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Abstract: Accurate diagnosis and timely intervention are key to addressing common knee condi-
tions effectively. In this work, we aim to identify textural changes in knee lesions based on bone
marrow edema (BME), injury (INJ), and osteoarthritis (OST). One hundred and twenty-one MRI knee
examinations were selected. Cases were divided into three groups based on radiological findings:
forty-one in the BME, thirty-seven in the INJ, and forty-three in the OST groups. From each ROI,
eighty-one radiomic descriptors were calculated, encoding texture information. The results suggested
differences in the texture characteristics of regions of interest (ROIs) extracted from PD-FSE and STIR
sequences. We observed that the ROIs associated with BME exhibited greater local contrast and a
wider range of structural diversity compared to the ROIs corresponding to OST. When it comes to
STIR sequences, the ROIs related to BME showed higher uniformity in terms of both signal intensity
and the variability of local structures compared to the INJ ROIs. A combined radiomic descriptor
managed to achieve a high separation ability, with AUC of 0.93 ± 0.02 in the test set. Radiomics
analysis may provide a non-invasive and quantitative means to assess the spatial distribution and
heterogeneity of bone marrow edema, aiding in its early detection and characterization.

Keywords: bone marrow edema; knee injury; osteoarthritis; radiomics; texture analysis

1. Introduction

It is thought to be possible to predict pain, disability, and the structural progression
of knee osteoarthritis using bone marrow lesions (BMLs). However, the relationship
between knee loading and BMLs is not yet completely understood [1]. Moreover, the
pathophysiology of osteoarthritis (OA) is also incompletely understood [2]. For example,
the pathologic processes, primarily located at the level of the articular cartilage, do not
completely characterize numerous OA findings. This includes bone marrow edema (BME)
in the subchondral bone, detected via magnetic resonance imaging (MRI) in the affected
joints [3]. Felson et al. defined a relationship between knee pain and bone marrow lesions
using MRI [4], where bone marrow lesions on MRI were present in 78% of patients with
painful OA knee compared to only 30% of patients with painless OA knee. Specifically, the
degree of bone edema appeared to be associated with the severity of angular deformity at
the knee [5,6].

There is evidence that subchondral BMLs imaged using MRI are involved in the
pathogenesis of OA [4,5,7,8]. BME pattern is defined as an area of high signal intensity
in T2- weighted, fat-saturated MRI or in short-inversion-time inversion recovery (STIR)
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images [9–11]. This increase in signal has been attributed to several factors, including
abnormal trabeculae, bone marrow necrosis, swelling of fat cells, and marrow bleeding. It
indicates a so-called bone bruise or impression of fracture due to translational injury, where
the anterolateral femur impacts the posterolateral tibia (kissing contusions) when the ACL
is ruptured [10]. Regarding healthy subjects with no OA, traumatic injuries of the knee
can result in subchondral bone edema lesions [12,13]. However, the causal relationship
between these lesions and the disease’s progression is unclear [8]. A better understanding
of the interrelation of cartilage and the bone immediately under is necessary [14].

MRI-based texture analysis has been previously proposed for quantification of bone
related abnormalities. Fritz et al. [15] and Cilengir et al. [16] have highlighted the diagnostic
performance of texture analysis for cartilaginous bone tumors. Fritz et al. found 92.9%
accuracy in differentiating benign from malignant cartilaginous lesions when employing
both MRI and textural predictors. Cilengir et al. found an AUC of 0.84 in differenti-
ating chondrosarcomas from encondromas employing the logistic regression classifier.
Chuah et al. [17] performed texture analysis in the femur for the detection of cartilage-
related bone marrow edema. They reported an AUC of 0.91 in differentiating normal from
affected bone marrows lesions based on co-occurrence matrix features. Mackay et al. [18]
used texture analysis for tibial subchondral bone assessment in OA. They reported 53% ac-
curacy in differentiating between normal and OA cases based on statistical texture analysis.
Recently, Li et al. used texture analysis of the infrapatellar fat pad for OA prediction [19].
They reported an AUC ≥0.75 in predicting OA progression employing textural features.

