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Abstract: Raman spectroscopy (RS) techniques are attracting attention in the medical field as a
promising tool for real-time biochemical analyses. The integration of artificial intelligence (AI)
algorithms with RS has greatly enhanced its ability to accurately classify spectral data in vivo. This
combination has opened up new possibilities for precise and efficient analysis in medical applications.
In this study, healthy and cancerous specimens from 22 patients who underwent open colorectal
surgery were collected. By using these spectral data, we investigate an optimal preprocessing
pipeline for statistical analysis using AI techniques. This exploration entails proposing preprocessing
methods and algorithms to enhance classification outcomes. The research encompasses a thorough
ablation study comparing machine learning and deep learning algorithms toward the advancement
of the clinical applicability of RS. The results indicate substantial accuracy improvements using
techniques like baseline correction, L2 normalization, filtering, and PCA, yielding an overall accuracy
enhancement of 15.8%. In comparing various algorithms, machine learning models, such as XGBoost
and Random Forest, demonstrate effectiveness in classifying both normal and abnormal tissues.
Similarly, deep learning models, such as 1D-Resnet and particularly the 1D-CNN model, exhibit
superior performance in classifying abnormal cases. This research contributes valuable insights into
the integration of AI in medical diagnostics and expands the potential of RS methods for achieving
accurate malignancy classification.

Keywords: Raman spectroscopy; colorectal cancer; tissue discrimination; machine learning; deep learning

1. Introduction

Raman spectroscopy is a technique used to study the vibrational modes of molecules
by analyzing the light that is inelastically scattered when a sample is illuminated with
monochromatic light, typically from a laser source [1]. Raman spectroscopy has many
potential applications in medicine, due to its ability to non-invasively analyze the molecular
structure of tissues and fluids [2]. In the field of cancer research, RS has been used to
diagnose various types of cancer, including breast, prostate, lung, skin, and colorectal
cancer [3].
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Colorectal cancer, specifically, is a type of cancer that affects the colon or rectum,
which are part of the digestive system, and it is one of the most common types of cancer.
Early detection and treatment of colorectal cancer can improve outcomes and increase the
chances of survival. RS has been investigated as a potential diagnostic tool for colorectal
cancer and similar pathologies with sensitivities and specificities usually higher than 80%
in ex vivo [4,5] and in vivo studies [4,6] by using multivariate statistical techniques such
as principal component analysis (PCA), linear discriminant analysis (LDA), and partial
least squares regression (PLSR). Cluster analysis methods, including hierarchical clustering
or k-means clustering, have also been applied in Raman spectroscopy and are commonly
used in Raman imaging [7].

However, the preprocessing methods play a crucial role in the Raman spectra analysis.
Recently, they used Raman spectroscopy for brain tumor identification by testing six
preprocessing methods on a dataset of over 900 brain tissue samples [8]. Recently, a
data analysis pipeline for Raman spectra was introduced, emphasizing its adaptability
to specific applications and its three primary procedural groups: data pre-treatment, pre-
processing, and modeling [9]. Another approach evaluates the statistical variability in
training spectra. This method aids in selecting optimal preprocessing techniques, enhancing
model performance, and ultimately establishing Raman spectroscopy as a reliable tool
for noninvasive health monitoring, with potential implications for fields such as diabetes
diagnosis [10]. Moreover, the effectiveness of training a convolutional neural network
(CNN) using synthetic data to perform all preprocessing steps for Raman spectra has been
published, including cosmic ray removal, signal smoothing, and baseline subtraction [11].

However, analyzing Raman spectra with statistical models cannot be automated and
is less precise [12]. Combining Raman spectroscopy with machine and deep learning
algorithms can automate the analysis process and improve the accuracy and efficiency
of disease diagnosis and treatment [13]. In another study [14], researchers successfully
integrated near-infrared Raman spectroscopy with support vector machines to achieve
outstanding results, with the approach delivering a remarkable multi-class classification
accuracy for colonic tissue specimens, highlighting its significant promise for precise colon
cancer diagnosis. In another relevant study [15], Raman spectroscopy was combined with
a random forest classifier to identify tumor cells infiltrating normal-appearing brain tissue.
The random forest classifier achieved an accuracy of 80% in discriminating cancerous tissue
from non-cancerous tissue.

