabling the retention of the nuanced advantages associated with global and local features.
In summary, our strategy involved integrating three different attention mechanisms—
CBAM, NAM, and C3STR—aiming to leverage their respective advantages.

5. Experimental Results

This section delineates the conducted experimental evaluation, starting with a com-
prehensive overview of the experimental setup detailed in Section 5.1. Additionally, it
provides details regarding dataset splits and the implemented data augmentation, aiming
to offer a comprehensive understanding of the experimental design. Subsequent sections
are dedicated to specific aspects of the evaluation: Section 5.2 delves into the ablation study,
while Sections 5.3 and 5.4, respectively, present the results on MP-IDB and IML. Further-
more, Section 5.5 furnishes an overview of the qualitative results, and lastly, Section 5.6
undertakes a comparative analysis between our proposed architecture and the state-of-the-
art methods.
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5.1. Experimental Setup

The experiments were performed on a workstation with the following hardware
specifications: an Intel(R) Core(TM) i9-8950HK @ 2.90 GHz CPU, 32 GB RAM, and an
NVIDIA GTX1050 Ti GPU with 4 GB memory. We used the PyTorch implementation of
YOLOv8 (available at: https://github.com/ultralytics/ultralytics (accessed on 28 Novem-
ber 2023)), developed by the Ultralytics LLC and the YOLOAir’s implementation of
C3STR (available at: https://github.com/iscyy/yoloair (accessed on 28 November 2023)).
The backbones used were ResNet-50 pretrained on ImageNet with the FPN and Darknet53
for YOLO. All YOLO-based networks were initialized using pre-trained weights on the
COCO2017 dataset [55]. Adam served as the optimizer, configured with a learning rate of
0.001 and a momentum of 0.9. Each model underwent training for 100 epochs, employing
a batch size of 4.

Datasets’ split: For MP-IDB, each parasite class was allocated a split of 60% for training,
20% for validation, and 20% for testing. The original splits proposed by the authors were
retained for IML [40]. Detailed information regarding the dimensions of the parasites can
be found in Table 1.
Data augmentation: We generated 35 distinct augmented samples from each original
sample for every species. This augmentation strategy aimed to enhance the diversity of the
training data, address data imbalance issues, bolster the models against potential object
rotations, and enable targeted generalization capabilities. We chose a milder augmentation
approach due to the vulnerability of certain parasites. Specific augmentation techniques,
such as shearing, were observed to have the potential to adversely affect parasites, with
notable implications for those of smaller dimensions [44]. Table 2 shows the applied
augmentations.

Table 1. Distribution of the parasites of both datasets based on their size, measured in pixels. S, M,
and L indicate Small, Medium, and Large parasites.

Dataset Species
Parasites

Train Set Val Set Test Set
S M L S M L S M L

MP-IDB

P. falciparum 370 408 0 123 136 0 123 136 1
P. malariae 1 25 0 1 8 0 0 8 0
P. ovale 0 20 0 0 6 0 0 7 0
P. vivax 2 29 2 1 10 1 3 10 5

IML P. Vivax 6 128 249 1 9 49 3 16 89

Table 2. Augmentation parameters and their associated probabilities. The table delineates the
parameters employed for data augmentation, including rotation range iterations, Gaussian noise
variance range, and Hue, Saturation, Value (HSV) shift limits, along with their respective probabilities
of implementation.

Augmentation Parameters Probability

Rotation range iterations: [0, 3] 1
Gaussian Noise variance range: [50, 100] 0.3
HSV-Hue shift limit: 20 0.3
HSV-Saturation shift limit: 30 0.3
HSV-Value shift limit: 20 0.3

5.2. Ablation Study

Table 3 presents the results of the ablation study conducted on the P.f. split of the
MP-IDB dataset, specifically chosen due to its diverse representation of different life stages
and the presence of parasites of varying sizes, ranging from small to large. The objective
of these experiments was to systematically evaluate the impact of various modifications

https://github.com/ultralytics/ultralytics
https://github.com/iscyy/yoloair
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on the detection performance. Four different configurations were tested: The baseline
method (YOLOv8m) achieved an AP of 78.9%. When incorporating CBAM alone, the
performance improved marginally to 79.6%. By focusing solely on the modifications in
the backbone architecture (C3), the AP score increased to 81.2%. The most-substantial
improvement was observed when both the CBAM and C3 modifications were integrated
(CBAM + C3), resulting in an AP score of 83.6%. This table provides a detailed insight
into the effectiveness of each modification. It underscores the significance of the combined
enhancements, demonstrating their positive impact on the accuracy of malaria parasite
detection.