To the best of our knowledge, the utilization of texture analysis to differentiate between
bone marrow edema, injury, and osteoarthritis lesions has not yet been reported. We chose
to study these three clinical conditions, because they are very common in the knee joint and
their radiological findings are not easy to distinguish. Sometimes, even when attempted
in combination with clinical findings in patients with OA and injury, or in young patients
with injury, it is difficult to make a specific diagnosis. However, such clinical cases require
different clinical management, so it is important to differentiate, i.e., while bone marrow
edema cases require no treatment, the injured and osteoarthritis cases require different
clinical management. Hence, the present study is focused on studying the variations
in those descriptors in the different knee abnormalities caused by bone marrow edema,
injury, and osteoarthritis. For this, we considered a large pool of radiomics descriptors
encoding texture information. These descriptors can express significant properties in the
bone marrow edema, like lesions that might be useful in diagnosis, prognosis, or the
treatment of individual patients [20].

2. Materials and Methods
2.1. Clinical Material

In the present study, one hundred and twenty-one individuals (121) were routinely
scanned for knee examination from 2015 to 2017. This amounted to seventy females and
fifty-one males with average age of 41 years. Non-selection criteria were subjects likely to
have bone edema (multiple myeloma, Pazet disease, history of sarcoma, or known cancer
showing secondary bone metastases).

The subjects were divided into three groups according to radiological findings [21].
The most dominant radiological findings are those which are related with the placement of
the edema and its presentation (single-focal or multifocal). In combination with the clinical
findings, the three groups were formed.

In the first group, namely, the bone marrow edema (“BME”) class, we placed forty-one
(41) subjects (average age 25.5 y) diagnosed with erythropoiesis of bone marrow. These
patients were young people and they had more than one focal point of high signal intensity
(multifocal) in the presented bones (femur, tibia). They did not have findings of OA or
injury of the knee joint.
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In the second group, namely, the injured (“INJ”) class, we assigned thirty-seven (37)
patients (average age 35.4 y) that had suffered recent injury and bone edema-like lesions,
but which did not have findings of OA.

In the third group, namely, the osteoarthritis (“OST”) class, we placed forty-three (43)
subjects (average age 61.8 y) with no history of recent injury, but with clinical findings (i.e.,
chondropathy, mediastinal stenosis, and osteophytes) of OA. In the case of recent injury,
MRI examination repetition was conducted to confirm diagnosis.

Differentiation among the three groups is critical to providing accurate diagnosis,
appropriate care, optimizing outcomes, preventing complications, and ensuring the efficient
use of healthcare resources. Misdiagnosis can lead to inappropriate treatment, delayed
management, and potentially worse outcomes. Precise differentiation can prevent excessive
medication usage. It allows for tailored, patient-centered care that addresses the specific
needs and characteristics of each condition.

2.2. MRI Imaging Techniques and ROIs Delineation

All knee examinations were performed using a 1.5 T scanner (SIGNA HDX Twin
Speed, GE Healthcare, Chicago, IL, USA) and the General Electric four-channel matrix knee
coil. Two sequences were employed: the fast-spin echo (FSE) proton density (PD-FSE) with
fat suppression (FS) and the short tau inversion recovery (STIR) sequences in sagittal plane.

PD-FSE is a standard MRI sequence that provides detailed anatomical information
by exploiting the differences in the density of protons in various tissues within the body.
It is particularly useful for evaluating bone marrow because it highlights the contrast
between fat and water. STIR is another MRI sequence that is highly effective in evaluating
bone marrow. STIR imaging is a fat-suppressed sequence that is specifically designed to
suppress the signal from fat and highlight the signal from water and other soft tissues. The
parameters for PD-FSE and STIR sequences are presented in Table 1.

Table 1. Sequences parameters for proton density (PD-FSE) fast-spin echo (FSE) with fat suppression
and short tau inversion recovery (STIR).

Sequences
PD-FSE STIR

Parameters

TR (ms) 2200 5675
TE (ms) 30 50

ETL 8 16
Band Width (kHz) 31.25 20.83

Freq 384 × 224 256 × 192
Freq DIR A/P A/P

Slice Thickness (mm) 4.0 4.0
Spacing (mm) 0.8 0.8

FOV (mm) 18 18
Slices 19 18

Acquisition Time (min) 2′.17′′ 2′.22′′

For each case and for each sequence, a region of interest (ROI) was manually delineated
by an expert radiologist (A.T.) and an experienced radiographer (E.L.) employing a software
program developed for the purposes of the present study. The software provided the
radiologist with a series of DICOM MR images and the capability to select appropriate
images and to delineate and eventually segment ROIs. Figure 1 shows a snapshot of
delineation (bone marrow edema case) in the PD-FSE sequence and the corresponding ROI.
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the PD-FSE sequences accordingly. Figure 2 presents instances from the acquired ROIs
according to pathological condition and MRI sequence protocol.
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Figure 2. Samples of region of interest for the three categories and two MRI sequences; bone marrow
edema (first row), injured (middle row), and osteoarthritis (last row); PD-FSE (left column) and STIR
(right column).

