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Abstract: During an Over-the-Board (OTB) chess event, all players are required to record their
moves strictly by hand, and later the event organizers are required to digitize these sheets for official
records. This is a very time-consuming process, and in this paper we present an alternate workflow of
digitizing scoresheets using a BiLSTM network. Starting with a pretrained network for standard Latin
handwriting recognition, we imposed chess-specific restrictions and trained with our Handwritten
Chess Scoresheet (HCS) dataset. We developed two post-processing strategies utilizing the facts
that we have two copies of each scoresheet (both players are required to write the entire game),
and we can easily check if a move is valid. The autonomous post-processing requires no human
interaction and achieves a Move Recognition Accuracy (MRA) around 95%. The semi-autonomous
approach, which requires requesting user input on unsettling cases, increases the MRA to around
99% while interrupting only on 4% moves. This is a major extension of the very first handwritten
chess move recognition work reported by us in September 2021, and we believe this has the potential
to revolutionize the scoresheet digitization process for the thousands of chess events that happen
every day.

Keywords: chess scoresheet recognition; offline handwriting recognition; convolutional bilstm
network; latin handwriting recognition; handwritten chess dataset; chess moves digitization

1. Introduction

Chess is the one of the most popular board games in the world. Based on the surveys
of the Agon Ltd. (2012), approximately 605 million adults play chess regularly [1], and this
number has been exponentially rising since then. Although there are different variants of
chess, most of the time it is played between two players. The first player plays with white
pieces and the second player with black pieces. In a game, both players make their moves
with their pieces in alternate turns until the game ends. During an Over-the-Board (OTB)
chess event, both of these players for every match are generally required to record their
own and their opponent’s moves on a chess move recording sheet, or chess scoresheet,
by hand. These moves are usually recorded in a Standard Algebraic Notation (SAN) [2].
This is a standard method for recording and describing the moves based on a coordinate
system to uniquely identify each square on the chessboard. This particular move recording
standard is the most widely used chess notation in the world, adopted by almost all the
chess international organization, including the United States Chess Federation (USCF) and
the Fédération Internationale des Échecs (FIDE), which oversee all world-class competitions.
Furthermore, most books, magazines, newspapers, and online articles use SAN to report
chess games and events. In English-speaking countries, a descriptive notation for chess
moves used to be popular until about 1980. While a few players still use the descriptive
notation, it is no longer recognized by FIDE [3].
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The chess scoresheet contains a sequential move history of the entire game along with
information about the players, game format, results, and other details like event name,
date, board number, etc. They are useful to keep as official game records, and to settle any
disputes that may arise, hence their popularity in competitive settings. Moves are never
recorded digitally (unless it is an online event) in an attempt to prevent computer assisted
cheating, which is a big issue in the world of chess. This scoresheet system, while secure,
leaves the event organizers with hundreds of scoresheets which must be manually digitized
into a Portable Game Notation (PGN) file. PGN is a standard plain text format (filename
extension is .pgn) for recording chess games and other related information, which allows
an easy read by humans as well as easy parsing and generation by computer programs [4].
This is the most widely accepted file format for a chess game and is accepted by the majority
of the chess programs and engines today. However, the process of converting handwritten
scoresheet pages received from the players to PGN files requires extensive time and labor,
as organizers must not only type each move, but in the case of a conflict or illegible writing,
play out the game on a chess board to infer moves. This is also a stressful and error-prone
thing to do, since many conflicts can not easily be fixed without talking with the players.
As an alternative to this legacy approach, we propose a deep neural network architecture
to perform automatic conversion from pictures of these scoresheets to a PGN text file. In
most practical cases, a cellphone camera is an extremely convenient way of collecting data,
much more so than a flat-bed scanner. Keeping this in mind, we developed our detection
system, from data acquisition to training and testing, to perform digitization on cellphone
camera photos. Figure 1 shows an OTB chess event and potential workflows for manual
typing and proposed automatic digitization.

