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Abstract: In this paper, we propose an aerial images stitching method based on an as-projective-as-
possible (APAP) algorithm, aiming at the problem artifacts, distortions, or stitching failure due to
fewer feature points for multispectral aerial image with certain parallax. Our method incorporates
accelerated nonlinear diffusion algorithm (AKAZE) into APAP algorithm. First, we use the fast and
stable AKAZE to extract the feature points of aerial images, and then, based on the registration model
of the APAP algorithm, we add line protection constraints, global similarity constraints, and local
similarity constraints to protect the image structure information, to produce a panorama. Experi-
mental results on several datasets demonstrate that proposed method is effective when dealing with
multispectral aerial images. Our method can suppress artifacts, distortions, and reduce incomplete
splicing. Compared with state-of-the-art image stitching methods, including APAP and adaptive
as-natural-as-possible image stitching (AANAP), and two of the most popular UAV image stitch-
ing tools, Pix4D and OpenDroneMap (ODM), our method achieves them both quantitatively and
qualitatively.

Keywords: aerial image; stitching model; feature point extraction; multispectral; image mosaic

1. Introduction

At present, when UAVs perform aerial photography in low altitude areas, the field of
view is relatively small, thus the captured aerial images cannot contain all the information
needed for research. In order to obtain a high-resolution panoramic image, single aerial im-
ages are stitched into a wide field of view aerial panorama [1], which provides convenience
for the research in meteorological, geological survey, and other fields. Therefore, it is of
great significance to carry out the research of UAV aerial image mosaic.

During aerial photography, the UAVs shake due to air flow and other environmental
factors, resulting in certain parallax of adjacent aerial images. In this case, if only a single
homography matrix is used to align the adjacent images, it is easy to cause the problems
of misalignments, artifacts, or due to fewer feature points, leading to mosaic failure of
multispectral aerial images. In view of the above problems, we propose an improved APAP
image mosaic method, which can stitch seamlessly multispectral aerial images.

2. Related Work

The current aerial image mosaic methods are generally divided into two categories,
namely, image feature based stitching method and UAV position and attitude information
based stitching method [2]. Ruizhe Shao et al. proposed a fast UAV image stitching method
that uses the position and attitude information of UAV images to improve the speed of
image stitching [3]. This method can quickly find several anchor points to match to stitch
images. Compared with the most advanced methods, this method reduces the time cost,
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but when position and attitude information of aerial images is not available, it cannot be
applied. Several authors [4–6] proposed UAV aerial images mosaic methods based on SURF,
SIFT [7–9] or KAZE features. Approach [4] is limited by the time cost of feature points
extraction. Methods [5,6] suffer from the problems of ghosting and blurring for parallax
image mosaics. In order to improve the efficiency and accuracy of aerial image stitching,
Huang et al. [10] proposed to use accelerated nonlinear diffusion (AKAZE) algorithm
to match the features of aerial images, and then use the image registration model of As-
Projective-As-Possible Image Stitching (APAP) [11] to align aerial images, and finally use
Laplace Pyramid Fusion Algorithm [12] to blend overlapping regions. If the error is not
properly controlled, the method [10] will cause overall distortions of the mosaic image
when the number of UAV aerial images to be stitched is large. While considering improving
image alignment, more and more scholars focus on reducing the projection distortion of
nonoverlapping regions. Li [13] and Xiang [14] proposed to protect non-overlapping
regions to ensure the final mosaic panoramic image more natural.

When most algorithms eliminate the projection distortion of non-overlapping regions,
meanwhile, they also destroy the structure information in the images, resulting in the
discontinuity of the transition from the overlapping to the non-overlapping regions.

The major work of this paper is as follows

• Align the aerial images with AKAZE algorithm, which takes into account the reg-
istration efficiency and preserves the boundary of the region in the image while
suppressing noise.

• Introduce the local and the global similarity constraints and focus on the transition
from overlapping regions to non-overlapping regions during the registration process.

• Introduce the line protection constraint to deal with the projection distortion of
nonoverlapping areas, moreover the geometric structure of the image is also concerned.

3. Enhanced Image Mosaic Method Based on APAP

APAP algorithm can solve the problem of artifacts caused by parallax of aerial images,
so we propose an aerial image registration approach with improved APAP mesh warp.
The algorithm flow is shown in Figure 1. First, preprocess the aerial image, and then
extract the feature points of the aerial image through the fast and stable AKAZE algorithm
instead of the SIFT algorithm. Then, incorporate the APAP algorithm and improve it. In
the registration process, add local and global similarity constraints to reduce the global
projection distortion as much as possible. Furthermore, the straight line of the images is
detected, and the line protection constraint is added to ensure the structural information of
the images to increase the naturalness of panorama. The over overlapped images are not
used to create the results. Finally, generate mosaic panoramic image.

