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Abstract: With the proliferation of image-based applications in various domains, the need for accurate
and interpretable image similarity measures has become increasingly critical. Existing image similarity
models often lack transparency, making it challenging to understand the reasons why two images
are considered similar. In this paper, we propose the concept of explainable image similarity, where
the goal is the development of an approach, which is capable of providing similarity scores along
with visual factual and counterfactual explanations. Along this line, we present a new framework,
which integrates Siamese Networks and Grad-CAM for providing explainable image similarity and
discuss the potential benefits and challenges of adopting this approach. In addition, we provide a
comprehensive discussion about factual and counterfactual explanations provided by the proposed
framework for assisting decision making. The proposed approach has the potential to enhance the
interpretability, trustworthiness and user acceptance of image-based systems in real-world image
similarity applications.

Keywords: explainability; siamese networks; Grad-CAM; recommendations.

1. Introduction

In many real-world scenarios, the ability to measure image similarity is crucial for
decision-making processes, intelligent systems as well as user interactions; therefore, image
similarity models constitute a vital role in various computer vision tasks [1–5]. For example,
in image retrieval systems, users often search for similar images based on a reference image
or specific visual features [1]. Image similarity models allow these systems to find relevant
images quickly and accurately. In content-based image analysis, large image databases are
categorized and organized using image similarity models; hence, enabling the efficient auto-
matic identification of similar images [2]. In copyright infringement detection or multimedia
management, image similarity assists in identifying duplicate or visually similar images [3].
Furthermore, in medical imaging, comparing and matching medical images can aid in the
diagnosis and identification of diseases or abnormalities [4]. Finally, image similarity can
also assist in visual search engines, where users are able to visually find similar images
without relying on text-based queries [5].

Siamese neural networks [6] probably constitute the most efficient and widely uti-
lized class of image similarity models. During the last decade, they have been successfully
applied for addressing image similarity tasks by quantifying the similarity between im-
ages through numerical values [7–9]. The backbone of this class of neural networks is
convolutional layers, which are characterized by their remarkable abilities for image pro-
cessing. Nevertheless, due to their architectural design, Siamese networks are not able
to provide the users with human-understandable explanations about why two images
are deemed similar. As the adoption of image-based technologies continues to grow in
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diverse applications such as medical imaging, e-commerce, social media and security,
the need for explainability in image similarity becomes paramount [10]. Explainability
is a critical aspect of deep learning (DL), especially when dealing with complex models
composed of convolutional layers. Although convolutional-based neural network models,
such as Siamese networks, are highly effective in several image processing tasks, they
lack transparency and explainability; thus, they are considered “black boxes” [11]. Notice
that many traditional machine learning models, such as decision trees and linear models,
often have the advantage of being interpretable, since their decision-making process is
based on understandable features. Nevertheless, Siamese networks learn intricate and
abstract features through layers of convolutions, making it challenging to directly interpret
their decisions.

Explainability techniques aim to shed light by providing insights into how and why a
convolutional-based model makes certain predictions by understanding the features and
patterns, which the model learns from the data. These techniques not only enhance our
understanding about the model’s decision process but also play a vital role in building
trust and accountability in artificial intelligence systems. More specifically, they enable
us to verify the reasoning behind the predictions [12], identify potential biases, errors,
or misinterpretations in model predictions and provide a means to improve their perfor-
mance [13]. In addition, in some domains, there are strict regulations that require models to
be interpretable. For instance, the General Data Protection Regulation in Europe includes
the “right to explanation”, which mandates that individuals should be provided with an
explanation for automated decisions [14]. Finally, in certain contexts, there may be legal or
ethical requirements to explain model predictions to end-users or stake-holders, making
interpretability a crucial aspect of the deployment [10,15].

In the literature, several research directions have focused on enhancing the inter-
pretability of deep learning models, particularly in the fields of computer vision [16,17].
Explainable artificial intelligence (XAI) techniques, such as attention mechanisms [18] and
the Gradient-weighted Class Activation Mapping (Grad-CAM) technique [19], have been
successfully applied to image classification, object detection and semantic segmentation
tasks. However, the application of XAI to image similarity remains underexplored. In
light of the increasing adoption of image-based technologies across various domains, the
demand for explainable image similarity is considered crucial. Users and decision makers
seek transparency in understanding why certain images are considered similar, especially
in critical applications such as medical diagnosis or security surveillance. Therefore, explor-
ing the integration of new or existing XAI techniques [20] with image similarity models [21]
provides insights into the underlying similarities between images. Moreover, exploring the
notion of similarity from a human-centric perspective may lead to novel contributions in
image understanding and user-friendly applications.