Figure 1. Schematics of an OTB chess event and scoresheet digitization process. Top images show the
record keeping of moves and collected scoresheets from the players. Bottom left shows a potential
workflow of manual typing and occasional necessity of a chess board or calling out the players for
confusing cases. Bottom right shows the proposed automatic workflow of scoresheet digitization
which is mostly based on taking pictures with a mobile camera.
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This automatic digitization of chess games from scoresheets also provides a benefit
for the players. Often, professional and serious chess players like to analyze all of their
games later, on their own or with their other chess players or coaches or with a computer
engine. This process helps players to track their growth over time, patterns of common
mistakes, missed opportunities and scope of improvement in strategies. Since the process
of getting a scoresheet and digitizing manually takes a lot of time and effort, many players
tend not to go through this crucial self evaluation and reflection stages of their own OTB
games. Therefore, an automated process of digitizing a chess game from scoresheet images
not only helps the chess event organizers to officially keep their records, but also helps
every ambitious chess player who wants to improve their chess skills by studying their
own games.

1.1. Distinguishing Features of Chess Scoresheets

In theory, chess moves could be recognized with a standard offline Latin handwriting
recognition system, since chess universally uses Latin symbols. This generic approach
has its shortcomings. Chess scoresheets offer many distinguishing features that we can
leverage to significantly increase move recognition accuracy, including:

• Two scoresheets for each match are available since both players write on their own
copy of all the moves played. These copies can be cross referenced for validation.

• Chess moves use a much smaller character set than the entire Latin alphabet, allow-
ing only 31 characters as opposed to the 100+ ASCII (American Standard Code For
Information Interchange) characters. Table 1 summarizes the all possible chess move
formats allowed in SAN, and Table 2 shows some examples of how they work.

• Traditional post-processing techniques (spell checking, Natural Language Processing
or NLP, etc.) do not work. Instead, chess moves can be ruled valid or invalid based on
SAN syntax errors or illegality dictated by the game rules.

• Handwritten moves are contained inside well defined bounding boxes (Figures 2–4)
with some natural degrees of shift; therefore, the process of individual move segmen-
tation is much simpler than in unconstrained handwriting.

Furthermore, the vast majority of chess moves are 2–5 characters long with only a
few rare exceptions, and none are longer than 7 characters. These differences between
the generic Latin script and handwritten chess moves make it worthwhile to approach
this problem separately, while invoking the traditional wisdom of offline handwriting
recognition.

Table 1. Standard Algebraic Notation (SAN) for chess moves. Actual notations are shown in orange
and the corresponding descriptions are shown in black. Short and long castles (not included in the
table) are denoted by O-O and O-O-O respectively [5].

Piece
Disambiguating

File/Rank
If

Capture
Destination

File
Destination

Rank
If

Promotion
If Check
or Mate

Pawn ∼ (none)
King ∼ K

Queen ∼ Q
Rook ∼ R

Bishop ∼ B
Knight ∼ N

Either from a–h
or from 1–8 for
disambiguating

File or Rank
respectively

X
One choice
from a–h

One choice
from 1–8

= followed
by the Piece
Q, R, B or N

Check ∼ +
Mate ∼ #
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Table 2. Example chess moves with their descriptions and how they are interpreted in SAN for-
mat. Dis. or disambiguation file or rank is used only when multiple pieces can move to the same
destination square.

