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Abstract: Nowadays, wireless sensor networks (WSNs) have a significant and long-lasting impact
on numerous fields that affect all facets of our lives, including governmental, civil, and military
applications. WSNs contain sensor nodes linked together via wireless communication links that
need to relay data instantly or subsequently. In this paper, we focus on unmanned aerial vehicle
(UAV)-aided data collection in wireless sensor networks (WSNs), where multiple UAVs collect data
from a group of sensors. The UAVs may face some static or moving obstacles (e.g., buildings, trees,
static or moving vehicles) in their traveling path while collecting the data. In the proposed system,
the UAV starts and ends the data collection tour at the base station, and, while collecting data, it
captures images and videos using the UAV aerial camera. After processing the captured aerial images
and videos, UAVs are trained using a YOLOv8-based model to detect obstacles in their traveling path.
The detection results show that the proposed YOLOv8 model performs better than other baseline
algorithms in different scenarios—the F1 score of YOLOv8 is 96% in 200 epochs.

Keywords: YOLOv8; wireless sensor networks (WSNs); obstacle detection; unmanned aerial vehicles
(UAVs); UAV aerial photography

1. Introduction

Unmanned aerial vehicles (UAVs) have become a ubiquitous part of our daily lives,
with their applications ranging from aerial photography to military reconnaissance [1,2].
The term UAV, also known as a drone, refers to a flying vehicle that can be remotely con-
trolled or operated autonomously. The versatility of drones has made them an essential tool
for a wide range of industries, from agriculture [3] and construction to emergency services
and national security. Drones’ autonomy is one of their most important characteristics,
especially for military and security purposes. Drones with autonomous piloting may be
pre-programmed with precise flight paths and can fly without human control [4]. Since
drones may be employed for reconnaissance and surveillance tasks in military and security
operations, this function is very beneficial.

Another critical feature of drones, particularly for military and security purposes,
is real-time object detection. Drones equipped with object detection technologies can
identify and follow both stationary and moving objects in real-time [5]. Advanced sensors
and cameras that drones may be fitted with allow them to instantly detect and monitor
possible threats, giving military and security personnel vital knowledge in real time. For
real-time object detection, cutting-edge machine learning techniques and computer vision
technologies are employed. These algorithms enable drones to recognize and classify
diverse things within their field of view based on patterns and characteristics discovered
by their sensors and cameras. The algorithms may also be trained to identify new objects
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and improve their accuracy over time, making them better and better at recognizing and
tracking objects in a range of situations.

However, there are a number of challenges associated with real-time object detection,
particularly in the processing and interpretation of data. Drones generate a lot of data,
including images, video recordings, and sensor readings, which must be instantly eval-
uated in order to successfully detect objects. This necessitates efficient infrastructure for
data transmission and storage in addition to reliable processing hardware and software.
Assuring the precision and dependability of object detection algorithms is another difficulty,
particularly in complex and dynamic situations. For example, a drone flying in a crowded
urban area may encounter a wide range of objects and obstacles, including buildings,
trees, bikes, cars, pedestrians, animals, and other drones. The algorithms must be able
to distinguish between different objects and accurately track their movements, even in
challenging conditions such as poor lighting or inclement weather conditions. Despite
these difficulties, real-time object identification is a critical capability of drones in a variety
of applications, from aerial photography to military surveillance and beyond. Drones will
probably become much more adaptable and efficient as technology develops over time,
with the capacity to find and follow objects in surroundings that are more complicated
and dynamic.

Alongside military and security applications, drones are also very useful for a wide
range of commercial and civilian applications. For example, drones can be used for aerial
photography and videography. This allows photographers and filmmakers to capture
stunning images and footage from unique perspectives without risking human life [6].
Drones can also be used for mapping and surveying applications [7], allowing for the
rapid and accurate collection of geographical data. In the agriculture industry, drones are
increasingly being used for crop monitoring and management purposes. Drones equipped
with advanced sensors and cameras can capture high-resolution images and data that can
be used to detect crop stress, nutrient deficiencies, and other issues that can impact crop
health and yield effects. This information can then be used to make data-driven decisions
about the crop management sector, including irrigation, fertilization, and pest control.
Drones are being utilized in emergency services for search and rescue operations, enabling
rescuers to swiftly find and reach people in distant or inaccessible places. Drones using
thermal imaging cameras can also be used to find people who went missing or who are
buried under rubble or other materials [8,9].