2.3. Extraction of Radiomic Descriptors

We computed eighty-one (81) descriptors from a single ROI, encoding texture infor-
mation and employing a large spectrum of textural features as follows:

This included seventeen (17) descriptors from first-order statistics [22], describing the
shape of distribution of pixel intensities in the ROI. These were histogram-based features
(such as mean intensity, standard deviation, skewness, kurtosis, median, percentiles, range,
interquartile range, and intensity-based entropy).

Fifty-four (54) descriptors were calculated from the second-order statistics, describing
the statistical inter-relationships between neighboring pixels.

• Twenty-two (22) of these were calculated based on the gray-level co-occurrence matrix
(GLCM) [22–26] (angular second moment, contrast, correlation, sum of squares, in-
verse difference moment, sum average, sum variance, sum entropy, entropy, difference
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variance, difference entropy, information measure correlation 1, information measure
correlation 2, maximal correlation coefficient, joint maximum, joint average, difference
average, inverse difference, normalized inverse difference, autocorrelation, cluster
shade, and cluster prominence).

• Sixteen (16) were computed based on the gray-level run-length matrix (GLRLM) [22,27–30]
(short-run emphasis, long-run emphasis, gray-level non-uniformity, run-length non-
uniformity, run percentage, low-gray run emphasis, high-gray run emphasis, short-run
low-gray emphasis, short-run high-gray emphasis, long-run low-gray emphasis, long-
run high-gray emphasis, normalized gray-level non-uniformity, normalized run-length
non-uniformity, gray-level run variance, and run-length variance, run entropy). For
GLCM and GLRLM descriptors, the average across four orientations (N, S, E, W) was
determined (using 1 pixel offset).

• Sixteen (16) were considered based on the gray-level size zone matrix (GLSZM) [22,31]
(small-zone emphasis, large-zone emphasis, low-gray-level zone emphasis, high-gray-
level zone emphasis, small-zone low-grey emphasis, small-zone high-grey empha-
sis, large-zone low-grey emphasis, large-zone high-grey emphasis, gray-level non-
uniformity, normalized gray-level non-uniformity, zone-size non-uniformity, normal-
ized zone-size non-uniformity, zone percentage, grey-level zone variance, zone-size
variance, zone-size entropy)

Six (6) descriptors were calculated based on Tamura descriptors [32] (Tamura coarse-
ness 1, 2, 3, 4, contrast and roughness).

Four (4) descriptors were computed from the local binary pattern (LBP) [33] (mean,
median, number of peaks, uniformity)

2.4. Statistical and Discriminant Analysis

We studied plausible alterations of textural descriptors amongst pathological condi-
tions based on the statistical comparisons amongst the three groups (as BME vs INJ vs
OST).

Initially, we assessed the normality distribution of each one of the features by means
of the Jarque–Bera statistical test [34]. The Jarque–Bera test is a statistical test used to
assess whether a dataset follows a normal distribution. Next, for those features that
followed normal distribution, we employed the ANOVA test to evaluate the existence of
statistically significant differences. ANOVA tests the null hypothesis that all group means
are equal against the alternative hypothesis that at least one group mean is different. For
the features that did not follow normal distribution, we utilized the Kruskal–Wallis test [35]
to identify statistically significant differences, and we reported the median (IQR). The
Kruskal–Wallis test is a non-parametric statistical test used to determine whether there
are statistically significant differences between the medians of three or more independent
groups or samples.

Moreover, we performed the multiple comparison test [36] as a post hoc test. Multiple
comparison tests, also known as post hoc tests or post hoc analyses, are a group of statistical
tests used after ANOVA, Kruskal–Wallis, or other omnibus tests to determine which
specific group means are significantly different from each other. These tests are essential
in situations where you have conducted ANOVA, Kruskal–Wallis or a similar test and
found a significant difference among groups. The goal of multiple comparison tests
is to identify which pairs of groups are responsible for this significant difference. To
correct the significance level discrepancy that emerged on account of multiple tests, we
employed the Benjamini and Hochberg false discovery rate (BH-FDR) [37,38]. Benjamini
and Hochberg testing is a statistical method used to control the false discovery rate in
multiple hypothesis testing.