In this work, we propose a new concept, named “explainable image similarity”. Our pri-
mary aim is to bridge the gap between numerical similarity scores and human-understandable
explanations. Along this line, we propose a new algorithmic framework, which integrates
Siamese networks and Grad-CAM for providing explainability in image similarity tasks.
The former are utilized for calculating the similarity between two input images while the
latter is used for visualizing and interpreting the decisions made by a convolutional-based
Siamese network. An attractive advantage of the proposed framework is that it is able to
provide an image similarity score along with visual intuitive explanations for its decisions
(factual explanations) together with explanations based on its ability regarding “what if”
scenarios (counterfactual explanations). Finally, we provide a comprehensive discussion
about factual and counterfactual explanations as well as the valuable insights and recom-
mendations which can be made from the application of the proposed framework on three
real-world use case scenarios.

At this point it is worth mentioning that although the Grad-CAM technique has been
widely used and studied in a variety of domains, to the best of our knowledge it has never
been utilized for image similarity tasks.
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Summarizing, the main contributions of this work are described as follows:

• We propose the concept “explainable image similarity”, highlighting the need for provid-
ing human-understandable explanations for image similarity tasks.

• We propose a new conceptual framework for explainable image similarity, which
integrates Siamese networks along with the Grad-CAM technique, which is able to
provide reliable, transparent and interpretable decisions on image similarity tasks.

• The proposed framework produces factual and counterfactual explanations, which are
able to provide valuable insights and be used for making useful recommendations.

The rest of this paper is organized as follows: Section 2 presents the state-of-the-art
works relative to the Grad-Cam technique and image similarity applications. Section 3
presents the concept of “explainable image similarity” as well as a detailed discussion about
the proposed framework while Section 4 presents three use cases scenarios from its applica-
tion. Finally, Section 5 discusses the proposed research, summarizes its conclusions and
provides some interesting ideas for future work.

2. Related Work

Convolutional-based Neural Networks (CNNs) revolutionized modern computer
vision and are widely regarded as the cornerstone choice for addressing image processing
tasks [4,5,22,23]. The core element of CNNs are convolutional layers, which exploit a set
of learnable filters (kernels) for generating feature maps. The aim is to highlight distinct
attributes such as edges, textures and shapes, allowing subsequent layers to recognize
higher-level representations.

Nowadays, explainability and interpretability play a significant role in bridging the
gap between the advanced capabilities of DL models and the need for transparency and
accountability in their decision-making processes. However, as CNNs become deeper and
more complex, understanding how and why they make particular predictions becomes
challenging. Grad-CAM [19] is a novel technique, which enhances the interpretability of
CNNs focusing on highlighting the regions of an input image that significantly contribute
to a specific prediction; thus, it has been applied in various applications. Hsiao et al. [24]
exploited the flexibility of the Grad-CAM technique towards accurate visualization and
interpretable explanation of CNNs. In particular, the authors utilized Grad-CAM to provide
reliable and accurate analysis results for fingerprint recognition. Generally, fingerprints are
difficult to analyze manually; hence, this study contributed to the assistance of criminal
investigation cases. In similar research, Sang-Ho et al. [25] provided another application
of the Grad-CAM technique in which they focused on providing a trading strategy for
simultaneously achieving higher returns compared to benchmark strategies. Along this
line, the authors used the Grad-CAM technique in conjunction with a CNN model aiming
to develop a trustworthy method for meeting explainability as well as profitability in
finance, therefore, fulfilling the challenging investors’ needs.

In computer vision, the concept of image similarity consists of a fundamental building
block for various real-world applications, ranging from image retrieval [26] and pattern
recognition [25] to anomaly detection [27]. Siamese networks [6] have been established as
state-of-the-art models for tackling image similarity tasks, especially where the available
labeled data are limited. Their special architectural design enables them to learn and capture
intricate relationships between pairs of images, allowing for the precise quantification of
similarity and/or dissimilarity.