The study in [10] improved obstacle detection and collision avoidance in drones with
weight constraints; the proposed method employs lightweight monocular cameras for
depth computation. It extracts key point features using computer vision algorithms like
Harris corner detector and SIFT, then matches them using Brute Force Matching (BFM) to
detect increasing obstacle sizes as the drone approaches. Another paper [11] presented an
indoor obstacle detection algorithm that combines YOLO with a light field camera, offering
a simpler setup than RGB-D sensors. It accurately calculates obstacle size and position using
object information and depth maps, demonstrating higher detection accuracy indoors.

Overall, drones are a versatile and useful tool for a wide range of applications, from
military and security to commercial and civilian. Drones are projected to become increas-
ingly important in the years to come, delivering valuable insights and information in a
variety of businesses and fields because of their capacity to function independently and
detect objects in real time. Drones will surely advance and be able to carry out a larger
variety of jobs and applications as technology continues to advance. However, it is also
important to ensure that drones are used ethically and responsibly, particularly in military
and security applications, to prevent potential risks and negative consequences. With the
right guidance and regulations, drones have the potential to revolutionize many different
industries and provide numerous benefits to society. From these perspectives, we have
shown here an advanced deep learning model to effectively detect both static and moving
objects in real time from unmanned aerial vehicle data. In this case, the proposed scenario
is a UAV-based wireless sensor network (WSN) system where multiple UAVs collect data
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from a group of sensors while avoiding all obstacles in their traveling path and where the
obstacles are detected based on the UAVs’ captured photography. The main contributions
of this paper are as follows:

• We have introduced an obstacle detection framework in UAV-aided WSNs based on
UAV aerial photography;

• First, the UAV-captured photography (i.e., images and videos) is processed using
different image-processing tools;

• Second, based on the processed data, the UAVs are trained using a YOLOv8-based
object detection model to detect obstacles in their traveling path;

• Finally, the results of the proposed YOLOv8-based model are analyzed for different
scenarios and compared with the results of the other baseline models. The evaluation
results show that the proposed YOLOv8 performs better in all cases.

This paper follows a specific organization that begins with a literature review in
Section 2, which provides a background on previous research in the field. Section 3
represents the detailed system model of the proposed work. Section 4 presents the proposed
methodology, outlining the steps taken to achieve the research objectives. Section 5 offers a
detailed analysis of the experimental results, providing insights into the effectiveness of
the proposed methodology, and, finally, Section 6 concludes the paper.

2. Literature Review

UAVs are currently a trending topic in the research world, with numerous studies and
projects exploring their potential applications and capabilities. Using the drone camera
feature to detect and classify objects is one of the most important and useful features of
UAVs. Different kinds of traditional machine learning, deep learning, as well as transfer
learning models have been applied and tested. For example, in [12], the authors propose
three algorithms that combine an object detector and visual tracker for single-object detec-
tion and tracking in videos, using limited training data based on the convolutional neural
network (CNN) model. The algorithms efficiently incorporate the temporal and contextual
information of the target object by switching between the detector and tracker or using
them in combination. Another study has used the TensorFlow object detection API to
implement object detection on drone videos and compare the performance of different
target detection algorithms [13]. CNNs with transfer learning are used to recognize ob-
jects such as buildings, cars, trees, and people. The study shows that the choice of target
detection algorithm affects detection accuracy and performance consumption in different
ways. Hybrid models have also shown promises; for example, [14] proposed a method
for vehicle detection in UAV videos using a combination of optical flow, connected graph
theory, and CNN–SVM algorithms, which achieved 98% accuracy in detecting vehicles in
moving videos. However, those traditional models are computationally expensive and
require a lot of processing power.