Moreover, for the purposes of applying discriminant analysis on the data we em-
ployed the algorithms of the python’s Scikit-Learn (sklearn) open-source machine learning
library [39]). First, we ordered the calculated radiomics’ descriptors (features) from the PD-
FSE and STIR protocols in accordance with their classification importance by employing the
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sklearn’s feature_importances_ function. Next, we chose the first twenty (20) most highly
important features and we formed all the plausible features’ combinations, with up to a
maximum of five features per combination. We used each feature combination to design
the classification model and we evaluated its classification accuracy. We tested sixteen
sklearn classification models [39]. To test the generalization performance of each designed
classification model, data were first augmented by applying the sklearn’s resample function
and next the three classes were equalized by applying the python’s imbalanced-learn’s
SMOTE (Synthetic Minority Over-sampling Technique) function.

For evaluation purposes, data were randomly split into train–validation (70%) datasets
and test (30%) datasets using the sklearn’s train_test_split function to have an estimation of
error variation. The train–validation (70%) dataset was used to design the classification
model, based on the stratified 10-fold cross-validation method. The latter was employed
for tuning hyperparameters and assessing the model’s performance during training. The
trained model, so far fine-tuned, was used to classify the independent test set (30%).
We use the test set to determine how well the model will perform on unseen data. The
above process was repeated 10 times; each time, the evaluation metrics of the test set were
recorded. Finally, the means of the evaluation metrics were recorded to provide an unbiased
estimate of the model’s generalization performance on unseen data. The whole procedure
was used to assess the performance for each one of the sixteen classification models.

In this way we found the best classification model providing the highest classification
accuracy to the test dataset data. Three basic evaluation metrics were employed on the
classified test datasets:

The overall accuracy as Acc = TP+TN
TP+FP+FN+TN , the true positive rate as TPR = TP

TP+FN ,
and the area under the ROC curve as AUC.

3. Results and Discussion

In total, two hundred and forty-two (242) ROIs were extracted, eighty-two (82) account-
ing for the BME group (forty-one for each MRI sequence), seventy-four (74) accounting for
the INJ group (thirty-seven for each MRI sequence) and eighty-six (86) accounting for the
OST group (forty-three for each MRI sequence).

Concerning the PD-FSE sequence, of the eighty-one (81) descriptors, fifty-one (51)
descriptors appeared to show statistically significant differences (p < 0.05). We found thirty-
four (34) of the 81 descriptors to follow normal distribution according to the Jarque–Bera
test, while the forty-seven (47) remaining did not (p < 0.05). Six (6) out of the thirty-
four descriptors showed statistically significant differences (p < 0.001) using the ANOVA
test after correcting using the BH-FDR test. Five (5) out of the forty-seven descriptors
sustained statistically significant differences (p < 0.001) when employing the Kruskal–Wallis
nonparametric test after correcting for significance using the BH-FDR test.

Regarding the STIR sequence, of the eighty-one (81) descriptors, thirty-nine (39)
descriptors sustained statistically significant differences (p < 0.05). We found that thirty
(30) of the 81 descriptors followed normal distribution according to the Jarque–Bera test,
while the remaining fifty-one (51) did not (p < 0.05). Three (3) out of thirty descriptors
showed statistically significant differences (p < 0.001) when assessed using the ANOVA
test after correcting via BH-FDR testing. Eleven (11) out of the fifty-one descriptors showed
statistically significant differences (p < 0.001) employing the Kruskal–Wallis nonparametric
test, after correcting using the BH-FDR test.

Tables 2 and 3 present the values for the descriptors extracted from PD-FSE and STIR
image-ROIs, respectively, that sustained statistically significant differences, along with the
post hoc explanation of pairwise comparison. The values reported as the mean ± standard
deviation for features were examined using ANOVA testing, and those as the median
(Interquartile range—IQR) were examined via the Kruskal–Wallis test.
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Table 2. Features sustained statistically significant differences amongst the categories concerning the
PD-FSE sequence, after BH-FDR correction.