Table 3. Ablation study conducted on the P.f. split of MP-IDB, chosen for its representative selection
of various life stages and the presence of small, medium, and large parasites. This subset enables
comprehensive assessment and validation of the proposed modifications and enhancements.

Method AP (%)

Baseline (YOLOv8m) 78.9
Baseline + CBAM only 79.6
Baseline + C3STR only 81.2
Baseline + CBAM + C3STR (Our) 83.6

5.3. Experimental Results on MP-IDB

Table 4 presents a detailed quantitative assessment of malaria parasite detection
performance across four species (P.f., P.m., P.o., and P.v.) within MP-IDB. The evaluation
employed multiple detection methods: Faster R-CNN, RetinaNet, FCOS, YOLOv8m, and
the proposed YOLO-PAM.

Table 4. Quantitative evaluation results obtained on the four parasite classes in MP-IDB [4]. The
reported performance metrics include the average precision at different Intersection over Union
thresholds and scales. The best results are emphasized in bold.

Class Method AP (%) AP50 APs APm APL

P.f.

FRCNN 39.2 80.6 33.7 44.3 0.0
RetinaNet 34.0 78.5 23.9 42.6 0.0
FCOS 10.1 39.9 5.6 14.5 0.0
Zedda et al. [44] - 95.2 - - -
YOLOv8m 78.9 98.3 70.0 77.0 90.0
YOLO-PAM 83.6 98.9 76.0 80.0 99.9

P.m.

FRCNN 75.1 98.4 - 75.1 -
RetinaNet 76.0 95.0 - 76.2 -
FCOS 4.7 21.2 - 8.8 -
YOLOv8m 78.8 97.2 - 74.0 -
YOLO-PAM 93.6 98.5 - 84.2 -

P.o.

FRCNN 71.0 89.1 - 71.0 -
RetinaNet 74.3 91.5 - 74.3 -
FCOS 44.2 81.8 - 45.1 -
YOLOv8m 89.7 99.5 - 83.0 -
YOLO-PAM 94.4 99.5 - 85.0 -

P.v.

FRCNN 60.3 87.7 20.2 61.5 85.0
RetinaNet 62.8 85.5 10.1 65.7 84.1
FCOS 53.0 81.0 5.1 53.8 83.1
YOLOv8m 85.9 93.7 19.0 83.9 96.0
YOLO-PAM 87.2 94.2 19.0 86.0 94.0

Across the P.f. class, YOLO-PAM showcased remarkable performance, achieving an AP
of 83.6%, outperforming other methods, including YOLOv8m (78.9%), and demonstrating
significant improvements. It also surpassed Zedda et al.’s [44] method by a consistent 3.7%
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in the AP. In the P.m. category, YOLO-PAM excelled once again, achieving a striking AP of
93.6%, surpassing the baseline YOLOv8m’s AP of 78.8%. Similarly, in the P.o. class, YOLO-
PAM achieved an outstanding AP of 94.4%, outclassing YOLOv8m’s AP of 89.7%. In the
P.v. category, YOLO-PAM attained an AP of 87.2%, demonstrating superior performance
compared to YOLOv8m’s AP of 85.9%.

Notably, YOLO-PAM consistently outperformed other methods across all parasite
species, as evidenced by the bolded entries in the table. These numerical results underscore
the effectiveness of the proposed YOLO-PAM in malaria parasite detection, emphasizing its
accuracy and robustness in identifying parasites of varying sizes within different species.

5.4. Experimental Results on IML

Table 5 provides a detailed analysis of the malaria parasite detection performance
across multiple methods within the IML dataset [40].