Moreover, in [16], Raman spectroscopy and convolutional neural networks were used
to classify breast tissue samples as benign or malignant. The CNN classifier achieved an
accuracy of 92% for discriminating benign tissue from malignant tissue. In our previous
study [17] we analyzed the Raman biochemical markers of colorectal cancer from 10 pa-
tients, where mainly changes in the intensities of specific collagen and protein Raman bands
are evidenced. Recently, human healthy and cancerous colon specimens were surgically
resected and analyzed via Raman spectroscopy. A transfer learning model, based on a one-
dimensional convolutional neural network (1D-CNN), was developed and evaluated using
a Raman open database, consisting of spectra from pathogen bacteria, for the pre-training
process. Notably, the 1D-CNN transfer learning model achieved an accuracy of 88.7%,
which is 5.3% higher compared with the non-transfer learning model, in discriminating
between healthy and cancerous tissue [18].

In this study, we aimed to examine the optimal pipeline to combine AI techniques
with spectra data without using data augmentation. Our decision was guided by the need
for realistic data in Raman spectroscopy and the sufficient quality of our original data. To
achieve this, we proposed preprocessing methods and algorithms for the best classification
output of different types of malignancy including adenocarcinoma and carcinoma. We
followed an extensive ablation study protocol, comparing and visualizing both machine
learning and deep learning algorithms to advance the clinical potential of the RS method.
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2. Materials and Methods
2.1. Patient Data Collection and Raman Spectra Acquisition

A cohort of 22 patients undergoing open colorectal surgery and 442 spectra of human
colorectal tissues were collected; 221 were healthy and 221 cancerous. The patients were
diagnosed with malignancies of variable anatomic regions (cecum, ascending colon, trans-
verse colon, descending colon, sigmoid colon, and rectum), as well as variable grades and
stages (Table 1). All the specimens were collected after approval by the Ethics Committee
of the School of Medicine of Attikon University Hospital and written informed consent
was obtained from all patients. The specimens were divided into pieces. One part was cut
into 5 × 5 × 0.5 mm3 slices with a microtome preserved in a non-toxic zinc-based fixative
(Z7) [19], which demonstrates excellent protein preservation and protection against tissue
autolysis. The other part was immersed in a formalin fixative solution for histopathological
examination.

Table 1. The clinical data of the patients regarding gender, age, anatomic region, stage, and grade
of cancer.

Samples Gender Age Anatomic Region Type of Malignancy Stage Grade

1. Male 69 Rectum Adenocarcinoma pT3N1 G2

2. Male 56 Sigmoid colon Carcinoma pT3N2b G3

3. Female 77 Hepatic flexure Adenocarcinoma pT3N0 G3

4. Male 74 Rectosigmoid Adenocarcinoma pT3pN0 G1

5. Male 66 Orthosigmoid Adenocarcinoma ypT3N2b G2

6. Male 61 Hepatic flexure Adenocarcinoma pT4bN0 G2

7. Male 76 Caecum Adenocarcinoma pT2N0 G2

8. Female 56 Rectum Adenocarcinoma ypT3N2a G2

9. Male 69 Rectum Adenocarcinoma pT4bN1 G2

10. Male 77 Hepatic flexure Adenocarcinoma pT2N0 G2

11. Female 49 Transverse colon Adenocarcinoma pT3N1M1 G2

12. Male 56 Transverse/descending colon Adenocarcinoma pT3N0 G1

13. Male 75 Sigmoid colon Adenocarcinoma pT3N1c G2

14. Male 66 Ascending/transverse coon Adenocarcinoma pT2N0 G2

15. Female 50 Caecum Adenocarcinoma pT1N0 G1

16. Male 74 Sigmoid colon Adenocarcinoma pT3N0 G2

17. Male 87 Sigmoid Adenocarcinoma pT3N0 G2

18. Male 85 Sigmoid Adenocarcinoma pT2N0 G2

19. Male 87 Sigmoid Adenocarcinoma pT3N0Mx G2

20. Male 76 Transverse colon Adenocarcinoma pT4bN0 G2

21. Male 63 Transverse colon Adenocarcinoma pT3N0M1 G2

22. Male 77 Sigmoid Adenocarcinoma pT3N2a G2

Raman characterization was carried out under 785 nm excitation in the 500–3200 cm−1

frequency range. In brief, the laser beam was focused on random tissue spots with scattering
volumes of ~34 µm3. Details of sample preparation and Raman acquisition sequence can
be found in our previous work [17].