Feature
BME

Mean ± Std or
Median (IQR)

INJ
Mean ± Std or
Median (IQR)

OST
Mean ± Std or
Median (IQR)

Description of Post Hoc Pairwise
Comparison (p < 0.001)

Entropy 0.95 (0.09) 0.90 (0.11) 0.87 (0.08) The mean ranks of groups BME
and OST are significantly different

ASM 0.22 (0.07) 0.18 (0.05) 0.18 (0.03) Two groups have mean ranks
significantly different from BME

SOQ 4.86 (1.63) 3.74 (1.39) 4.32 (0.97) The mean ranks of groups BME
and INJ are significantly different

SVAR 18.73 (6.17) 14.45 (5.48) 16.71 (3.65) The mean ranks of groups BME
and INJ are significantly different

SENTR 2.59 (0.27) 2.77 (0.28) 2.77 (0.22) Two groups have mean ranks
significantly different from BME

ENTR 2.83( 0.32) 3.00 (0.35) 3.05 (0.23) Two groups have mean ranks
significantly different from BME

JMX 0.38± 0.08 0.32± 0.06 0.30± 0.05 The mean ranks of groups BME
and OST are significantly different

LRE 97.74 ± 49.12 53.51 ± 29.61 51.62 ± 19.99 Two groups have mean ranks
significantly different from BME

LRLGE 77.56 ± 47.40 36.40 ± 25.90 33.93 ± 17.51 Two groups have mean ranks
significantly different from BME

LRHGE 727.09 ± 497.94 478.65 ± 179.35 553.00 ± 229.49 The mean ranks of groups BME
and INJ are significantly different

RLV 70.55 ± 41.60 33.38 ± 21.96 32.01 ± 14.96 Two groups have mean ranks
significantly different from BME

Table 3. Features sustained statistically significant differences amongst the categories concerning the
STIR sequence, after BH-FDR correction.

Feature
BME

Mean ± Std or
Median (IQR)

INJ
Mean ± Std or
Median (IQR)

OST
Mean ± Std or
Median (IQR)

Description of Post Hoc Pairwise
Comparison (p < 0.001)

Std 29.10 (7.87) 36.58 (8.57) 33.29 (7.71) Two groups have means
significantly different from BME

MAD 23.64 (6.66) 29.40 (8.18) 27.09 (6.30) Two groups have means
significantly different from BME

Entropy 0.96± 0.05 0.90± 0.07 0.92± 0.06 The mean ranks of groups BME
and INJ are significantly different

ASM 0.20± 0.05 0.15± 0.03 0.15 ± 0.04 Two groups have mean ranks
significantly different from BME

SENTR 2.72 ± 0.23 3.02 ± 0.18 3.00 ± 0.23 Two groups have mean ranks
significantly different from BME

ENTR 3.12 ± 0.30 3.50 ± 0.25 3.47 ± 0.32 Two groups have mean ranks
significantly different from BME

JMX 0.37 ± 0.08 0.28 ± 0.06 0.30 ± 0.06 Two groups have mean ranks
significantly different from BME

LRE 43.60 ± 26.98 22.57 ± 12.06 25.47 ± 16.69 Two groups have mean ranks
significantly different from BME

LRLGE 33.96 ± 24.88 14.74 ± 10.28 17.26 ± 12.92 Two groups have mean ranks
significantly different from BME

LRHGE 277.32 ± 122.49 195.16 ± 80.30 217.82 ± 132.22 The mean ranks of groups BME
and INJ are significantly different

NGLNU 0.23 ± 0.02 0.21 ± 0.02 0.22 ± 0.02 Two groups have mean ranks
significantly different from BME
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Table 3. Cont.