Appalaraju and Chaoji [7] proposed a new approach for identifying similar images
using a deep Siamese network, named SimNet. In more detail, SimNet is trained on pairs
of positive and negative images using a novel online pair mining strategy (OPMS). OPMS
has been inspired by curriculum learning, a methodology for training DL models, aiming
to ensure consistently increasing difficulty of input image pairs during the training process.
Furthermore, another characteristic of SimNet is that it is composed of a multi-scale CNN,
which is able to learn a joint image embedding of top and lower layers. For evaluating the
model’s performance, they utilized the widely used computer-vision object recognition



J. Imaging 2023, 9, 224 4 of 15

dataset, named CIFAR10. The experimental analysis and use case examples showed that
the proposed SimNet model is able to better capture fine-grained similarities between
images, compared to traditional CNNs. Additionally, the authors stated that the adopted
curriculum learning strategy led to faster model training.

Melekhov et al. [8] proposed a novel methodology for exploiting Siamese networks
for dealing with image similarity and classification problems. For detecting the matching
and non-matching image pairs, the authors suggested representing them as feature vectors
and distinguish the similarity between the input images using the Euclidean distance of
these calculated feature vectors. In particular, those feature vectors are obtained through
convolutional layers while the model training was based on contrastive loss. In their re-
search, the authors used a large set of images from five different landmarks for evaluating
the performance of the proposed Siamese model for image matching against widely used
models such as AlexNet, HybridNet and sHybridNet. Based on their experimental analy-
sis, the authors concluded that the proposed model reported promising performance on
image similarity and classification tasks while in contrast to traditional models it is able to
efficiently handle datasets with imperfect ground truth labels.

Rossi et al. [9] introduced a novel supervised Siamese deep learning architecture,
which is a new Content-Based Image Retrieval system (CBIR) for assisting the process
of interpreting a prostate radiological Magnetic Resonance Image (MRI). The rationale
behind the architecture of the proposed approach is to integrate all available information
in multi-parametric medical imaging tasks for predicting diagnostically similar images.
Additionally, for handling multi-modal and multi-view MRIs, the authors considered the
diagnostic severity of the lesion, assessed by the PI-RADS score [28], as the similarity
criterion. It is worth mentioning that despite its initial purpose of development, this
approach can be utilized for several diagnostic medical imaging retrievals due to its general
design. As regards the experimental analysis, the authors presented that the performance
of Siamese-based CBIRs was superior to that of the most widely used autoencoder-based
CBIRs, for both diagnostic and information retrieval metrics.

In this research, we introduce the concept of explainable image similarity for pro-
viding useful, interpretable and transparent insights into the underlying factors driving
image relationships and comparisons. In addition, we propose a new framework which
integrates Siamese networks together with the Grad-CAM technique. The former are used
for calculating the similarity between input images while the latter is used for visualizing
and interpreting the decisions made by convolutional-based neural networks. In contrast to
previous presented state-of-the-art approaches, the proposed framework is able to provide
an image similarity score along with visual intuitive explanations for its decisions. The
presented use case scenarios demonstrate the applicability of the proposed framework
as well as a path for providing insights and useful recommendations from factual and
counterfactual explanations.

3. Explainable Image Similarity

In this section, we present the proposed framework which is able to provide similarity
scores along with visual transparent and understandable explanations for its decisions.
We recall that our primary goal is to propose the concept of explainable image similarity
for bridging the gap between numerical similarity scores and human-understandable
explanations. By offering interpretable explanations, explainable image similarity not
only enhances the usability of similarity-based applications but also empowers users to
comprehend the reasoning behind the model’s decisions, ultimately fostering informed
and confident decision making.

In the following, we briefly present the main components of the proposed framework
which is based on the integration of the Grad-CAM technique to Siamese networks as well
as a detailed description, paying special attention to its capabilities and advantages.
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3.1. Background

Siamese neural networks [6] constitute a special class of deep learning architectures, which
are used in tasks involving similarity comparison, such as image or text matching [7,9,29].
These networks are characterized by their robustness to data which exhibit variations,
distortions or noise as well as their requirement of significantly less labeled training data
compared to neural networks; therefore, they have been well established for real-world
scenarios [25–27,30,31]. A traditional Siamese network is composed of two identical sub-
networks with shared weights (backbone network), allowing them to extract and encode
into fixed-size feature vectors (embeddings) from input pairs. Then, the similarity of the
input images (similarity score) is provided by computing the distance between the calculated
embeddings.