2.2. Preprocessing Steps

Raman spectra are sensitive and mostly noisy biophysical data; hence, they can be
cumbersome inputs to machine and deep learning algorithms. Thorough data cleaning and
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preprocessing are usually needed to manipulate and extract the underlying biochemical
information. The sampling frequencies of the Raman shift in our dataset are uniformly
distributed. Therefore, rather than simply using the raw data, we applied consecutively
preprocessing steps and examined their impact on different machine learning algorithms.

The first preprocessing step applied to the data was the baseline correction. This
method subtracts a baseline signal from the raw Raman spectrum, which can be caused by
scattered light or other sources of signals. In our case, the background origin is autofluo-
rescence, which interferes with the Raman signal and makes it difficult to interpret [20].
For the subtraction of autofluorescence, we used the statistics-sensitive nonlinear iterative
peak-clipping (SNIP) algorithm employing 80 iterations [21].

The second preprocessing step involved intensity normalization, which is a widely
used technique in Raman spectroscopy. This step aims to remove variations in signal
intensity, making the signals more comparable and facilitating their analysis. We used the
Euclidean norm, also known as the L2 norm [22]. Each element in the RS vector corresponds
to a specific wavelength or Raman shift, and the complete vector captures the spectral
information across a range of wavelengths. Once the L2 norm is obtained, each element of
the Raman spectrum vector is divided by this value. The formula for the Euclidean norm
of a vector x = [x1, x2, . . ., xn] is:

‖x‖ =
√

x2
1 + x2

2 + . . . + x2
n (1)

Afterward, a 1D median filter with a five-size window was used over all available
spectra. A 1D median filter is a signal processing technique that is used to remove noise
from a one-dimensional signal, such as a Raman spectrum.

Finally, PCA is applied to reduce the dimensionality of a dataset by identifying the
directions of maximum variance in the data, known as principal components. PCA can
be useful in Raman spectroscopy to identify the most important variables in a dataset,
which can improve the visualization and interpretation of the data [23]. It is important to
notice that PCA is an unsupervised method, which means that it does not consider the
sample’s labels, thus it can be combined with other machine learning-supervised methods
for classification.

2.3. Algorithms, Training Process, and Evaluation Methods

To find the ideal pipeline, different combinations of preprocessing methods and
algorithms were investigated through our study. We trained four machine learning (ML)
classification models based on logistic regression, support vector machine (SVM), random
forest, and XGBoost, and two deep learning (DL) models based on convolutional neural
network and residual CNN.

In our study, we employed a binary classification task to differentiate between 221 healthy
and 221 abnormal spectra. Three spectra region alternations were used in this study: the
low region where the frequencies from 700–1800 cm−1 selected the whole spectral region,
the high region where the frequencies from 2800–3100 cm−1 were selected instead, and
the combination of the previous two (low + high region). Moreover, the low region, high
region, and low + high regions have 1211, 477, and 1688 dimensions, respectively. Each
dimension’s value represents the Raman intensity.

Before partitioning our data for further analysis for ML models, we performed all steps
on the complete spectral region of 500–3200 cm−1 of our preprocessing pipeline. However,
when it came to deep learning models, before partitioning our data, we incorporated
the initial two steps of our preprocessing pipeline. More specifically, the first two steps
of the pipeline were the baseline correction and the L2 normalization. The reason we
chose to implement only two preprocessing steps for our deep learning methods is as
follows: Median filtering can be beneficial for machine learning, especially when dealing
with data containing impulse noise or outliers, as it helps mitigate their impact on model
performance. However, in deep learning, where models can automatically learn complex
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features, the need for median filtering is typically reduced, as these models can handle
noisy data more effectively.

Regarding PCA, it can be valuable for dimensionality reduction in machine learning,
which aids in simplifying complex datasets. However, in deep learning, dimensionality
reduction using PCA may not always be necessary. Deep neural networks are designed to
capture high-dimensional relationships in the data, often rendering PCA less advantageous.