1. AKAZE module
KAZE feature is one of most popular multi-scale two-dimensional feature detection

and description algorithm in nonlinear scale space [15]. The traditional method is to detect
and describe features at different scales by constructing or approximating the Gaussian
scale space of the image. However, Gaussian blur does not retain the natural boundary
of the object, and smoothing processing is carried out in detail and noise, reducing the
positioning accuracy and uniqueness. The larger the Gaussian blur, the greater the loss
of local area detection features in the rough scale space. KAZE uses nonlinear diffusion
filtering [16,17] to detect and describe two-dimensional features in the nonlinear space,
so that the fuzzy part can adapt to the image data, reduce noise, and moreover retain the
boundary of the object and obtain uniqueness and positioning accuracy.



J. Imaging 2023, 9, 5 3 of 12J. Imaging 2023, 9, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. Flow chart of aerial image stitching. 

1. AKAZE module 
KAZE feature is one of most popular multi-scale two-dimensional feature detection 

and description algorithm in nonlinear scale space [15]. The traditional method is to detect 
and describe features at different scales by constructing or approximating the Gaussian 
scale space of the image. However, Gaussian blur does not retain the natural boundary of 
the object, and smoothing processing is carried out in detail and noise, reducing the posi-
tioning accuracy and uniqueness. The larger the Gaussian blur, the greater the loss of local 
area detection features in the rough scale space. KAZE uses nonlinear diffusion filtering 
[16,17] to detect and describe two-dimensional features in the nonlinear space, so that the 
fuzzy part can adapt to the image data, reduce noise, and moreover retain the boundary 
of the object and obtain uniqueness and positioning accuracy. 

AKAZE is an accelerated version of KAZE feature, which uses nonlinear diffusion 
filtering to build the scale space, introduces an efficient improved local difference binary 
descriptor (M-LDB), and the descriptor obtained through the AKAZE feature algorithm 
has rotation invariance, scale invariance, illumination invariance [18–20]. The AKAZE de-
tector is a determinant based on the Hessian matrix. The Scharr filter is used to improve 
the rotation invariance quality. The maximum value of the detector response in the spatial 
position is picked up as a feature point, which makes the fuzzy local adaptive feature 
points in the image. The boundary of the area in the subject image is retained while re-
ducing noise. Compared with SIFT and SURF algorithms, AKAZE algorithm is faster. 

2. Global similarity constraint 
In order to reduce the distortions in the process of image registration, global similar-

ity constraint is added. If there is no global similarity constraint, the final stitching results 
may be skewed and deformed. We adopt the method in [21] to compute the global simi-
larity constraint. Assume that the scale factor is and rotation angle 𝜃  have been deter-
mined for 𝐼 , the global similarity constraint can be expressed as 𝜑 (𝑉) = ∑ ∑ 𝑤(𝑒 ) (𝑐(𝑒 ) − 𝑠 𝑐𝑜𝑠 𝜃 ) + (𝑠(𝑒 ) − 𝑠 𝑠𝑖𝑛 𝜃 )∈ . (1) 

Among them, 𝑉 represents all grid points, 𝐸  represents the edge of image 𝐼  grid, 𝑐(𝑒 ) and 𝑠(𝑒 ) are the coefficients of similar transformation, and 𝑤(𝑒 ) is the weight 
function, which assigns more weight to the mesh farther from the overlapping area. Align-
ment items play an important role in overlapping areas, for the part far from the overlap-
ping area, because there is no alignment constraint, similarity experience is more im-
portant. 

Figure 1. Flow chart of aerial image stitching.

AKAZE is an accelerated version of KAZE feature, which uses nonlinear diffusion
filtering to build the scale space, introduces an efficient improved local difference binary
descriptor (M-LDB), and the descriptor obtained through the AKAZE feature algorithm
has rotation invariance, scale invariance, illumination invariance [18–20]. The AKAZE
detector is a determinant based on the Hessian matrix. The Scharr filter is used to improve
the rotation invariance quality. The maximum value of the detector response in the spatial
position is picked up as a feature point, which makes the fuzzy local adaptive feature points
in the image. The boundary of the area in the subject image is retained while reducing
noise. Compared with SIFT and SURF algorithms, AKAZE algorithm is faster.