Table 5. Quantitative evaluation results obtained on the IML dataset [40]. The reported performance
metrics include the mean average precision at different Intersection over Union thresholds and scales.
The best results are emphasized in bold.

Method AP (%) AP50 APs APm APL

FRCNN 27.9 73.1 - 31.9 0.0
RetinaNet 24.2 71.2 - 30.7 0.0
FCOS 7.2 36.2 - 10.5 0.0
YOLOv8m 56.2 89.2 - 55.5 64.0
YOLO-PAM 59.9 91.8 - 60.0 65.0

In the context of the overall AP, YOLO-PAM emerged as the most-effective method,
achieving a remarkable AP of 59.9%, outperforming other methods such as the FRCNN
(27.9%), RetinaNet (24.2%), FCOS (7.2%), and even the baseline, YOLOv8m (56.2%). YOLO-
PAM’s superior performance is further highlighted by its excellent AP50 score of 91.8%,
indicating its ability to accurately detect parasites with a high IoU threshold.

Moreover, regarding specific AP scores, YOLO-PAM excelled across different object
scales. It achieved the highest APm (medium-sized objects) at 60.0%, demonstrating its
precision in detecting parasites of medium sizes. Additionally, YOLO-PAM achieved a
substantial APL (large-sized objects) score of 65.0%, underscoring its capability in accurately
identifying larger parasites. These results emphasize YOLO-PAM’s versatility and accuracy
across various object sizes, making it a robust and reliable choice for malaria parasite
detection tasks within the IML dataset. It is important to note that IML does not provide
any small parasites.

5.5. Qualitative Analysis

Figure 4 shows the predicted bounding boxes generated by the proposed architec-
ture. As can be seen, it demonstrated a high degree of agreement with the ground truth,
showing outstanding improvements over the baseline results obtained with YOLOv8.
Moreover, YOLO-PAM outperformed the detectors adopted for comparison, as shown by
the numerical data presented in Tables 4 and 5.
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(a) Ground truth.

(b) Example of detection result obtained with the baseline method, YOLOv8m.

(c) Example of detection result obtained with the proposed solution, YOLO-PAM.

Figure 4. The middle section shows detection outcomes obtained with the baseline method,
YOLOv8m, on a sample image taken from the P.f. split of MP-IDB. A closer look (at the right)
reveals missing parasites in the detection, along with the misclassification of a white blood cell
as a parasite. In contrast, the lower section presents results obtained with the proposed method,
YOLO-PAM. Here, all the parasites are accurately detected, and the white blood cell is not flagged as a
parasite. This comparison underscores the enhanced precision and accuracy achieved by YOLO-PAM.

5.6. System Comparison

In this section, we compare YOLO-PAM with some works present in the literature that
employed the same datasets as the object of this study.

Regarding the MP-IDB dataset, Rahman et al. conducted binary classification on
individual cells segmented from MP-IDB using the watershed transform. Diverging from
their approach, we focused exclusively on parasite detection, omitting healthy RBCs. Thus,
a direct comparison was precluded. Nevertheless, the authors achieved an 85.18% binary
classification accuracy using a fine-tuned VGG-19 specialized in discriminating healthy
single RBCs from infected counterparts [45].
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Maity et al. built a comprehensive system capable of segmenting infected RBCs
using a multilayer feedforward Artificial Neural Network applied to full-sized images.
They subsequently employed a CapsNet for the classification of the obtained crops. Their
reported correct classification of 885 P. falciparum rings out of 927 yielded a classification
accuracy of 95.46%. However, the authors did not extend the classification to gametocytes,
trophozoites, or schizonts [5].

Zedda et al. used a modified version of YOLOv5 for parasite detection, reporting an
84.6% mean average precision on MP-IDB [44].

Concerning the IML dataset, Arshad et al. implemented a framework involving a
segmentation step followed by multi-stage classification using off-the-shelf CNNs. Two
segmentation methodologies were tested, yielding 89.33% precision with the morphological
approach and 82.42% with the U-Net method [40].