As the final preprocessing step exclusively for our ML models, we employed PCA to
conduct dimensionality reduction on the Raman spectral data. Our objective was to retain
the highest classification performance. Eventually, each region (low, high, and low + high)
was separately transformed into 30 principal components. After careful analysis and
comparisons, we selected the low + high region as the input for our deep learning and
machine learning models. Therefore, to compare the ML and DL models we used the
low + high region spectra for the training and validation and the respective preprocessing
steps mentioned above.

For the comparison study, the best performance models of the ML and DL methods
were trained and validated with respective preprocessing steps to three spectra region
alternations (low, high, and low + high).

The machine learning methods were implemented using the scikit-learn package [24].
The training and validation were conducted using a leave-one-patient-out cross-validation
approach. In this method, each patient in the dataset was held out as the validation data
while the remaining patients were used for training the model. This process was repeated
for each patient in the dataset, and the results were averaged to produce a single estimation.
For our study, we employed a leave-one-patient-out cross-validation scheme.

Deep learning methods were developed using the Keras Application Programming
Interface [25]. The architecture of the 1D-CNN consists of one input layer that specifies
the shape of the input tensor and three hidden layers. The hidden layers include a 1D
convolutional layer with 10 filters of size 3. An activation layer follows the convolutional
layer which applies the ReLU (Rectified Linear Unit) activation function element-wise
to the output of the previous layer, resulting in a tensor of the same shape. After the
activation layer, a batch normalization layer normalizes the activations of the previous
layer, aiding in the stabilization and acceleration of the training process. A dropout layer is
applied after batch normalization, randomly deactivating a fraction of the units to prevent
overfitting. The same pattern is repeated with another 1D convolutional layer, this time
with 25 filters of size 3. Following the second activation layer and batch normalization
layer, an average pooling layer with a pool size of 8 is used. The subsequent flattened layer
reshapes the tensor into a one-dimensional vector. Finally, a dense layer with a single unit
is added. This layer performs a linear transformation on the input, followed by a sigmoid
activation function.

Finally, in the 1D-ResNet [26], the input sequence is passed through a series of residual
blocks, each of which contains multiple convolutional layers and batch normalization
layers, as well as a shortcut connection that allows the output of the block to bypass the
convolutional layers. The residual connection is added to the output of the convolutional
layers, which helps to preserve the original signal and reduce the loss of information
during training. The deep learning model was trained for 40 epochs with a learning rate
of 0.001, using the Adam optimizer algorithm and applying the binary cross entropy loss
function. Similarly, in the DL models, the training and validation were performed under
10-fold cross-validation. Moreover, we employed L2 regularization with a strength of
0.0001 in our modeling approach, incorporating it into both the XGBoost model and deep
learning architectures. This regularization technique was applied to mitigate overfitting
and promote the generalization ability of the models.

3. Results and Discussion

To determine the optimal performance of the ML models, PCA was performed to
low + high spectral region, resulting in 10, 20, 30, and 40 principal components (PCs) for
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each region. Table 2 shows the cumulative explained variances for each number of principal
components.

Table 2. Cumulative explained variances (%) for the low + high region, with different numbers of
principal components used in the analysis.

Principal
Components

Cumulative Explained
Variances (%)

10 91.6
20 95.3
30 96.4
40 96.9

By evaluating the performance of the XGBoost model with varying numbers of princi-
pal components (Figure 1), we aimed to identify the optimal number of principal compo-
nents for accurate classification and discrimination of healthy and cancerous tissue samples.

Figure 1. Classification results (accuracy %) of the XGBoost model applied to the low + high region
with varying numbers of principal components.

Figure 1 presents the performance results of the XGBoost machine learning models
using different numbers of principal components for the low + high spectral region. Specif-
ically, using 10 PCs and 20 PCs resulted in an accuracy of 80.2% and 83.8%, respectively.
Notably, the higher accuracy of 87.3% was reached by using 30 PCs while with 40 PCs the
accuracy decreased to 86%.