Sample
Move

Move
Description

Piece
Name

Dis.
File

Dis.
Rank

Captures
on

Dest.
Square

Promotion
Piece

Check
or Mate

Bf3 Bishop to f3 B ∼ ∼ ∼ f3 ∼ ∼

R2f4 Rank 2 Rook to f4 R ∼ 2 ∼ f4 ∼ ∼

Bxd5
Bishop

captures on d5
B ∼ ∼ x d5 ∼ ∼

Ref8 e-file Rook to f8 R e ∼ ∼ f8 ∼ ∼

Qh4f2 h4 Queen to f2 Q h 4 ∼ f2 ∼ ∼

e8=R
Pawn to e8,

promotes to Rook
∼ ∼ ∼ ∼ e8 =R ∼

e5 Pawn to e5 ∼ ∼ ∼ ∼ e5 ∼ ∼

Qxf7#
Queen captures on
f7 and Checkmate

Q ∼ ∼ x f7 ∼ #

Bxc3+
Bishop captures on c3

and Check
B ∼ ∼ x c3 ∼ +

dxe5
d-file Pawn

captures on e5
∼ d ∼ x e5 ∼ ∼

O-O Short Castle ∼ ∼ ∼ ∼ ∼ ∼ ∼

O-O-O Long Castle ∼ ∼ ∼ ∼ ∼ ∼ ∼

1.2. Related Works

This paper is an extended version of our formal approach presented in [5], and
we found no other academic journal or conference publications for handwritten chess
scoresheet recognition at this time of writing. There are some preliminary level works in
the form of undergraduate or graduate thesis reports [6,7], but they are not quite well-
presented or finished enough to be comparable with our approach. In addition, there are
some works on typographical chess move reading from books or magazines (e.g., [8]) which
propose ideas for issues like layout fixing and semantic correction, but do not address
the problems that can arise from a handwritten scoresheet. Services for digitizing chess
scoresheets such as Reine Chess [9] currently exist, but they require games to be recorded
on their proprietary scoresheets with very specific formats; they cannot be applied to
existing scoresheet formats, and would require tournaments to alter their structure, causing
a variety of problems. Figure 2 shows sample scoresheets from Reine Chess and from a
typical chess event, which demonstrates the differences and limitations of such scannable
solutions in a practical scenario. Scoresheet-specific solutions also offer no solution to
retroactively digitize scoresheets and cannot be easily applied to other documents.

Digitizing chess scoresheets is essentially an offline handwriting recognition prob-
lem, and there are many different ways this problem can be approached. One approach,
known as character spotting, works by finding the locations and classes of each individual
component from a word image. This is a powerful technique but is better suited for more
complicated scripts [10]. Since the chess moves are recorded using a fraction of the Latin
alphabet, a segmentation-free whole word recognition, using tools like Recurrent Neural
Networks (RNN) or Hidden Markov Models (HMM), can be considered more suitable for
this problem. Our choice for this experiment is a convolutional BiLSTM network. BiLSTM
or Bi-directional Long Short Term Memory is a variant of a Recurrent Neural Network
(RNN), which has been proven to be extremely powerful in offline recognition in recent
years. For example, Bruel et al. achieved a 0.6% Character Error Rate (CER) using a BiLSTM
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network for printed Latin text [11]. Shkarupa et al. achieved 78% word-level accuracy
in classifying unconstrained Latin handwriting on the KNMP Chronicon Boemorum and
Stanford CCCC datasets [12]. Dutta et al. were able to achieve a 12.61% Word Error Rate
(WER) when recognizing unconstrained handwriting on the IAM dataset [13]. Ingle et al.
proposed a line recognition based on neural networks without recurrent connections and
achieved a comparable training accuracy with LSTM-based models while allowing better
parallelism in training and inference [14]. They also presented methods for building large
datasets for handwriting text recognition models. In contrast, Chammas and Mokbel used
an RNN to recognize historical text documents demonstrating how to work with smaller
datasets [15]. Sudholt et al. presented a Convolutional Neural Network (CNN), called
Pyramidal Histogram of Characters or PHOCNet, to deploy a query based word spotting
algorithm from handwritten Latin documents [16]. Scheidl et al. demonstrated the benefit
of training an RNN with the Connectionist Temporal Classification (CTC) loss function
using the IAM and Bentham HTR datasets [17].

Figure 2. Sample scoresheets from Reine Chess [9] and from an actual chess event: (a) Reine blank
scoresheet; (b) Reine test scoresheet; (c) sample standard blank chess scoresheet; and (d) sample filled
chess scoresheet.

Pattern recognition systems are never error-free and often researchers propose systems
with human intervention for assistance with certain predictions [18,19]. We also used such
a strategy that we call semi-autonomous post-processing, which looks for manual help
for unresolved cases. Different segmented text recognition approaches for problems like
bank check recognition, signature verification, tabular or form based text identification
are also relevant to our chess move recognition problem. One notable demonstration
for recognizing segmented handwritten text was presented by Su et al. using two RNN
classifiers with Histogram of Oriented Gradient (HOG) and traditional geometric features
to obtain 93.32% accuracy [20].