The proposed YOLO-PAM approach offers several advantages compared to existing
state-of-the-art methods. First, in the critical scenario of malaria parasite detection, where
swift and accurate identification is paramount for timely diagnosis, YOLO’s efficiency in
providing real-time results stands as a significant advantage. Furthermore, YOLO-PAM’s
reduced parameter count, compared to other architectures, strikes a balance between ac-
curacy and speed, which is particularly beneficial in resource-constrained settings where
prompt and precise detections are imperative for timely intervention. Table 6 compares
parameter counts and inference times between YOLO-PAM and other architectures, demon-
strating improved results with lower parameters and comparable inference times to the
reference baseline.

Second, YOLO-PAM provides a unified framework for end-to-end detection, allowing
simultaneous predictions of bounding boxes and class probabilities for multiple parasite
types and stages within an image.

Third, the unified architecture of YOLO-PAM, considering the entire image in a single
forward pass, streamlines the detection process and enhances the model’s ability to capture
spatial dependencies effectively.

By leveraging these advantages, this work aimed to contribute significantly to the field
of malaria diagnosis by providing a robust and efficient solution for automated parasite
detection.

Table 6. Indication of the number of parameters (in millions) of every architecture used and inference
time (in seconds). YOLO-PAM offer improved results with lower parameters and almost the same
inference time as the baseline.

Models Parameters (M) Inf. Time (s)

YOLOv8 (baseline) 43.2 0.0131
FRCNN 41.2 0.101
RetinaNet 34.1 0.102
FCOS 32.3 0.286
YOLO-PAM 29.8 (−13.4) 0.0165

6. Conclusions

In summary, this study’s experimental results and analysis demonstrated the effec-
tiveness and superiority of the proposed malaria-parasite-detection method, YOLO-PAM,
across multiple datasets and parasite species. The ablation study systematically assessed
the impact of various modifications on the detection performance. Notably, integrating
both CBAM and C3STR modifications significantly enhanced the accuracy, highlighting
the importance of these combined enhancements.

When evaluated on MP-IDB, YOLO-PAM consistently outperformed existing methods
across all four parasite species. Notably, within the P.f. class, YOLO-PAM achieved a
remarkable Average Precision (AP) of 83.6%, surpassing both the baseline YOLOv8m and
the previously established state-of-the-art detection method [44]. Similarly, in the P.m. and
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P.o. categories, YOLO-PAM exhibited high performance, demonstrating its precision in
detecting parasites of varying sizes within these species.

Furthermore, the evaluation of the IML dataset reinforced YOLO-PAM’s superiority.
With an overall AP of 59.9%, it outperformed the FRCNN, RetinaNet, FCOS, and the
baseline, YOLOv8m, demonstrating its accuracy in detecting malaria parasites even in
challenging scenarios.

YOLO-PAM exhibited precision for small objects, as observed in the P.f. class, and for
medium- and large-sized parasites, underscoring its versatility across different object scales.

In conclusion, YOLO-PAM presents a robust and reliable solution for malaria parasite
detection, addressing the limitations of existing methods and demonstrating superior
performance across diverse datasets and parasite species. Its accuracy, versatility, and
reliability make it a valuable contribution to malaria research and healthcare, promising
significant advancements in malaria diagnosis and ultimately contributing to the global
efforts to combat this infectious disease.

Several potential directions for future research were outlined. The primary goal
was to enhance the current approach to accurately detect all malaria parasite species
simultaneously. Additionally, building upon the encouraging results within the intra-
dataset context, the approach will be tailored to a cross-dataset framework to enhance
its resilience to potential environmental variations between the source and target data.
Finally, a long-term objective is to expand the approach to encompass a multi-magnification
image representation of the same blood smear, enabling more-precise detection of malaria
parasites across varying magnifications.
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9. Toğaçar, M.; Ergen, B.; Cömert, Z. Classification of white blood cells using deep features obtained from Convolutional Neural
Network models based on the combination of feature selection methods. Appl. Soft Comput. J. 2020, 97, 106810. [CrossRef]

10. Di Ruberto, C.; Loddo, A.; Puglisi, G. Blob Detection and Deep Learning for Leukemic Blood Image Analysis. Appl. Sci. 2020, 10,
1176. [CrossRef]

11. Di Ruberto, C.; Loddo, A.; Putzu, L. Learning by Sampling for White Blood Cells Segmentation. In Proceedings of the Image
Analysis and Processing—ICIAP 2015—18th International Conference, Genoa, Italy, 7–11 September 2015; Proceedings, Part I;
Springer: Berlin/Heidelberg, Germany, 2015; Volume 9279, pp. 557–567.