Apart from these, various lightweight models such as MobileNet, SSD, and YOLO
have gathered attention for object detection using drones. Widodo et al. discussed the
development of object detection using deep learning for drone-based medical aid deliv-
ery, using a combination of Single Shot Detector (SSD) and the MobileNet framework to
efficiently detect and locate objects in video streams [15]. Then, a real-time drone detec-
tion algorithm based on modified YOLOv3 with improvements in network structure and
multi-scale detection achieved 95.60% accuracy and 96% average precision in detecting
small drone objects [16]. A paper [17] applied the YOLOv3 algorithm for robust obstacle
detection. It introduced the YOLOv3 network structure, multi-scale target detection princi-
ples, and implementation steps. Experimental results demonstrated improved robustness
compared to YOLOv2, with increased detection in complex backgrounds, better lighting,
low illumination contrast, and even in poor lighting conditions. YOLOv3 outperforms
YOLOv2 by accurately detecting small, distant targets, such as pedestrians, in front of the
track. After that, the newer version, YOLOv4, was introduced, and different studies found
better accuracy and speed using this version [18]. A further improved YOLOv4 model
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was proposed for small object detection in surveillance drones, achieving 2% better mean
average precision (mAP) results on the VisDrone dataset while maintaining the same speed
as the original YOLOv4 [19]. A study [20] proposed a real-time obstacle detection method
for coal mine environments, addressing low illumination, motion blur, and other challenges.
It combined DeblurGANv2 for image deblurring, a modified YOLOv4 with MobileNetv2
for faster detection, and SANet attention modules for better accuracy. Experimental results
showed significant improvements in detection performance. However, YOLOv5 is one of
the most popular methods. As an example, a study achieved high recall and mAP scores on
a combined dataset from a challenge and a publicly available UAV dataset [21]. The model
leverages PANet neck and mosaic augmentation to improve the detection of small objects in
complex background and lighting conditions. Some other papers proposed an improvised
version of the YOLOv5 model for object detection and compared its performance to the
original YOLOv5 model [22,23]. Another study proposed a YOLOv5-like architecture with
ConvMixers and an additional prediction head for object detection using UAVs, which were
trained and tested on the VisDrone 2021 dataset. Furthermore, the authors in [24] modified
the YOLOv5 architecture for better aerial image analysis performance, concentrating on
uses like mapping land usage and environmental monitoring.

Then, YOLOv6, a newer version with faster inference and accuracy, came into play. A
study evaluated YOLOv6 for fire detection in Korea, showing high performance and real-
time capabilities [25]. XGBoost achieved the highest accuracy for object identification. Data
augmentation and Efficient Net improved YOLOv6’s performance. However, limitations
included smoke classification and accuracy in poorly illuminated environments. Another
piece of research suggested a transfer learning-based model using YOLOv6 for real-time ob-
ject detection in embedded environments [26]. Pruning and finetuning algorithms improve
accuracy and speed. The model identifies objects and provides voice output. It outperforms
other models, is simple to set up, and has the potential for assisting visually impaired
individuals in an IoT environment. But the model faces difficulty identifying objects against
textured backgrounds and potential challenges in compressing network width.

Still, the YOLOv6 model requires a large dataset and is computationally expensive.
Thus, recently, YOLOv7 was introduced, producing a higher mAP on the COCO dataset
than YOLOv6, using the EfficientRep backbone and SimOTA training. It is also faster and
more efficient at using GPU hardware. A few studies have been conducted to perform
object detection using YOLOv7 [27–29]. The authors in [27] used an improved YOLOv7-
based object detection method designed specifically for marine unmanned aerial vehicle
(UAV) photos. In [28], the proposed YOLOv7–UAV algorithm performs UAV-based object
detection tasks with better accuracy, making it appropriate for use in remote sensing,
agriculture, and surveillance. The improvements improve detection accuracy by altering
the anchor box aspect ratios and using multi-scale training techniques. The study in [29]
supports sustainable agricultural practices and presents YOLOv7 as a useful tool for
automated weed detection and crop management. But, as a complex model, YOLOv7 has
scope to improve accuracy and reduce noise sensitivity. Furthermore, the work in [30]
was optimized for aerial photography taken by unmanned aerial vehicles (UAVs), wherein
multi-scale characteristics were added to YOLOv7 to improve object detection precision in
UAV photos. This is why, most recently, YOLOv8 has been revealed. In this paper, we have
studied the latest version of YOLO, YOLOv8, for real-time object (i.e., obstacle) detection in
wireless sensor networks (WSNs) based on unmanned aerial vehicle (UAV) photography.