1.3. Overview of the Presented Approach

This paper presents an end-to end system for offline chess scoresheet recognition with
a convolutional BiLSTM neural network as an alternative to the existing inefficient method
of manual digitization. To accomplish this, we pretrain a deep neural network on an existing
Latin handwriting dataset, IAM [21] and later fine-tune our model with redefined classes
and network size adjustments. Each handwritten move is extracted from its scoresheet
during pre-processing and passed through the network to generate a prediction. We used
post-processing algorithms to restrict the output and improve accuracy, since valid chess
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moves allow only a limited set of letters, numbers, and symbols (Tables 1 and 2) in specific
positions (e.g., moves cannot start with a number, cannot end with a character, etc.). We
also utilized the fact that all moves are not legal from a certain board position; therefore,
a valid notation can still be an illegal move and can be detected if we can keep track of
the pieces on the board. For example, a piece can not move to a square which is already
occupied with a piece of the same color, rooks can not move diagonally and a light square
Bishop can not land on dark square. There are plenty of chess engines available which
already can tell if a move is legal or not. We used one of them, Stockfish 14.1 [22], in
our post-processing. Leveraging the fact that always two scoresheets are available for a
game, we proposed two post-processing mechanisms: an autonomous post-processing
which outputs a final prediction for the text box after cross-checking with the game’s
second scoresheet; and a semi-autonomous post-processing that increases the recognition
accuracy to a near human-level by requesting user input for difficult handwriting samples,
invalid entries and unsettling conflict cases. Although the semi-autonomous correction
is an interrupting process, it can also save hundreds of hours for event organizers and
drastically reduce human labor required for digitizing chess games.

We made the Handwritten Chess Scoresheet (HCS) dataset, which we used for our
experiments, openly accessible to encourage further research and development [23]. This
dataset contains scoresheets from actual chess events digitized with a cellphone camera and
tagged with associated ground truths. This also has some additional data containing only less
frequent chess moves to allow a network to be trained more uniformly. The HCS dataset is
currently the only publicly available chess scoresheet dataset. As this is an extension of our
original work presented in [5], we present the details of our entire approach highlighting the
changes we made and improvements we achieved since our first attempt.

2. Offline Chess Scoresheet Recognition
2.1. Preprocessing

A chess scoresheet has predefined boxes where players enter moves during a game.
While there are different styles of scoresheets, every one that we encountered ordered moves
in essentially the same way: four columns, each representing 30 moves, with columns
and rows separated by solid grid lines. To train our network to recognize these moves,
we developed an algorithm that isolates each move based on those grid lines. First, we
convert our RGB images to gray-scale, and then to binary images using a threshold obtained
using Otsu’s method [24]. Then, we use two long, thin kernels (one horizontal and one
vertical) with sizes relative to input image dimensions, and morphological operations
(erosion followed by dilation) with those kernels to generate an image containing only grid
lines. With this simplified image, we use a border following algorithm [25] to generate a
hierarchical tree of contours. Each contour is compressed into four points, storing only
corners of each quadrilateral. Any contour which is significantly larger or smaller than the
size of a single move-box (again, calculated relative to the total image size) can be ignored.
The final contours are sorted based on their positions relative to one another, and each is
labeled by game, move, and player. Finally, we apply a perspective correction to restore the
original rectangular shape of the move-boxes and crop each of them with a padding on the
top and bottom of 15% and 25%, respectively, since written moves overflow the bottom of
their box more often and more severely than the top. This process is displayed in Figure 3.
We did not pad box sides because chess moves are short, and the players rarely need to cross
the side boundaries. This method of pre-processing is nearly agnostic to scoresheet style
and will work with any scoresheet style, which includes 4-columns and solid grid lines.

With professional settings like chess events, often achieving the highest possible
precision is an absolute priority even if it has to come with a little sacrifice in convenience.
Keeping that in mind, we also developed an alternate four-corner-marking method for
chess move extraction which further minimizes the chances of performance degradation
due to a preprocessing error. With this method, a person needs to mark the four corners
of the moves recording table on a chess scoresheet with red circles. Figure 4 shows the
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workflow of this alternate method. Marking can be done before or after taking the picture.
While this additional process makes the overall scoresheet digitization process a tad slower,
it also increases the recognition accuracy a little more as discussed in Section 4. This is
because, after getting the coordinates of the four corners of the table, the segmentation is
done by perspective correction and then equally dividing the space. This is an optional
process we developed to be used in order to get the best possible recognition performance
out of our system. Although for our dataset, the four-corner-marking method did not
improve the results drastically, it might be more useful in other formats of scoresheets
like those with graphics and text in many different places or poorly captured sample
images where the lines and borders are not well pronounced. This method also provides an
option for chess clubs or organizations to deploy a four-corner-marking on their template
scoresheet to allow a better and faster corner detection, therefore facilitate a more reliable
automatic chess move digitization process.