12. Di Ruberto, C.; Loddo, A.; Putzu, L. A leucocytes count system from blood smear images Segmentation and counting of white
blood cells based on learning by sampling. Mach. Vis. Appl. 2016, 27, 1151–1160. [CrossRef]

13. Di Ruberto, C.; Loddo, A.; Putzu, L. Detection of red and white blood cells from microscopic blood images using a region
proposal approach. Comput. Biol. Med. 2020, 116, 103530. [CrossRef] [PubMed]

14. Xie, W.; Noble, J.A.; Zisserman, A. Microscopy cell counting and detection with fully convolutional regression networks. Comput.
Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 6, 283–292. [CrossRef]

15. Healthcare, Stanford 2021. Available online: https://stanfordhealthcare.org/medical-conditions/primary-care/malaria/types.
html (accessed on 8 March 2023).

16. WHO. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 8 March 2023).
17. World Health Organization. 2021. Available online: https://www.who.int/health-topics/malaria#tab=tab_1 (accessed on 8

March 2023).
18. ScienceDirect. 2021. Available online: https://www.sciencedirect.com/topics/neuroscience/malaria (accessed on 8 March 2023).
19. For Disease Control, United States Center; Prevention. 2021. Available online: https://www.cdc.gov/malaria/about/biology/

index.html (accessed on 8 March 2023).
20. Gadia, C.L.B.; Manirakiza, A.; Tekpa, G.; Konamna, X.; Vickos, U.; Nakoune, E. Identification of pathogens for differential

diagnosis of fever with jaundice in the Central African Republic: A retrospective assessment, 2008–2010. BMC Infect. Dis. 2017,
17, 735. [CrossRef] [PubMed]

21. Kerlin, D.H.; Gatton, M.L. Preferential invasion by Plasmodium merozoites and the self-regulation of parasite burden. PLoS ONE
2013, 8, e57434. [CrossRef]

22. Voorberg-van der Wel, A.; Roma, G.; Gupta, D.K.; Schuierer, S.; Nigsch, F.; Carbone, W.; Zeeman, A.M.; Lee, B.H.; Hofman, S.O.;
Faber, B.W.; et al. A comparative transcriptomic analysis of replicating and dormant liver stages of the relapsing malaria parasite
Plasmodium cynomolgi. Elife 2017, 6, e29605. [CrossRef] [PubMed]

23. Berzosa, P.; de Lucio, A.; Romay-Barja, M.; Herrador, Z.; González, V.; García, L.; Fernández-Martínez, A.; Santana-Morales, M.;
Ncogo, P.; Valladares, B.; et al. Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria
parasites in representative samples from Equatorial Guinea. Malar. J. 2018, 17, 333. [CrossRef]

24. Kotepui, M.; Kotepui, K.U.; De Jesus Milanez, G.; Masangkay, F.R. Summary of discordant results between rapid diagnosis tests,
microscopy, and polymerase chain reaction for detecting Plasmodium mixed infection: A systematic review and meta-analysis.
Sci. Rep. 2020, 10, 12765. [CrossRef]

25. Liang, Z.; Powell, A.; Ersoy, I.; Poostchi, M.; Silamut, K.; Palaniappan, K.; Guo, P.; Hossain, M.A.; Antani, S.K.; Maude, R.J.; et al.
CNN-based image analysis for malaria diagnosis. In Proceedings of the IEEE International Conference on Bioinformatics and
Biomedicine, BIBM 2016, Shenzhen, China, 15–18 December 2016; Tian, T., Jiang, Q., Liu, Y., Burrage, K., Song, J., Wang, Y., Hu, X.,
Morishita, S., Zhu, Q., Wang, G., Eds.; IEEE Computer Society: Washington, DC, USA, 2016; pp. 493–496.