2. Global similarity constraint
In order to reduce the distortions in the process of image registration, global similarity

constraint is added. If there is no global similarity constraint, the final stitching results may
be skewed and deformed. We adopt the method in [21] to compute the global similarity
constraint. Assume that the scale factor si and rotation angle θi have been determined for
Ii, the global similarity constraint can be expressed as

ϕg(V) = ∑N
i=1 ∑ei

j∈Ei
w(ei

j)
2[
(c(ei

j)− si cos θi)
2
+ (s(ei

j)− si sin θi)
2]

. (1)

Among them, V represents all grid points, Ei represents the edge of image Ii grid, c(ei
j)

and s(ei
j) are the coefficients of similar transformation, and w(ei

j) is the weight function,
which assigns more weight to the mesh farther from the overlapping area. Alignment items
play an important role in overlapping areas, for the part far from the overlapping area,
because there is no alignment constraint, similarity experience is more important.

3. Local similarity constraint
To reduce overall shape distortion, ensure that overlapping and non-overlapping areas

are transformed similarly, the transformation from overlapping regions gradually transits
to non-overlapping regions, and the local similarity constraint expression is

ϕl(V) = ∑N
i=1 ∑(j,k)∈Ei

‖(ṽi
k − ṽi

j)− Si
jk(v

i
k − vi

j)‖
2
. (2)

Among them, vi represents the point of image Ii grid, vi
j represents the position of

original image grid points, and ṽi
j represents the position of deformed grid points. Si

jk is
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the similarity transformation of edge (j, k). We use the similarity transformation equation
of [22] to calculate Si

jk.
4. Line protection constraint
When the scene in the image is not in a plane, the structure information in the image

may change significantly by adding a similarity constraint, which affects the subsequent
splicing effect. In order to protect the structure of lines in the image, the line protection
constraint is introduced into the geometric constraint of overlapping area alignment. We
adopt the method in [23] to compute line protection constraint. First, select the local
line segments in the image, and then sample them. The line protection constraint can be
expressed as

ϕl(V) = ∑lk∈L ∑mi∈Mk

Si
‖v′(m1)− v′(m0)‖

. (3)

Among them, L is the collection of collected line segments, m0 and m1 are the two
endpoints of the sampled line segments, v′(mi) is the coordinate of the point mi, and Si
is the quadrilateral area formed by the vector mi −m0 and the vector m1 −m0. Si can be
computed as

Si = ‖
(
v′(mi)− v′(m0)

)(
v′(m1)− v′(m0)

)
‖. (4)

Based on global, local similarity, and line protection constraints, we construct the cost
function to estimate the quality of the deformation mesh. The cost function is

f (V) = α1 ϕg(V) + α2 ϕl(V) + α3 ϕll(V). (5)

Among them, α1, α2, and α3 are weight coefficients of three constraints. We set α1, α2,
and α3 to 1, 1, and 1.5, respectively. Our goal is to minimize the cost function to obtain the
optimal vertex coordinates of deformable surface mesh. Since all terms in the cost function
are quadratic terms, a sparse linear solver is used to solve the optimization problem, finally
the optimal vertex set is obtained.

4. Experimental Results

In order to verify the effectiveness of proposed aerial image mosaic method, we
conducted three groups of experiments. In the first group of experiments, we conducted
ablation experiments and compared the image mosaic results of the APAP, AANAP [24]
and our method. In the second group of experiments, we compared the stitching results
of our method and one of current the most popular UAV image stitching tools, ODM, on
color aerial images. In the third group of experiments, we compared the stitching results of
the ODM, Pix4D, and our methods on BGNIR multispectral aerial images.

Hardware and software environment configuration in the experiments:
The server: Intel (R) Core (TM) i9-7960X CPU @ 3.30 GHz, Ubuntu 20.04, 64-bit operat-

ing system, 32 GB running memory, NVIDIA Corporation GV100 [TITAN V], Python 3.6.
Local computer: Intel (R) Core (TM) i7-10750H CPU @ 2.60 GHz, Windows10, Visual

C++11, OpenCV 2.4.0.