These results suggest that the choice of the number of principal components can
significantly impact the performance of the XGBoost models. Based on these findings, the
low + high region with 30 principal components demonstrated the highest accuracy for
classifying healthy and cancerous tissue samples. Therefore, to comprehensively compare
the performance of different ML models, we utilized the low + high region with 30 PCs
as the input for our analysis. By applying this consistent input across all ML models, we
aimed to establish a fair and objective comparison of their classification abilities.
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The variance plot (Figure 2) presents the cumulative explained variance which reached
96.4% and the individual explained variance of the low + high region with 30 PCs. The
plot displays the principal component index on the x-axis and the explained variance
ratio on the y-axis. It reveals that the first few PCs capture a significant portion of the
variance, with diminishing returns observed as more PCs are included. This indicates that
a low portion of variance PCs can effectively capture the essential information present in
the spectral data. Thus, the selection of 30 PCs is the appropriate choice for achieving a
balance between dimensionality reduction and maintaining sufficient explained variance
for accurate classification of healthy and cancerous tissue samples.

Figure 2. Explained variance plot of low + high region with 30 principal components.

The preprocessing steps produce different spectra with various characteristics. In all
four images, the average spectra of normal and abnormal specimens and their subtraction
are depicted. The main variations are shown in Figure 3, bottom right. The highest
differences were observed at 866, 1005, 1342, 1437, 1671, 1748, 2852, 2890, 2935, and
2974 cm−1. These results strongly align with the outcomes of our previous work, which
involved a biochemical analysis of these differences [14]. The current results deriving from
double the amount of data confirm our previous differences in intensity.

To further highlight the impact of preprocessing steps on models’ performance, we
picked as a reference the XGBoost algorithm, and its training evaluation was performed in
the low + high region. Subsequently, we tracked the accuracy and recall of each sequential
preprocessing step to determine their effects.

The results are presented in Figure 4. The baseline correction, the L2 normalization,
the filtering, and the PCA offer a boost in accuracy of 5%, 6.2%, 2%, and 2.9%, respectively.
Overall, the improvement in accuracy and recall reached a total of 16.1% and 16.6%,
respectively.
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Figure 3. Mean spectra of both normal and abnormal classes and their difference. (top left): Raw
spectra, (top right): spectra after baseline correction, (bottom left): spectra after applying L2 normal-
ization, and (bottom right): spectra after applying 1D Median Filter.

Figure 4. Plot of the percentage improvement in the accuracy and recall metrics of the XGBoost
classifier after each preprocessing step.
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In Table 3, we present a side-by-side comparison of our proposed preprocessing
pipeline with three reference pipelines [9,10]. The assessment is grounded in the measured
enhancements in accuracy and recall achieved by each pipeline.

Table 3. Detailed classification results using the XGBoost model for four preprocessing pipelines.

Precision Recall F1-Score Accuracy

A pipeline 89.2 82.5 85.7
86.383.7 90 86.8

B pipeline 87.3 84.4 85.8
8684.9 87.7 86.2

C pipeline 84.2 85.8 85
84.885.5 83.9 84.7

Suggested pipeline 87 87.8 87.4
87.387.7 86.9 87.3

The best performance combinations of the reference pipeline [9], which incorporates
(a) Savitzky–Golay smoothing, SNIP baseline correction, standard normal variate (SNV),
and PCA, achieved an accuracy improvement of 15.1% and a recall improvement of 19.7%.
Additionally, the configuration of (b) Gaussian smoothing, SNIP baseline correction, stan-
dard normal variate (SNV), and PCA achieved an accuracy improvement of 14.8% and a
recall improvement of 17.3%.

Another reference [10], which employed (c) SNIP baseline correction, SNV, and
Savitzky–Golay smoothing, achieved an accuracy improvement of 13.6% and a recall
improvement of 13.5%.

The comparison results of the four different machine learning algorithms and two
deep learning models are shown in Table 4. Among the ML models, the XGBoost algorithm
presents the best performance across all metrics, achieving an accuracy of 87.3%. Specifically,
both the XGBoost and random forest ML models exhibit excellent performance when
classifying normal tissues, while the SVM and logistic regression models show greater
effectiveness in identifying abnormal tissues.

Table 4. Detailed classification results of four ML and two DL models for both normal and abnormal
classes.