Gradient-weighted Class Activation Mapping (Grad-CAM) [19] is a powerful and model-
agnostic technique in the field of computer vision, which enhances the interpretability of
deep neural networks. Grad-CAM provides a way to visualize and localize the regions
of an input image, which contribute most to the model’s decision. For obtaining the
class-discriminative localization map, denoted by LGrad−CAM, we initially calculate the
neuron importance weights αk using the gradient of the model’s output y with respect to
the k-th map activations Ak of a selected convolutional layer, which are flowed back and
are global-average-pooled over the width (index i) and height (index j) dimensions, that is,

αk =
1
Z ∑

i
∑

j

∂y
∂Ak

ij
, (1)

where Z is the total number of spatial locations in the feature maps. Then, we perform
a weighted combination of forward activation maps, and follow it by ReLU activation
function for calculating LGrad−CAM, namely

LGrad−CAM = ReLU

(
∑
k

ak Ak

)
. (2)

By utilizing the gradients with respect to the model’s internal feature maps, Grad-
CAM generates an activation map, which highlights the discriminative regions responsible
for the model’s decision.

3.2. Proposed Framework

Next, we provide a detailed description of the proposed framework while a high-
level presentation of its architecture is highlighted in Figure 1. Initially, two images are
considered an input in a Siamese network, which are processed by the backbone network for
encoding them into fixed-size feature vectors (embeddings). Then, the image embeddings
are used for discerning similarities and differences between the input images and ultimately
calculating their similarity score. Independently, the Grad-CAM technique is applied to the
last convolutional layer of the backbone network for the development of the Grad-CAM
heatmaps and visualizing the features, which significantly impact the Siamese model’s
decisions (factual explanations).

In addition, the proposed framework is able to provide counterfactual explanations.
Actually, a counterfactual explanation provides a description of “what would have not hap-
pened when a certain decision was taken” [19]. This transparency not only enhances the model’s
interpretability but also empowers stakeholders to identify potential biases, assess model
fairness and build trust in AI-driven systems, leading to more accountable and reliable
artificial intelligence solutions. The counterfactual explanations can be easily developed by
a slight modification to the Grad-CAM technique, namely, by simply replacing y with 1− y
in Equation (1). To summarize, the advantages of the proposed framework are:
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• Counterfactual explanations: The identification of regions, which would make the
network change its prediction, could highlight concepts that confuse the model. There-
fore, by removing those concepts, the model’s decisions may be more accurate or
more confident.

• Bias evaluation of model’s decisions: In case the Siamese model is performing well on
both training and testing data (not-biased model), Grad-CAM heatmaps may be used
to visualize the features, which significantly impact the model’s decisions. In contrast,
in case the Siamese model is performing well on the training data but it is not able
to generalize well (biased model), Grad-CAM heatmaps can be efficiently used to
identify unwanted features in which the model focuses on.

Figure 1. Architecture of the proposed framework.

4. Application of Proposed Framework and Use Case Scenarios

Next, we provide some use case scenarios from the application of the proposed
framework to three (3) well-known datasets from different real-world application domains:

• Flowers. This dataset contains 4242 images (320 × 240) of flowers, which were catego-
rized into five classes: “chamomile”, “tulip”, “rose”, “sunflower” and “dandelion”.

• Skin cancer. This dataset concerns images (224 × 224) of 1400 malignant and 1400 be-
nign oncological diseases.

• AirBnB. This few-show dataset is composed of 864 interior and exterior house pictures
(600 × 400) scraped from AirBnB over 3 cities, which were classified in 12 classes:
“backyard”, “basement”, “bathroom”, “bedroom”, “decor”, “dining-room”, “entrance”,
“house-exterior”, “kitchen”, “living-room”, “outdoor”, “staircase” and “TV room”.
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The presented use cases focus on highlighting how the proposed framework could be
used for image similarity tasks, what useful conclusions could be drawn by factual and
counterfactual explanations and finally, what useful recommendations could be provided.
For training the Siamese networks, 80% of each dataset’s images were used for training
and the other 20% for testing while preserving the variance of each class in each set.
In addition, 10% of training images were used as a validation set for optimizing the
network’s performance. The implementation code along with the datasets can be found in
https://github.com/ioannislivieris/Grad_CAM_Siamese.git (access in 14 August 2023).

Based on the images of each training dataset, we created the training pairs as follows:
For each image, two images were randomly selected; one image from the same class and
another image from a different class. The first pair containing the images from the same
class was assigned with label zero (0), while the second pair containing the images from
different classes was assigned with label one (1). Along this line, the similarity between two
random input images is defined by 1− d, where d is the Siamese model’s output. Notice
that this methodology was initially proposed by Melekhov et al. [8].