3. System Model

Figure 1 represents the proposed system model of the considered WSN, which includes
one base station, sensor nodes, UAVs, and obstacles (i.e., buildings, trees, vehicles, etc.).
The sensors are located in pre-determined positions and are randomly distributed within
an area. Each sensor periodically generates data and stores them in its buffer until a UAV
arrives to collect the data while capturing images and videos. The UAV-captured images
and videos are used to train the UAVs to detect obstacles in their tour. Each UAV has a
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specific velocity and flight duration. These parameters are crucial for ensuring that the
UAV can successfully collect data from all the assigned sensors and return to the base
station. The battery of a UAV is assumed to be fully charged at the beginning of the tour.
Then, after finishing one data collection tour, the UAV battery is recharged from the base
station using a wireless method.

Moreover, let us assume that there are a set of obstacles in the environment and that
the positions of these obstacles are unknown. When a UAV starts traveling to collect data,
it starts capturing images and videos. Based on these aerial photographs, the UAVs are
trained to detect obstacles. If a UAV detects an obstacle along its path, which means it
is located between two sensors that the UAV needs to visit sequentially for data collec-
tion, the UAV must take a detour to bypass the obstacle and reach the next sensor on its
intended path. This detour is required to guarantee that the UAV, despite the presence
of any obstacle, may effectively travel through the environment and gather data from
all the sensors. The main focus of this study is detecting the obstacles on the UAV data
collection tour. On the other hand, the UAV detouring problem can be solved using the
GA w/VRAOA algorithm [31] to build a UAV detour traveling path while detecting the
obstacles. In general, the UAV travels to collect data from sensor nodes and the UAV data
collection process is wireless, with 2 s UAV data reception time [31]. The UAV travels in
the communication range of the clustered area (contained within the sensor nodes and
obstacles). The clustering can be predefined or can be performed by applying the K-means
algorithm, similar to [31]. Alternatively, the UAV communication security can be ensured
using the efficient, secure communication infrastructure for UAVs [32].

Figure 1. System model.

4. Methodology

The following sub-sections present the details of the implementation of the proposed method.

4.1. Image Acquisition

Data collection is an important step that involves gathering information from diverse,
valid sources. In the context of this scenario, in this study, the data are initially collected
from different online sources, including both images and videos. These online sources
can be websites, social media platforms, online databases, or any other relevant online
repository. A procedure for extracting the frames from the videos is used to transform
the video content into photos. As a result, it is possible to compile a number of unique
pictures that represent various scenes from that video. To supplement the dataset, other
photographs from the internet are also collected in this dataset. Once the necessary data,
including images and video frames, are collected from online sources, a custom dataset
is formed. Table 1 shows the statistics of the image dataset, where we have considered
seven different types of obstacles (i.e., truck, person, tree, car, building, bus, and other



J. Imaging 2023, 9, 216 6 of 17

obstacle) for the proposed system. A dataset serves as one of the most valuable for training
machine learning models, conducting research, or performing analysis. The custom dataset
is curated based on the specific requirements and objectives of the project, ensuring that
it encompasses a diverse range of relevant data to support the intended goals. Figure 2
shows some sample image datasets.

Figure 2. Sample dataset.

Table 1. Dataset statistics.

Types of Obstacles Quantity within the Dataset Total Data

Truck 254
Person 166

Tree 221
Car 260 1376

Building 126
Bus 247

Other obstacles 102

4.2. Image Pre-Processing

Data augmentation: Data augmentation is a widely used approach that helps to in-
crease the diversity and variability of a dataset, with the goal of improving the performance
and robustness of ML/AI models. During the process of collecting our real data, data
augmentation techniques were applied to a few of the images to make the dataset more
realistic. We have applied different data augmentation for the images, as follows.