Class Precision Recall F1-Score Accuracy

Machine Learning Models

Logistic
regression

Normal 77.4 62 68.8
71.9Abnormal 68.3 81.9 74.5

SVM
Normal 85.6 83.7 84.7

84.8Abnormal 84.1 86 85

Random
forest

Normal 84.8 88.2 86.5
86.2Abnormal 87.7 84.2 85.9

XGBoost
Normal 87 87.8 87.4

87.3Abnormal 87.7 86.9 87.3

Deep Learning Models

1D-CNN
Normal 94.6 87.8 91.1

91.4Abnormal 88.6 95 91.7

1D-Resnet
Normal 94.2 87.8 90.9

91.2Abnormal 88.6 94.6 91.5

In contrast, the DL models excel primarily over ML models in classifying abnormal
cases, with the 1D-CNN model showcasing the best results in both classes, achieving
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an accuracy level of 91.4% and an essential recall rate of 87.8% and 95% for normal and
abnormal cases, correspondingly (Figure 5). The recall rate holds immense importance
because a false-negative assessment generated by the deep learning model in clinical
applications can provoke fatal consequences for the patient.

Figure 5. Confusion matrix: 1D-CNN and XGBoost. The labels 0 and 1 correspond to healthy and
cancerous tissues, respectively.

Then, a more detailed analysis was carried out on the best-performed DL and ML
models by examining their performance not only in the low + high region as mentioned
above but also in the rest two regions (low, high). For the DL model, we performed the first
two preprocessing steps as mentioned above and for the ML model, all preprocessing steps
were used. In the last step, where the PCA took place, 30 PCs were used.

As Table 5 shows, both models produce low performance when the high region of
the spectra is used, with 78.7% and 83.7% accuracy for the XGBoost and 1D-CNN models,
respectively. On the other hand, the low region produces comparable results with the full
spectra experiments, with XGBoost reaching an 84.8% accuracy and the 1D-CNN a 90.2%
accuracy level. The combination of the two subregions boosts the accuracy of the XGBoost
model to 87.3% and the 1D-CNN’s accuracy to 91.4%.

Table 5. Detailed classification results (weighted average metrics) for the best ML and DL model at
the three alternations of wavenumber regions.

Model Precision Recall F1-Score Accuracy

Low + high region XGBoost 87.6 86.8 87.2 87.3
1D CNN 88.6 95 91.7 91.4

Low region XGBoost 85.6 83.7 84.6 84.8
1D CNN 88.5 92.3 90.4 90.2

High region XGBoost 78.9 78.2 78.6 78.7
1D CNN 83.1 84.6 83.8 83.7

Figure 6 provides a visual representation via gradient-weighted class activation map-
ping (Grand-CAM) [27] of the varying levels of importance or activation of features within
a 1D CNN model when applied to Raman spectra data. This heat map helps in interpreting
the predictive capabilities of the model by highlighting the regions of the input spectra
that contribute the most to the final prediction. Spectral regions that mostly affect the
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decision making of the 1D-CNN model are the regions of 1210–1280 cm−1, 1290–1350 cm−1,
1410–1472 cm−1, 1617–1687 cm−1, and 2840–2945 cm−1 (regions [a]–[e] in Figure 6).

Figure 6. Importance bands over the whole spectra region of the 1D CNN using Grand-CAM (dark
purple represents areas of higher importance and [a]–[e] the spectral regions).