At this point, it is worth mentioning that the model’s prediction can be exploited to
obtain information if two images belong to the same class or not. More specifically, if the
prediction of the Siamese network for a pair of images is less than a pre-defined threshold,
then the images are considered similar (belonging to the same class). Otherwise, they are
considered dissimilar (belonging to the different classes). Notice that in our experiments
threshold was set to 0.5.

Regarding the Siamese network architecture, ResNet50 [32] was used as a backbone
network, followed by an average pooling layer of size of (1, 1) and a dense layer of 256
neurons with ReLU activations for calculating each input image embedding. Next, the
L2-distance between the embeddings is calculated, followed by an output layer with one
neuron with a Sigmoid activation function. The utilized architecture and hyperparameter
selection provide us with a very good and reliable performance regarding all three bench-
marks. It is worth highlighting the scope of this research was not to address a specific class
of benchmarks, i.e., few-shot learning benchmarks, one-shot learning benchmarks, etc.,
neither to provide a new advanced model architecture but to provide human-meaningful
explanations on similarity tasks through the proposed framework. Finally, the Siamese
model was trained using the ADAM algorithm [33] while a contrastive loss function [34]
was used for training the network, which is defined by

L =
1
2

[
(1− y)(Dw)

2 + y{max(0, m− Dw)}2
]
,

where Dw is the model’s output and m is the margin value, which was set to 2.

4.1. Flowers Dataset

Next, we present an example from the application of the proposed framework on two
random images (Figure 2a,d) from the Flowers dataset, which belongs to the same class
(“rose”). The Siamese model’s prediction was 0.24, which implies that the model predicts
that the similarity between the input images is 76%. In addition, since the similarity score is
greater than the pre-defined threshold = 0.5, the model suggests that input images belong
to the same class. Figure 2b,e presents the factual explanations provided by Grad-CAM
in order to identify the features, which impact the model’s decisions. In more detail, the
model’s decision was based on the flower’s blossoms in which it found common character-
istics. As regards, the counterfactual explanations, which are presented in Figure 2c,f, they
highlight that the model would have been based on the stems of both flowers for predicting
that the images are not similar.

By taking into consideration that similar conclusions can be drawn by randomly se-
lecting any pair of images in the Flowers dataset, a possible recommendation for improving
the model’s performance could be that the model is based on identifying the blossoms in

https://github.com/ioannislivieris/Grad_CAM_Siamese.git
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the input images for making its prediction; thus, a removal of other characteristics such as
stems, background, etc., may improve the model’s performance.

(a) (b) (c)

(d) (e) (f)

Figure 2. Application of the proposed framework on flowers dataset. (a) Original input image1,
(b) factual explanations on image1, (c) counterfactual explanations on image1, (d) original input
image2, (e) factual explanations on image2, (f) counterfactual explanations on image2.

4.2. Skin Cancer Dataset

Figure 3 presents the results from the application of the proposed framework on two
random images from the skin cancer dataset, which belong to the same differences classes,
i.e., the first image belongs to the “Benign” class, while the second one belongs to the
“Malignant” class. The Siamese model’s prediction was 0.781, which implies that the model
predicts the similarity score 21.9% and that the input images belong to the different classes.
Figure 3b,e presents the factual explanations provided by Grad-CAM in order to identify
the features, which impact the model’s decisions. The interpretation of Figure 3b suggests
that the model focused on a small region on the skin while the interpretation of Figure 3e
reveals that the model was focused on the tumor area. This implies that the model was
focused on regions with dissimilar visual characteristics for predicting that the similarity
score between the input images is considerably low. Furthermore, Figure 3c,f presents the
counterfactual explanations that demonstrate the region of each image in which the model
would have been based for predicting that the images are similar. Clearly, the highlighted
areas in both images possess no similar visual characteristics.

Notice that although the input images look similar for a non-expert human, the tumor’s
characteristics such as texture, color and size are considered vital for separating benign from
malignant cases. Therefore, a possible recommendation from this use case could be to use
data augmentation based on transformation techniques (rotation, flip, crop, zoom, change
the brightness, contrast, saturation, etc.) in order to improve the model’s performance.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Application of the proposed framework on skin cancer dataset. (a) Original input image1,
(b) factual explanations on image1, (c) counterfactual explanations on image1, (d) original input
image2, (e) factual explanations on image2, (f) counterfactual explanations on image2.