http://doi.org/10.1186/1475-2875-9-269
http://www.ncbi.nlm.nih.gov/pubmed/20925928
http://dx.doi.org/10.3389/fcimb.2021.681063
http://www.ncbi.nlm.nih.gov/pubmed/34222049
http://dx.doi.org/10.1016/j.patrec.2020.07.002
http://dx.doi.org/10.1109/JBHI.2019.2905623
http://dx.doi.org/10.1016/j.engappai.2018.04.024
http://dx.doi.org/10.1016/j.asoc.2020.106810
http://dx.doi.org/10.3390/app10031176
http://dx.doi.org/10.1007/s00138-016-0812-4
http://dx.doi.org/10.1016/j.compbiomed.2019.103530
http://www.ncbi.nlm.nih.gov/pubmed/31778895
http://dx.doi.org/10.1080/21681163.2016.1149104
https://stanfordhealthcare.org/medical-conditions/primary-care/malaria/types.html
https://stanfordhealthcare.org/medical-conditions/primary-care/malaria/types.html
https://www.who.int/news-room/fact-sheets/detail/malaria
https://www.who.int/health-topics/malaria#tab=tab_1
https://www.sciencedirect.com/topics/neuroscience/malaria
https://www.cdc.gov/malaria/about/biology/index.html
https://www.cdc.gov/malaria/about/biology/index.html
http://dx.doi.org/10.1186/s12879-017-2840-8
http://www.ncbi.nlm.nih.gov/pubmed/29187150
http://dx.doi.org/10.1371/journal.pone.0057434
http://dx.doi.org/10.7554/eLife.29605
http://www.ncbi.nlm.nih.gov/pubmed/29215331
http://dx.doi.org/10.1186/s12936-018-2481-4
http://dx.doi.org/10.1038/s41598-020-69647-y


J. Imaging 2023, 9, 266 18 of 19

26. Gopakumar, G.P.; Swetha, M.; Sai Siva, G.; Sai Subrahmanyam, G.R.K. Convolutional neural network-based malaria diagnosis
from focus stack of blood smear images acquired using custom-built slide scanner. J. Biophotonics 2018, 11, e201700003. [CrossRef]

27. Dong, Y.; Jiang, Z.; Shen, H.; Pan, W.D. Classification accuracies of malaria infected cells using deep convolutional neural
networks based on decompressed images. In Proceedings of the SoutheastCon 2017, Concord, NC, USA, 30 March–2 April 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

28. Dong, Y.; Jiang, Z.; Shen, H.; Pan, W.D.; Williams, L.A.; Reddy, V.V.B.; Benjamin, W.H.; Bryan, A.W. Evaluations of deep
convolutional neural networks for automatic identification of malaria infected cells. In Proceedings of the 2017 IEEE EMBS
International Conference on Biomedical & Health Informatics, BHI 2017, Orland, FL, USA, 16–19 February 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 101–104.

29. Rajaraman, S.; Antani, S.K.; Poostchi, M.; Silamut, K.; Hossain, M.A.; Maude, R.J.; Jaeger, S.; Thoma, G.R. Pre-trained convolutional
neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ 2018, 6, e4568.
[CrossRef]

30. Rajaraman, S.; Jaeger, S.; Antani, S.K. Performance evaluation of deep neural ensembles toward malaria parasite detection in
thin-blood smear images. PeerJ 2019, 7, e6977. [CrossRef]

31. Di Ruberto, C.; Dempster, A.; Khan, S.; Jarra, B. Analysis of infected blood cell images using morphological operators. Image Vis.
Comput. 2002, 20, 133–146. [CrossRef]

32. Tek, F.B.; Dempster, A.G.; Kale, I. Malaria Parasite Detection in Peripheral Blood Images; BMVA: Edinburgh, UK, 2006.
33. Kumarasamy, S.K.; Ong, S.; Tan, K.S. Robust contour reconstruction of red blood cells and parasites in the automated identification

of the stages of malarial infection. Mach. Vis. Appl. 2011, 22, 461–469. [CrossRef]
34. Bias, S.; Reni, S.; Kale, I. Mobile Hardware Based Implementation of a Novel, Efficient, Fuzzy Logic Inspired Edge Detection

Technique for Analysis of Malaria Infected Microscopic Thin Blood Images. In Proceedings of the 9th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2018)/the 8th International Conference on Current and Future
Trends of Information and Communication Technologies in Healthcare (ICTH-2018)/Affiliated Workshops, Leuven, Belgium, 5–8
November 2018; Procedia Computer Science; Elsevier: Amsterdam, The Netherlands, 2018; Volume 141, pp. 374–381.