4.1. Ablation Experiments

In order to verify the effectiveness of the global similarity constraint, local similarity
constraint and line protection constraint in our method, we have conducted ablation
experiments on the existing forest, road, and bridge dataset. The results are provided in
Figure 2. The white dotted boxes in stitching result images mark parts of the overlapping
region. The small image on the right side of each result image is a part of enlarged
region in white dotted boxes. The APAP method is the baseline, and the APAP results are
shown in Figure 2a–c with the obvious artifacts and severe distortions in the overlapping
areas. The results of the APAP with local and global similarity constraints are shown in
Figure 2d–f. The results of Figure 2d,e show distortion issues are improved, but artifacts
are non-negligible. The result of Figure 2f still shows artifacts and distortions. The results
of the proposed method, incorporate the APAP with local, global similarity constraints
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and line protection constraints, show artifacts and distortions are effectively suppressed in
overlapping area in Figure 2g–i.
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Figure 2. Ablation experiments on Forest, Road, and Bridge dataset. (a–c) show stitching results
of the APAP. (d–f) show stitching results of the APAP with local and global similarity constraints.
(g–i) show stitching results of the APAP with local, global similarity constraints and line protection
constraints (One area of each result is enlarged in the figure).

We have computed the peak signal to noise ratio (PSNR), structural similarity (SSIM),
and root mean square error (RMSE) of the enlarged areas in Figure 2. The best results are
obtained when the APAP combines local, global similarity constraints and line protection
constraints. The quantitative data are shown in Table 1. The ablation experiment proves
that our method is effective.
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Table 1. Numerical Results of Ablation Experiment.

Images
Constraints Evaluation Data

Local
Similarity

Global
Similarity

Straight Line
Protection PSNR SSIM RMSE

Forest image
\ \ \ 13.542 0.119 2.876√ √

\ 15.454 0.130 1.768√ √ √
15.491 0.146 1.714

Road image
\ \ \ 10.100 0.044 6.353√ √

\ 10.346 0.043 6.004√ √ √
11.601 0.060 4.497

Bridge image
\ \ \ 15.781 0.237 1.718√ √

\ 15.368 0.255 1.889√ √ √
15.886 0.267 1.677

We also have conducted comparative experiments of proposed algorithm on the
images with straight lines to further verify the effect. The compared methods include
the APAP and AANAP. The results of the APAP, AANAP, and proposed methods are
shown in Figure 3. Two areas of each result have been enlarged. For the results of the
APAP and AANAP methods, the artifact and perspective distortion on the straight line and
pedestrians on the road are non-negligible. However, our method can successfully mitigate
the artifact and perspective distortion.
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Figure 3. Comparison of Image Mosaic Results. (a–c) show stitching results of the APAP, AANAP,
and ours separately. (a) Stitching result of the APAP; (b) Stitching result of the AANAP; (c) Stitching
result of Ours (Two areas of each result are enlarged in the figure).

4.2. Construction of UAV Aerial Photography Dataset

We also obtained the dataset from UAV aerial photography. The UAV aerial image
dataset includes aerial images in spring, summer, autumn, and BGNIR multispectral aerial
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images. Figure 4a–c show some real color aerial images, and Figure 5a–c show some real
BGNIR multispectral aerial images.
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4.3. Color Aerial Image Stitching

We used ODM and our method to conduct color aerial image stitching experiment,
stitching 20 adjacent frames into a panoramic image. Experiments were conducted on the
images of spring, summer, and autumn in the dataset. The experimental results are shown
in Figure 6.
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(c) Panoramas for ODM and ours on autumn aerial images.

The stitching results of ODM and our methods in Figure 6a look well visually. The
splicing effect of the two splicing methods on the spring aerial images is similar in Figure 6a.
We use white dotted boxes to tag the stitching results of lines in panoramas for ODM and
our methods on the summer and autumn aerial images in Figure 6b,c. The results of ODM
method in Figure 6b,c show obvious artifacts and distortions of straight-line information
due to parallax exist. In contrast, the results of our method in Figure 6b,c can protect the
lines in the images and successfully handle the parallax issue. Our method works well and
maintains the integrity of straight-line contents.

We quantitatively analyze the two stitching methods using PSNR, SSIM, and RMSE.
The specific data are in Tables 2–4.

Table 2. PSNR values of two methods on color aerial image mosaic.

Methods Spring Summer Autumn

ODM 14.6241 15.0827 14.3579
Ours 14.6612 16.8629 16.2582

Table 3. SSIM values of two methods on color aerial image mosaic.

Methods Spring Summer Autumn

ODM 0.1722 0.2057 0.2019
Ours 0.2246 0.3297 0.2051
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Table 4. RMSE values of two methods on color aerial image mosaic.

Methods Spring Summer Autumn

ODM 2.242 2.379 2.384
Ours 2.223 1.339 1.539

PSNR is an evaluation index based on pixel error, and the higher the peak signal to
noise ratio, the better the method used. From the comparison of experimental data in
Table 2, the PSNR value of our method is greater than that of ODM method.