In case 1, for dark images, a random brightness adjustment was applied as a data
augmentation step. The brightness was adjusted by a percentage of −25% to +25%. This
technique helped us to enhance the visibility and clarity of dark images and to make them
more suitable for analysis as well as model training. In case 2, we applied the rotation
augmentation technique. In this method, a random rotation is applied to the specific images
as a data augmentation step. Here, the rotation angle was randomly selected between −15
and +15 degrees. The dataset becomes more similar to the real-world situations by rotating
the photos, where things can appear in a variety of orientations. This specific augmentation
technique enables the model to learn and generalize better, even when faced with rotated
images during inference or testing.

Then, the augmented data were combined with the other raw data acquired to create
a custom dataset. This custom dataset then comprised both the original raw data and the
augmented data. As a result, it became more representative of real-world scenarios and
encompassed a broader range of variations, enhancing the dataset’s quality and increasing
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the model’s ability to generalize well. The augmented data introduced additional examples
with altered attributes, such as brightness-adjusted or rotated images, which helps mitigate
biases. In addition, this also helps to improve the robustness of the trained model. The
custom dataset serves as a valuable resource for various applications and gave us the
scope to leverage a more extensive and diverse collection of data for specific tasks. This
facilitates better model training, validation, and evaluation, ultimately leading to more
accurate and reliable results in the targeted domain. Figures 3 and 4 show the sample
image augmentation for both case 1 and case 2.

Figure 3. Sample data augmentation case 1.

Figure 4. Sample data augmentation case 2.

4.3. Image Resizing and Labeling

Resizing an image means giving all of the images the same shape. Thus, the custom
dataset with all images was resized to 800 × 600 pixels [33,34]. After that, the resized images
were labeled according to the seven classes shown in Table 1. The Roboflow annotation
operation was applied for labeling data into multiple classes. In Figure 5, we have shown
some sample labeled images for each class. Here, in first column, the input images are
shown, then in second column the class with a bounded box is shown, and, lastly, the
bounded box layer for each class is shown with different colors in last column. The class ID
in a bounding box is the name of the obstacle. For example, in this work, the seven class IDs
are ‘Truck’, ‘Person’, ‘Bus’, ‘Car’, ‘Tree’, ‘Building’, and ‘Other obstacles’, as displayed in
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Figure 5. In this case, each bounding box indicates the obstacle, and each class ID represents
the type of obstacle.

Figure 5. Sample labeled data.

All the data pre-processing steps are displayed precisely in Figure 6. After completing
all the data pre-processing steps, the processed data were split into 70% train data, 20% test
data, and 10% validation data for training the model.
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Figure 6. Data pre-processing steps.

4.4. Proposed Obstacle Detection Framework

The proposed obstacle detection framework consists of the three main phases shown
in Figure 7. In Phase 1, the system collects image or video data through the drone camera
and applies pre-processing steps such as stabilization, noise reduction, and enhancement
to enhance the image’s quality and usability. In Phase 2, the pre-processed data are
processed to generate training and testing datasets. To provide a sufficiently diverse and
representative dataset, this step encompasses activities including bounding box generation,
object annotation, and data augmentation approaches. Then, the proposed YOLOv8-based
model is trained using the generated processed dataset.

Finally, in Phase 3, the trained YOLOv8 model is deployed and tested for real-time
object detection using the drone. The model processes the live video feed from the drone
and predicts the presence and location of objects of interest in real-time. This phase enables
the detection of objects while the drone is in operation, allowing for immediate response
or decision-making based on the detected objects in real-time. Overall, this framework
provides a systematic approach for capturing data through a drone, pre-processing the
data, training an object detection model, and performing real-time object detection using
the drone.
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Figure 7. Proposed obstacle detection framework.

5. Experimental Results

This section presents an experimental evaluation of the proposed model, along with a
comparison with other state-of-art models.

5.1. Hyperparameters

Several training settings and hyperparameters are involved in the YOLOv8-based
model training for obstacle detection in the UAV data collection scheme. This section pro-
vides an overview of the hyperparameters used in the training process. Table 2 represents
the names of the parameters used and their respective values. The epoch count is 200 in
the training step, where the optimizer and pre-trained model are used as the stochastic
gradient descent (SGD) optimizer and COCO pre-trained model, respectively. An early
stopping step is implemented to prevent overfitting and to optimize the training process
in the model. The training is stopped early when no improvement has been observed in
the last 50 epochs. The early stopping technique with a patience value of 50 is used, which
indicates that, if no improvement has been observed for 50 consecutive epochs, the training
will stop automatically. Future experiments may explore adjusting the patience value for
further optimization.