35. Loddo, A.; Putzu, L. On the effectiveness of leukocytes classification methods in a real application scenario. AI 2021, 2, 394–412.
[CrossRef]

36. Zaid, M.; Ali, S.; Ali, M.; Hussein, S.; Saadia, A.; Sultani, W. Identifying out of distribution samples for skin cancer and malaria
images. Biomed. Signal Process. Control 2022, 78, 103882. [CrossRef]

37. Sultani, W.; Nawaz, W.; Javed, S.; Danish, M.S.; Saadia, A.; Ali, M. Towards Low-Cost and Efficient Malaria Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
18–24 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 20655–20664.

38. Loddo, A.; Ruberto, C.D.; Kocher, M. Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.
Sensors 2018, 18, 513. [CrossRef] [PubMed]

39. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the 25th International Conference on Neural Information Processing Systems (NIPS’12), Lake Tahoe, NV, USA, 3–6 December
2012; Volume 1, pp. 1097–1105.

40. Arshad, Q.A.; Ali, M.; Hassan, S.; Chen, C.; Imran, A.; Rasul, G.; Sultani, W. A dataset and benchmark for malaria life-cycle
classification in thin blood smear images. Neural Comput. Appl. 2022, 34, 4473–4485. [CrossRef]

41. Diker, A. An efficient model of residual based convolutional neural network with Bayesian optimization for the classification of
malarial cell images. Comput. Biol. Med. 2022, 148, 105635. [CrossRef]

42. Sengar, N.; Burget, R.; Dutta, M.K. A vision Transformer based approach for analysis of plasmodium vivax life cycle for malaria
prediction using thin blood smear microscopic images. Comput. Methods Programs Biomed. 2022, 224, 106996. [CrossRef]

43. Loddo, A.; Fadda, C.; Ruberto, C.D. An Empirical Evaluation of Convolutional Networks for Malaria Diagnosis. J. Imaging 2022,
8, 66. [CrossRef]

44. Zedda, L.; Loddo, A.; Di Ruberto, C. A Deep Learning Based Framework for Malaria Diagnosis on High Variation Data Set. In
Proceedings of the Image Analysis and Processing—ICIAP 2022—21st International Conference, Lecce, Italy, 23–27 May 2022;
Proceedings, Part II; Springer: Berlin/Heidelberg, Germany, 2022; Volume 13232, pp. 358–370.

45. Rahman, A.; Zunair, H.; Reme, T.R.; Rahman, M.S.; Mahdy, M.R.C. A comparative analysis of deep learning architectures on high
variation malaria parasite classification dataset. Tissue Cell 2021, 69, 101473. [CrossRef]

46. Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In
Proceedings of the Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

47. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of
the Computer Vision—ECCV 2016—14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings,
Part I; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9905, pp. 21–37.

48. Lin, T.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature Pyramid Networks for Object Detection. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26
July 2017; IEEE Computer Society: Washington, DC, USA, 2017; pp. 936–944.

http://dx.doi.org/10.1002/jbio.201700003
http://dx.doi.org/10.7717/peerj.4568
http://dx.doi.org/10.7717/peerj.6977
http://dx.doi.org/10.1016/S0262-8856(01)00092-0
http://dx.doi.org/10.1007/s00138-010-0284-x
http://dx.doi.org/10.3390/ai2030025
http://dx.doi.org/10.1016/j.bspc.2022.103882
http://dx.doi.org/10.3390/s18020513
http://www.ncbi.nlm.nih.gov/pubmed/29419781
http://dx.doi.org/10.1007/s00521-021-06602-6
http://dx.doi.org/10.1016/j.compbiomed.2022.105635
http://dx.doi.org/10.1016/j.cmpb.2022.106996
http://dx.doi.org/10.3390/jimaging8030066
http://dx.doi.org/10.1016/j.tice.2020.101473


J. Imaging 2023, 9, 266 19 of 19

49. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016;
IEEE Computer Society: Washington, DC, USA, 2016; pp. 779–788.

50. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; IEEE Computer Society: Washington, DC, USA, 2017;
pp. 6517–6525.

51. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
52. Bochkovskiy, A.; Wang, C.; Liao, H.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
53. Zhou, H.; Jiang, F.; Lu, H. SSDA-YOLO: Semi-supervised domain adaptive YOLO for cross-domain object detection. Comput. Vis.

Image Underst. 2023, 229, 103649. [CrossRef]
54. Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object Detection in 20 Years: A Survey. Proc. IEEE 2023, 111, 257–276. [CrossRef]
55. Lin, T.; Maire, M.; Belongie, S.J.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in

Context. In Proceedings of the Computer Vision—ECCV 2014—13th European Conference, Zurich, Switzerland, 6–12 September
2014; Proceedings, Part V; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8693,
pp. 740–755.

56. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

57. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; Computer Vision
Foundation/IEEE Computer Society: Washington, DC, USA, 2018; pp. 8759–8768.

58. Woo, S.; Park, J.; Lee, J.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the Computer Vision—
ECCV 2018—15th European Conference, Munich, Germany, 8–14 September 2018; Proceedings, Part VII; Lecture Notes in
Computer Science; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2018;
Volume 11211, pp. 3–19.

59. Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [CrossRef]
60. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual Attention Network for Image Classification.

In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26
July 2017; IEEE Computer Society: Washington, DC, USA, 2017; pp. 6450–6458.

61. Guo, M.; Xu, T.; Liu, J.; Liu, Z.; Jiang, P.; Mu, T.; Zhang, S.; Martin, R.R.; Cheng, M.; Hu, S. Attention mechanisms in computer
vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [CrossRef]

62. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; Computer Vision Foundation/IEEE Computer
Society: Washington, DC, USA, 2018; pp. 7132–7141.

63. Liu, Y.; Shao, Z.; Teng, Y.; Hoffmann, N. NAM: Normalization-based Attention Module. arXiv 2021, arXiv:2111.12419.
64. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using

Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal,
QC, Canada, 10–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 9992–10002.

65. Gong, H.; Mu, T.; Li, Q.; Dai, H.; Li, C.; He, Z.; Wang, W.; Han, F.; Tuniyazi, A.; Li, H.; et al. Swin-Transformer-Enabled YOLOv5
with Attention Mechanism for Small Object Detection on Satellite Images. Remote Sens. 2022, 14, 2861. [CrossRef]

66. Zheng, J.; Sun, S.; Zhao, S. Fast ship detection based on lightweight YOLOv5 network. IET Image Process. 2022, 16, 1585–1593.
[CrossRef]

67. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection
on Drone-captured Scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, ICCVW
2021, Montreal, BC, Canada, 11–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 2778–2788.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cviu.2023.103649
http://dx.doi.org/10.1109/JPROC.2023.3238524
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://dx.doi.org/10.1016/j.neucom.2021.03.091
http://dx.doi.org/10.1007/s41095-022-0271-y
http://dx.doi.org/10.3390/rs14122861
http://dx.doi.org/10.1049/ipr2.12432

	Introduction
	Literature Review
	Materials and Methods
	Datasets
	Object Detectors
	Core Modules and Mechanisms
	Attention Mechanisms
	Convolutional Block Attention Module (CBAM)
	Normalized Attention Module
	Swin Transformer
	C2f and C3 Modules
	C2f
	C3
	C3 Swin Transformer Block

	Metrics

	The Proposed Network: YOLO-PAM
	Experimental Results
	Experimental Setup
	Ablation Study
	Experimental Results on MP-IDB
	Experimental Results on IML
	Qualitative Analysis
	System Comparison

	Conclusions
	References