4. Discussion

In this current study, we embarked on a comprehensive examination of the optimal
pipeline for integrating AI techniques with spectral data, all without resorting to data
augmentation methods. Our primary objective was to develop and refine preprocessing
methods and algorithms that would yield the most accurate classification outcomes for
different types of malignancies, specifically adenocarcinoma and carcinoma. To achieve
this, we diligently followed an extensive ablation study protocol, meticulously comparing
and visually representing the performance of both machine learning and deep learning
algorithms. This systematic investigation was undertaken with the overarching aim of ad-
vancing the clinical potential of the Raman spectroscopy method in the field of oncology. By
optimizing the fusion of AI and spectral data and rigorously evaluating the performance of
various algorithms, we sought to contribute valuable insights and methodologies that could
enhance the accuracy and reliability of malignancy classification, ultimately benefiting clini-
cal practice and patient care. Our findings underscore the importance of preprocessing steps
in improving classification outcomes. Through preprocessing spectral analysis techniques
like baseline correction, L2 normalization, filtering, and PCA, we achieved a remarkable
16.1% and 16.6% enhancement in accuracy and recall, respectively. These enhancements
not only contribute to the overall accuracy but also hold significant clinical implications,
reducing the risk of misclassification. The comparison between machine learning and deep
learning algorithms revealed the strengths of each approach. Machine learning models,
specifically XGBoost and random forest, demonstrated their effectiveness in classifying
both normal and abnormal tissues. Deep learning models, notably the 1D-CNN model,
excelled in identifying abnormal cases, with an accuracy rate of 91.4% and an essential
recall rate of 95%. The emphasis on recall rate in deep learning is particularly crucial in
clinical applications, where false negatives can have severe consequences. Furthermore, a
detailed analysis of the model’s performance in different spectral regions revealed inter-
esting insights. While the high spectra region (2800–3100 cm−1) yielded lower accuracy,
the combination of low (700–1800 cm−1) and high (2800–3100 cm−1) regions significantly
boosted the accuracy of both XGBoost and 1D-CNN models, highlighting the importance of
considering multiple spectral regions in RS-based malignancy classification. These findings
open doors for further research and development in the field, with the ultimate goal of
improving patient outcomes and advancing the clinical application of RS-based diagnostics.
Our attention to preprocessing techniques to enhance classification outcomes aligns with
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previous research highlighting the critical role of data preprocessing in spectroscopy-based
studies. Various studies have underscored the significance of techniques such as baseline
correction, normalization, and feature extraction in improving the quality of spectral data
and subsequently enhancing classification accuracy [8–10]. However, our study stands
out by demonstrating substantial enhancements of 16.1% in accuracy and 16.6% in recall
in colorectal abnormality classification, underscoring the practical importance of these
techniques in clinical applications. These results complement the existing literature by pro-
viding empirical evidence of the effectiveness of specific preprocessing steps in the context
of malignancy classification. The comparison between machine learning and deep learn-
ing models mirrors ongoing discussions in the field of artificial intelligence and medical
diagnostics. Prior research has explored the advantages and limitations of both paradigms
in various healthcare applications [10–14]. Our findings align with the consensus that
machine learning models, such as XGBoost and random forest, are well suited for tasks
requiring interpretability and robust performance on spectral datasets, as demonstrated in
their effectiveness in classifying both normal and abnormal tissues. Deep learning models,
particularly the 1D-CNN model, reaffirm their strength in handling complex data patterns,
as evident in their remarkable accuracy and recall rates for identifying abnormal cases. The
consideration of multiple spectral regions in RS-based malignancy classification echoes
our previous research [15] advocating for the importance of spectral region selection. The
majority of these regions correspond to Raman bands with different normalized intensities
between cancerous and normal tissues. In particular, the protein Raman bands located at
1330 cm−1 and 1658 cm−1 show differences between normal and cancer spectra that have
been attributed to protein overexpression in cancer tissues. Furthermore, the differences
in the Raman modes at 1250 cm−1 and 1450 cm−1 have been attributed to variations in
collagen and lipid content, respectively. In addition, the importance of the high-wave
region in the classification task was stated. This spectral region is characterized by sharp
differences that are mainly due to the higher lipid-to-protein ratio in normal tissues based
on the operating intensities at 2852 cm−1 and 2935 cm−1. This alignment greatly enhances
the reliability of the DL algorithm results. In summary, our research not only advances the
clinical potential of RS-based diagnostics but also enriches the existing body of knowledge
in the domains of spectroscopy, medical diagnostics, and machine learning. The synergy
between our findings and the established literature forms a foundation for continued
exploration and innovation in the pursuit of improved patient outcomes and the broader
adoption of RS-based diagnostic methodologies.

5. Conclusions

In conclusion, our study represents an advancement in the field of medical diagnostics,
particularly in the context of colorectal cancer classification using Raman spectroscopy
(RS) data and AI techniques. Through rigorous preprocessing methods, a comparative
analysis of machine learning and deep learning models, and insightful exploration of
spectral regions, we have contributed valuable insights and methodologies. These findings
not only enhance the accuracy of malignancy classification but also hold the potential to
positively impact clinical practice. As we conclude this research, we look forward to further
developments that will continue to advance the clinical application of RS-based diagnostics
and, ultimately, improve patient outcomes.
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