Furthermore, other parameters, such as batch size, learning rate, and weight decay
values of 16, 0.01, and 0.001, respectively, are considered for better model optimization.

Table 2. Parameters used for the YOLOv8-based object detection model.

Parameters Value

Batch size 16
Number of epochs 200

Optimizer SGD
Pre-trained COCO model

Learning rate 0.01
Weight decay 0.001

Patience 50

5.2. Model Evaluation

The model evaluation exhibited promising performance in the trained YOLOv8 model
for the proposed obstacle detection in a UAV-aided data collection system. Table 3 rep-
resents the model parameters. The model evaluation was implemented on a Python
platform with CUDA 12.0 and NVIDIA-SMI 525.85.12, utilizing a GTX 1650 GPU with
4 GB of graphics memory and 8 GB of RAM. The model, consisting of 225 layers and
11,138,309 parameters, demonstrated efficient computation, achieving a GFLOPs value of
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28.7. The evaluation process encompassed various metrics to assess the model’s effective-
ness in detecting obstacles.

Table 3. Model parameters.

Parameters Value

Model layers 225
Model parameters 11,138,309

Gradients 11,138,293
GFLOPs 28.7

5.3. Analysis of Results

The Yolov8-based training graphs with (a) 100 epochs and (b) 150 epochs are depicted
in Figures 8 and 9, showing that the best results are obtained at training step 111 for the
proposed scheme. Thus, the decision to train for 150 epochs is based on the observed
performance, the early stopping mechanism, and the best results found in 111 iterations.
Further, the proposed YOLOv8 exhibits a recall of 78.2%, a precision value of 89.99%, and a
mAP of 87.4% when trained with 150 epochs.

Figure 8. YOLOv8-based training graph with 100 epochs.

Figure 9. YOLOv8-based training graph with 150 epochs.

The testing performance of the proposed obstacle detection based on the YOLOv8
model is compared with the other existing object detection models, i.e., YOLOv7 [28],
YOLOv5 [24], SSD [35], and Faster-RCNN [34]. The performance is analyzed for all classes
with different iteration steps with our own datasets, as shown in Table 4. As the detector
learns on the validation set, the mAP@0.5 (average mean average precision) is tracked
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during the training phase to evaluate performance, where a greater value denotes better
learning. Furthermore, the F1score is calculated from the equation

F1score = (2 × Precision × Recall)/(Precision + Recall) (1)

In all cases, the YOLOv8-based model shows better accuracy, both in the F1score and
mAP@0.5, which are 96% and 89%, respectively. Additionally, the model complexities
for all the models are shown in Table 4, where the YOLOv7 used the highest number of
trainable parameters among all models, which leads to lower generalization capacity.

Table 4. Testing performance of YOLOv8 with YOLOv7, YOLOv5, SSD, and Faster-RCNN.

Model Epoch Class Trainable
Parameters F1score mAP@0.5

Proposed
YOLOv8 100 All 25.9M 0.92 0.75

Proposed
YOLOv8 200 All 25.9M 0.96 0.89

YOLOv7 [28] 100 All 36.9M 0.87 0.72
YOLOv7 [28] 200 All 36.9M 0.89 0.78
YOLOv5 [24] 100 All 21.2M 0.91 0.81
YOLOv5 [24] 200 All 21.2M 0.92 0.85

SSD [35] 100 All 13M 0.81 0.86
SSD [35] 200 All 13M 0.84 0.89

Faster-RCNN
[34] 100 All 19M 0.88 0.85

Faster-RCNN
[34] 200 All 19M 0.90 0.88

Moreover, Figure 10 depicts the confusion matrix diagram at 200 iterations, where
the prediction accuracy is quite high. The confusion matrix is divided into columns and
rows, with each column representing a predicted class and each row representing an actual
class. The prediction accuracy is highest for the car class, which is 94%, and the lowest
predicted accuracy is obtained for the truck class, which is 57%. Thus, the YOLOv8-based
model proved its efficacy with the 200 iteration steps, showcasing its potential for real-time
obstacle detection in wireless sensor networks (WSNs) aided by UAVs in rigorous testing
and analysis.