Feature
BME

Mean ± Std or
Median (IQR)

INJ
Mean ± Std or
Median (IQR)

OST
Mean ± Std or
Median (IQR)

Description of Post Hoc Pairwise
Comparison (p < 0.001)

RLV 29.22 ± 20.74 12.80 ± 8.49 14.52 ± 10.82 Two groups have mean ranks
significantly different from BME

GLNUsz 21.48 ± 10.27 14.00 ± 8.35 12.23 ± 5.76 Two groups have mean ranks
significantly different from BME

GLZV 1.7 4 0.50) 2.27 (0.54) 2.08 (0.51) The means of groups BME and INJ
are significantly different

Figures 3 and 4 show the boxplots of the features distribution from BME, INJ and OST
groups that present statistically significant differences (p < 0.001) concerning the PD-FSE
and STIR sequences, respectively.
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Tables 2 and 3 show that there are features with statistically significant differences for
one or two pairs of groups, but not for all three pairs of groups. For example, we found
statistically significant difference between BME and INJ, as well as between BME and OST
with respect to the feature ASM, but we did not find a difference between INJ and OST
using the aforementioned feature. In the process of finding some descriptors that, when
suitably combined in a regression model as a composite descriptor, may provide a good
prediction amongst the group, we tested many different classification models from the
Scikit-learn library [39]. The ensemble random forest (ERF) classifier achieved the best
performance in terms of Acc, TPR and AUC.

We found five descriptors that appeared in the majority of the descriptors’ combina-
tions for the different evaluation repetitions.

Table 4 presents the metrics values for different validation repetitions. The average
metrics scores are Acc: 0.92 ± 0.02, TPRBME: 0.94 ± 0.03, TPRINJ: 0.91 ± 0.02, TPROST:
0.92 ± 0.03, and AUC: 0.93 ± 0.02.
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Table 4. Classification metrics for different evaluation repetitions in the Test sets.

k-fold Acc
TPR

AUC
BME INJ OST

1 0.89 0.89 0.89 0.89 0.92
2 0.96 0.99 0.94 0.94 0.98
3 0.91 0.93 0.90 0.91 0.91
4 0.92 0.90 0.90 0.96 0.91
5 0.91 0.91 0.93 0.89 0.91
6 0.92 0.94 0.87 0.95 0.95
7 0.93 0.94 0.92 0.93 0.93
8 0.93 0.93 0.91 0.94 0.93
9 0.91 0.98 0.90 0.86 0.94
10 0.93 0.96 0.92 0.91 0.96

Average (std) 0.92 (0.02) 0.94 (0.03) 0.91 (0.02) 0.92 (0.03) 0.93 (0.02)

Figure 5a,b present the prediction performance of the five combined features (com-
posite descriptor) in the three categories. These descriptors encode information about
first- and second-order statistics, three of them were calculated from the PD-FSE sequence
protocol (JMX, LRLGE, RLV), and two were calculated from the STIR sequence protocol
(MAD, GLZV).

J. Imaging 2023, 9, x FOR PEER REVIEW  11 of 14 
 

 

We found five descriptors that appeared in the majority of the descriptors’ combi-
nations for the different evaluation repetitions. 

Table 4 presents the metrics values for different validation repetitions. The average 
metrics scores are Acc: 0.92 ± 0.02, TPRBME: 0.94 ± 0.03, TPRINJ: 0.91 ± 0.02, TPROST: 0.92 ± 
0.03, and AUC: 0.93 ± 0.02. 

Table 4. Classification metrics for different evaluation repetitions in the Test sets. 

k-fold Acc 
TPR 

AUC 
BME INJ OST 

1 0.89 0.89 0.89 0.89 0.92 
2 0.96 0.99 0.94 0.94 0.98 
3 0.91 0.93 0.90 0.91 0.91 
4 0.92 0.90 0.90 0.96 0.91 
5 0.91 0.91 0.93 0.89 0.91 
6 0.92 0.94 0.87 0.95 0.95 
7 0.93 0.94 0.92 0.93 0.93 
8 0.93 0.93 0.91 0.94 0.93 
9 0.91 0.98 0.90 0.86 0.94 

10 0.93 0.96 0.92 0.91 0.96 
Average (std) 0.92 (0.02) 0.94 (0.03) 0.91 (0.02) 0.92 (0.03) 0.93 (0.02) 

Figure 5a,b present the prediction performance of the five combined features 
(composite descriptor) in the three categories. These descriptors encode information 
about first- and second-order statistics, three of them were calculated from the PD-FSE 
sequence protocol (JMX, LRLGE, RLV), and two were calculated from the STIR sequence 
protocol (MAD, GLZV). 

 
(a) 

 
(b) 

Figure 5. (a) ROC curves by the ensemble random forest classifier in test set; (b) boxplot for the 
predicted values of the five combined composite descriptor. 