The larger the SSIM value, the smaller the difference between the output image and
the undistorted image, that is, the better the image quality. From the experimental data in
Table 3, our method has less distortion and better stitching effect.

RMSE is an evaluation index to judge the image quality. The smaller the value, the
higher the registration accuracy. From the experimental data in Table 4, the quality of our
method is better than that of ODM method.

4.4. BGNIR Multispectral Aerial Image Stitching

Multispectral image refers to the acquisition of multiple single bands of ground object
radiation, and the obtained data will contain spectral information of multiple bands.

In this part of the experiment, ODM, Pix4D, and our method are employed to stitch
the BGNIR multispectral aerial images, respectively. Through the experiment, the ODM
method cannot stitch without pose information, and the ODM with pose information could
stitch successfully, but the effect was relatively poor. Similarly, the Pix4D method also
cannot stitch without pose information, and the Pix4D with pose information can stitch, but
the results are the worst of all methods. Some experimental results are shown in Figure 7.
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Figure 7. Stitching results of ODM, Pix4D, and proposed method on BGNIR multispectral aerial image
dataset. (a) Panoramas for ODM, Pix4D, and ours on blue spectrum aerial images; (b) Panoramas for
ODM, Pix4D, and ours on green spectrum aerial images; (c) Panoramas for ODM, Pix4D, and ours on
near infrared spectral aerial images.
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From Figure 7, we find that our method provides a natural look to the panorama even
position and attitude information of UAV are not used. There are no visible parallax errors
and perspective distortions. In contrast, obvious distortions, artifacts, and information loss
occur in the results of ODM and Pix4D with position and attitude information.

Similarly, we use PSNR, SSIM, and RMSE to quantitatively analyze the results of
the three methods in BGNIR multispectral dataset. Due to the stitching results of Pix4D
incomplete, we cannot calculate PSNR, SSIM, and RMSE values of them. The specific data
are shown in Tables 5–7.

Table 5. PSNR values of ODM and our methods on BGNIR multispectral aerial image mosaic.

Method Blue Spectrum Green Spectrum Near Infrared Spectrum

ODM 13.6184 14.3390 14.3967
Ours 18.1874 18.4552 14.7783

Table 6. SSIM values of ODM and our methods on BGNIR multispectral aerial image mosaic.

Method Blue Spectrum Green Spectrum Near Infrared Spectrum

ODM 0.4596 0.4285 0.2148
Ours 0.5806 0.5914 0.3210

Table 7. RMSE values of ODM and our methods on BGNIR multispectral aerial image mosaic.

Method Blue Spectrum Green Spectrum Near Infrared Spectrum

ODM 2.826 2.394 2.363
Ours 1.066 1.029 2.164

From the experimental data in Tables 5–7, our method is superior to ODM in PSNR,
SSIM, and RMSE values.

4.5. Running Time

The stitching running time of ODM, Pix4D, and our method is calculated, respectively.
The results are shown in Table 8. The speed of our method is relatively fast, whether in
color aerial images or BGNIR multispectral aerial images. In the process of color aerial
image stitching, ODM and our methods can perform stitching without position and attitude
information, and the ODM splicing speed is a little slower. When ODM and Pix4D methods
do not use position and attitude information on BGNIR multispectral aerial image, the
stitching fails, and the splicing time with position information is about twice that of our
method. Therefore, our method is the fastest of threes methods.

Table 8. Stitching time of two methods on aerial images mosaic (s).

Methods Spring Summer Autumn Blue
Spectrum

Green
Spectrum

Near Infrared
Spectrum

ODM 34.33 44.87 38.64 63.45 72.43 70.36
Pix4D \ \ \ 64.02 113.97 61.01
Ours 21.99 35.15 25.95 30.23 37.16 37.18

5. Discussion

In order to solve the problems of artifacts and distortions in the mosaic of aerial images
with certain parallax, and mosaic failure of multispectral aerial images due to fewer feature
points, we use AKAZE algorithm to extract feature points of aerial images, and add line
protection constraints, global, and local similarity constraints to protect image structure
information based on APAP, and finally obtain panoramic aerial image. Our method
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has good results when stitching real color aerial images and BGNIR multispectral aerial
images. The experimental results demonstrate that our method performs well in artifact
and distortion suppression and stitching time. The proposed stitching method has practical
application value in the field of land resource survey and environmental monitoring.
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