4.3. Airbnb Dataset

Figure 4 presents the results from the application of the proposed framework on two
random images from the AirBnB dataset, which belong to different classes, i.e., the first
image belongs to the“bedroom” class, while the second one belongs to the “living-room”
class. The Siamese model’s prediction was 0.516, namely that the similarity score is 48.4%,
which suggests that the model predicts that the input images marginally belong to different
classes. Figure 4b,e presents the factual explanations provided by Grad-CAM, which
suggest that the model was focused on the chairs presented in the first image and on
several items in the second image (such as lamps, fire-place and clock) to predict that the
images are marginally dissimilar.

Since the model’s prediction is not very confident, it is wise to study the counterfactual
explanations to explore why the model was near to being confused. Figure 4c,f presents
the counterfactual explanations of both images, which suggest that the model, focused on
the bed and sofa located in the first and second images, respectively, as well as the tables
presented in both images. This implies that the model was nearly confused since both
images possess a common item (table) as well as two items which are visually similar (bed
and sofa).

A possible recommendation for improving the model’s performance could be to use
advanced image processing techniques for item identification in order to assist the model
of correlating the items and/or furniture, which belong to each room.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Application of the proposed framework on AirBnB dataset. (a) Original input image1,
(b) factual explanations on image1, (c) counterfactual explanations on image1, (d) original input
image2, (e) factual explanations on image2, (f) counterfactual explanations on image2.

4.4. Improving the Siamese Model’s Performance

In the rest of this section, we present an example of improving the performance of the
Siamese model through the conclusions and recommendations, which could be provided
from the application of the proposed framework.

Firstly, we recall that in the use case scenario performed on the Flowers dataset, we
observed that by randomly selecting any pair of images which belong to the same class, the
Siamese model focused on the blossoms for making its decision (Figure 2). Hence, a possible
recommendation for improving the model’s performance could be that the model was based
on identifying the blossoms in the input images for making its prediction; thus, a removal
of characteristics such as stems, background, etc., may improve the model’s performance.

To examine the effectiveness of this approach, we create a new dataset in which each
figure is replaced with a bounding box containing the flower’s blossom. For calculating
the bounding boxes for each image in the training data (anchor image), another image
from the same class was randomly selected for calculating their similarity. In this case,
their predicted similarity by the model was >80%, then we calculated the anchor’s image
Grad-CAM heatmap. Based on the calculated heatmap, we utilized the methodology and
implementation of Cui et al. [35] for obtaining a bounding box, which contains the area
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which was mostly focused on by the Siamese model for making its decision (i.e., flower’s
blossom). Along this line, in the newly created dataset, each image was replaced with the
calculated bounding box. Figure 5 presents an example of the presented technique, i.e., the
original image, the bounding boxes of Grad-CAM and the cropped image.

(a) (b) (c)

Figure 5. (a) Original image, (b) bounding box, (c) cropped image.

Table 1 presents the performance of the Siamese model of identifying similar and
dissimilar pairs of instances (a) trained with the original Flowers dataset (b) trained with
the “cropped” Flowers dataset in which each image has been replaced with the identi-
fied bounding box using the technique of Cui et al. [35]. The evaluation was performed
on 432 pairs of similar and 432 pairs of dissimilar unseen images using accuracy, area
under curve (AUC), precision and recall as performance metrics [36,37]. Clearly, we are
able to conclude that the performance of the Siamese model was considerably increased
relative to all performance metrics. In addition, the Siamese model achieved its top per-
formance during the training process requiring less epochs in case it was trained with the
“cropped” dataset.

Table 1. Siamese model’s performance trained with the original and the “cropped” dataset.

Dataset Accuracy AUC Precision Recall

Original 87.15% 0.872 0.890 0.872
“Cropped” 88.31% 0.883 0.900 0.880

Figure 6 presents two pairs of (similar) images from the same class (Daisy). The first
pair contains images from the original Flowers dataset while the second pair contains the
corresponding “cropped” images. For the first pair, the Siamese model predicted a similar
score equal to 18%, while for the second pair the model predicted a similar score equal to 11%.

(a)

Figure 6. Cont.
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(b)

Figure 6. (a) Pair of images for the same class obtained from the original dataset, (b) corresponding
cropped images.