5.4. Visualization

The model training was conducted for a total of 200 epochs. Each epoch represents a
complete iteration through the entire training dataset. The training process involves updat-
ing the model’s parameters based on the calculated loss and gradients. The model stops at
161 epochs because the best results were found in 111 steps. Thus, the same results repeat
for 50 steps, as we have considered the patience parameters to be 50, and, at 161 iterations,
the training is stopped. The model training process is completed in approximately 1.843 h.
The duration may vary depending on the computational resources and hardware used for
training. Some randomly detected obstacles are shown in Figure 11, where training steps
are stopped at 161 iterations and the detection accuracy is highest. Furthermore, Figure 12
shows some sample detected images based on the proposed YOLOv8 model for multiple
obstacles in one frame.
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Figure 10. Confusion matrix diagram for 200 epochs.

Figure 11. Testing performance for random data.
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Figure 12. Examples of multiple detected images in one frame using the YOLOv8-based model.

The individual detection accuracies for YOLOv8, YOLOv7, YOLOv5, SSD, and Faster-
RCNN in 200 training steps are shown, respectively, in Figure 13, considering all the classes.
In the case of the building class, Figure 13 shows that the detection accuracies are 96%, 90%,
91%, 93%, and 95% for the YOLOv8, YOLOv7, YOLOv5, SSD, and Faster-RCNN models,
respectively. Similarly, for the tree class, the detection accuracies are 91%, 86%, 90%, 90%,
and 91%. For the car class, they are 90%, 86%, 83%, 83%, and 90%. For the bus class, they
are 95%, 89%, 94%, 94%, and 91%. For truck, they are 94%,91%, 91%, 91%, and 92%. For
person, they are 88%, 92%, 90%, 90%, and 92%. Finally, for other obstacles, they are 97%,
84%, 81%, 81%, and 95%, for the YOLOv8, YOLOv7, YOLOv5, SSD, and Faster-RCNN
models, respectively. Thus, for all classes, in most cases, the detection accuracy is higher
in the proposed YOLOv8-based obstacle detection model compared to the other YOLOv7,
YOLOv5, SSD, and Faster-RCNN models with 200 epochs.

Figure 13. Cont.
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Figure 13. Sample detected images for YOLOv8, YOLOv7, YOLOv5, SSD, and Faster-RCNN,
respectively.

6. Conclusions

In this study, a YOLOv8-based obstacle detection framework is proposed for a UAV-
aided data collection scheme in a WSN environment. This work focused on obstacle
detection based on aerial photography from UAVs. The system includes multiple UAVs,
multiple groups of sensors, and numerous obstacles, wherein UAVs collect data from a
group of sensors while avoiding all obstacles in their path. The UAVs captured images or
videos while they were traveling to collect data from the sensors. Then, the UAV aerial
images and videos are processed using image processing tools, i.e., data augmentation,
resizing, and labeling. After that, based on the processed data, the UAVs are trained
using the YOLOv8-based model to detect obstacles in their traveling tour for both 100 and
150 iterations, as shown in Figures 8 and 9. The best results are found after 111 iterations,
with recall value of 78.2%, precision value of 89.99%, and 87.4% mAP. On the other hand,
the predicted value in the confusion matrix shown in Figure 10 is quite high for all type
of obstacles. The evaluation results show that YOLOv8 performs better than YOLOv7,
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YOLOv5, SSD, and Faster-RCNN in different scenarios, and the detection accuracy is also
higher in YOLOv8 for different sample test images, as shown in Figure 13.

Seven types of obstacles are considered in this work. In a real-world scenario, when a
UAV collects data in WSNs, the obstacles can be many other types than these seven types,
which is a limitation of this work. Generally, this project intends to train a UAV to detect
obstacles in its traveling path and make the UAV operation more efficient. In future work,
we intend to train the UAV with bigger datasets. We also intend to solve the problem of
avoiding obstacles on its tour along with the obstacle detection problem using a machine
learning-based (i.e., a reinforcement learning-based) UAV path-planning approach.
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