In particular, the joint maximum (JMX) descriptor is a measure of orderliness in the 
ROI, considering spatial interrelationships between pixels. High values of the descriptor 
imply that many identical grey-level neighboring pairs will be located in the ROI. We 
found higher values in the BME group and smaller values in the OST group when the 
descriptor was calculated using the PD-FSE protocol ROIs. 

The long-run low-gray emphasis (LRLGE) descriptor highlights the existence of 
large structures along four orientations (N, S, E, W) with low signal intensity, and thus an 
increased local contrast [29]. We found higher LRLGE values in the BME group and 
smaller values in the OST group for the ROIs extracted from the PD-FSE protocol images. 
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predicted values of the five combined composite descriptor.

In particular, the joint maximum (JMX) descriptor is a measure of orderliness in the
ROI, considering spatial interrelationships between pixels. High values of the descriptor
imply that many identical grey-level neighboring pairs will be located in the ROI. We found
higher values in the BME group and smaller values in the OST group when the descriptor
was calculated using the PD-FSE protocol ROIs.

The long-run low-gray emphasis (LRLGE) descriptor highlights the existence of large
structures along four orientations (N, S, E, W) with low signal intensity, and thus an
increased local contrast [29]. We found higher LRLGE values in the BME group and smaller
values in the OST group for the ROIs extracted from the PD-FSE protocol images.

Run-length variance (RLV) is a gray-level run-length matrix (GLRLM)-based descriptor
that estimates the diversity of structures in the ROI [22]. High values of the descriptor
imply a variety in structures in the ROI. We found higher values in the BME group, and
smaller values in the OST group when the descriptor was calculated on the basis of PD-FSE
protocol ROIs. The importance of structural information extraction has been highlighted in
previous work [40].
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Mean absolute deviation (MAD) is an intensity-based statistical descriptor and mea-
sures the dispersion from the mean [22]. We found smaller deviations from the mean
intensity in the BME group, and higher deviations in the INJ group when the descriptor
was calculated on the STIR protocol ROIs.

Grey-level zone variance (GLZV) is a grey-level size zone matrix (GLSZM)-based
descriptor that quantifies the variance in the number of zones over the grey levels [22]. We
found smaller values for the BME group, and higher values for the INJ group when the
descriptor is calculated on the STIR protocol ROIs.

Those findings implied deviations in ROI texture as extracted from PD-FSE and STIR
sequences. In relation to PD-FSE sequences, we discovered that the BME ROIs exhibit
greater local contrast and diversity in structures compared to the OST ROIs, while the INJ
ROIs lie in between. Regarding the STIR sequences, the BME ROIs exhibit enhanced homo-
geneity in signal intensity levels and reduced variation in the local pixel zones compared to
the INJ ROIs. On the other hand, the OST ROIs demonstrate intermediate results. Texture
variations may originate from the necrosis, fibrosis, and trabeculae differentiations [3] and
local subchondral changes in BMLs [8,41].

The division of data into groups was based on radiological findings and this could be
considered a limitation of the method. For a more robust approach, arthroscopic findings
would be helpful.

Future work may involve identifying and evaluating any textural changes following
bone defect fillings. In particular, the integration of biomaterials with the surrounding bone
can be analyzed through MRI texture analysis [42]. A successful filling should exhibit a
texture that closely resembles the adjacent healthy bone tissue. Furthermore, MRI texture
analysis may facilitate the monitoring of integration progress. This might be valuable in
order to comprehend how well the filling material acclimates to the mechanical stresses
and biological environment of the bone [43]. Changes in texture over time may suggest
whether the integration is getting better or whether there are complications such as fibrosis
or inflammation. Lastly, MRI texture analysis could be used to compare the integration
of diverse filling materials. This might help the selection of appropriate materials for an
individual patient and the optimization of treatment protocols.

4. Conclusions

In conclusion, under the concept that changes in the subchondral bone microenviron-
ment may be captured by studying textural image properties, we found that the study of
bone marrow edema in MRI knee images through texture analysis and machine learning
methods holds significant promise in the field of musculoskeletal medicine. Radiomics anal-
ysis may provide a non-invasive and quantitative means of assessing the spatial distribution
and heterogeneity of bone marrow edema, aiding in its early detection and characterization.
As technology and methodologies continue to advance, the integration of radiomic analysis
and machine learning methods into clinical practice is likely to play an increasingly vital
role in the management of knee joint conditions.
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