Summarizing the previous discussion, we are able to conclude that the recommenda-
tion of removing characteristics such as stems, background and focusing on the blossoms
considerably improved the quality of the dataset.

5. Discussion and Conclusions

The motivation for this research was to introduce the concept of explainable image
similarity for providing useful, interpretable and transparent insights into the underlying
factors driving image relationships and comparisons.

In this modern deep learning area, models are becoming more and more complex.
They can exhibit high accuracy but their lack of transparency and explainability becomes
crucial for building trust and understanding. The context of explainable image similarity
aims to bridge the gap between the black-box nature of sophisticated similarity models and
human interpretability. The main goal is not only the development of models which are
able to provide accurate similarity scores between pairs of images but also to offer insights
into the specific features, patterns or attributes that contribute to the computed similarity.
By offering interpretable explanations, explainable image similarity not only enhances the
usability of similarity-based applications, such as image retrieval and recommendation sys-
tems, but also empowers users to comprehend the reasoning behind the models’ decisions,
ultimately fostering informed and confident decision making.

For achieving this goal, we proposed a new framework by integrating Siamese net-
works together with the Grad-CAM technique. The former are used for calculating the
similarity between input images while the latter is used for visualizing and interpreting the
decisions made by convolutional-based Siamese neural networks. An attractive advantage
of the proposed framework is that it is able to provide an image similarity score along with
visual intuitive explanations for its decisions. In addition, the proposed framework is able
to evaluate bias on the model’s decisions as well as provide counterfactual explanations,
highlighting the ability of the “what if/model’s decisions”. The presented use cases sce-
narios included the application of the proposed framework on three similarity tasks from
different application domains (two classification datasets and a few-shot learning dataset).
Notice that the scope of this research was not to address a specific class of benchmarks,
i.e., few-shot learning benchmarks, one-shot learning benchmarks, etc., but to provide
human-meaningful explanations on similarity tasks. Clearly, the proposed framework
can easily be applied to any image similarity tasks as well as few-shot/one-shot image
classification tasks providing similarity scores along with visual explanations about its
decisions. The use cases scenarios along with the provided comprehensive discussion
highlighted the need for explainable image similarity and the useful conclusions and rec-
ommendations, which can be provided by its application. Furthermore, we presented
an example of improving the performance of the Siamese model for the Flowers use case
scenario through the conclusions and recommendations provided from the application
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of the proposed framework. In more detail, the provided recommendations resulted in
increasing the model’s accuracy by 1.2% and its prediction ability to identify similar images.
For the Skin cancer and AirBnB use case scenarios, the recommendations for improving the
models’ performance were to use data augmentation based on transformation techniques
(rotation, flip, crop, etc.) and image processing techniques for item identification in order to
correlate the items and/or furniture, which belong to each room, respectively. Nevertheless,
the former resulted in a minor improvement of the model’s performance while the latter
needs expert image processing and object identification techniques; hence, we decided to
omit them.

It is worth mentioning that the proposed framework is based on the original Grad-
CAM for providing visual explanations. Clearly, other state of the art techniques such
as Grad-CAM++ [38], XGrad-CAM [39] and Score-Grad [40] can be easily adopted and
incorporated. This can be considered a limitation of this work. Nevertheless, we should
take into consideration that this was not the scope of this work. Another limitation can
be considered the fact that the proposed framework uses a Siamese network with two
input images. A possible extension could include the utilization of recent state-of-the-art
models [41] with more advanced and complex architectures as well as the use of heatmap
different saliency algorithms for heatmap calculation. Some interesting works presented
by RichardWebster et al. [42] and Hu et al. [43] used and proposed several algorithms for
calculating saliency algorithms. An adoption of the proposed approach to their frameworks
could provide useful conclusions from the factual and counterfactual explanations.

Our future work is concentrated on the application of the proposed framework on
real-world image similarity benchmarks and its usage in conjunction with non post hoc
explainable techniques [11,16]. Since the presented conclusions from the presented use
case scenarios are quite encouraging, we intent to proceed with studying the accuracy
performance impact on similarity tasks through the adoption of the proposed framework
and the utilization of advanced image processing techniques. Finally, another interesting
idea could be the usage of advanced large language models for providing automated recom-
mendations from the factual and/or counterfactual explanations [44,45]. Our expectation
is that this research could be used as a reference for explainability frameworks, assisting
decision making by providing useful visual insights and offering customized assistance
and recommendations on image similarity-related tasks.
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