Figure 3. Stages of move-box extraction: (a) grayscale image; (b) morphological operations to
generate a mask; (c) contour detection and sorting from the mask; (d) sorted contours cropping with
top and bottom padding of 15% and 25%.

Figure 4. Four-corner-marking is an alternate method for preprocessing which requires a person to
highlight the four corners of the move recording table from a chess scoresheet before or after taking
a picture: (a) a sample scoresheet image; (b) marking the four corners of the table with red dots;
(c) perspective correction and equally dividing the enclosed space to extract individual moves.
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2.2. BiLSTM Neural Network Architecture

We used a BiLSTM convolutional neural network as presented in [5] for recognizing
chess moves from the extracted images. This architecture has been previously used by
Shi et al. for image based sequence recognition [26]. The network includes 10 layers,
separated into three functional groups. The first seven layers are convolutional and take in
the gray-scale image of a single move-box, scaled to a resolution of 64 × 256 pixels. These
layers act as feature extractors and convert image data into a feature map. This feature map
removes unnecessary information and creates a sequence input for the recurrent layers.
The recurrent model itself consists of two BiLSTM layers, which take the feature map
and generate a sequence output to a final dense network. The BiLSTM neural network
is a modification of the traditional RNN which takes advantage of hidden memory units
to better process sequence data. The final dense network converts the LSTM sequence
output into a loss matrix. Afterwards, a Connectionist Temporal Classification (CTC) loss
function [27] is applied, which converts this matrix into a string. The CTC loss function and
decoder better estimate the network loss than more general loss functions and allows for
simple repeat errors common to the LSTM layers to be corrected. This loss matrix encodes
a string as a vector of one-hot encoded character vectors, so the final matrix has dimensions
of the number of allowed characters by maximum output length (plus a small padding on
output length for blank characters).

First, we pretrained our network with the IAM dataset [21], one of the most used
collections of unconstrained handwritten English sentences. Figure 5 shows several sample
images from the IAM dataset. Approximately 86,000 words of this dataset were used to
pretrain our network so that it could learn the overall Latin script and later be modified
for chess move recognition. We used the Adam optimizer with a learning rate of 0.0005
for 10 epochs for this pretraining. Adam is a first-order gradient-based optimization of
stochastic objective functions which is computationally efficient and considered well suited
for similar problems [28]. In addition, this process of transfer learning is a widely used
technique which can achieve faster and better network training and is especially useful
when working with a small dataset. While pretraining, the network uses two BiLSTM
layers with 256 hidden units and a dense network which outputs a loss matrix of 81 × 31.
These dimensions allow pretraining on the IAM dataset which has a total of 80 allowed
character classes (entire Latin alphabet, numerals and frequently used symbols) and a
maximum word length of 27.

Figure 5. Sample images from the IAM dataset [21] used for pretraining.

Afterwards, we restructured this pretrained network for chess move recognition. The
SAN format uses 30 allowed characters with a maximum possible move length being 7. To
match with the SAN system, we reduced the BiLSTM layers from 256 hidden units to 64, as
well as re-tuned the final dense layer to output a loss matrix of 30 × 12 instead of 81 × 31.
We trained the network for 50 epochs with the similar settings as our pretraining process.
Figure 6 shows the network with both the pretraining and fine-tuning structures. The
maximum length from the output is slightly overestimated, allowing the network to have
additional characters to compensate for CTC loss ‘blank’ characters and double spotting
of a single character (which frequently occurs with LSTM layers). Since the SAN system
does not include any valid chess moves with adjacent repetition, these extra characters are
completely removed during the decoding phase. The whole experiment was done using
open source API Keras with TensorFlow 2 in the backend.
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Figure 6. Layer graph of the BiLSTM network. Orange and green values show the dimensions
for the pretraining network and our chess move recognition network, respectively. Pooling, batch
normalization, and reshaping layers are not shown.

The choice of BiLSTM network is neither the key of our approach nor the only option
to develop such a handwritten chess move recognition framework. Many other Latin offline
recognition frameworks, such as HMM or Gated Recurrent Unit (GRU) based architectures
should work equivalently well if the output classes are reduced to allow only the valid chess
move symbols. The aim of this research was not to test all possible tools and find the best
fit for this experiment, rather to have a good starting point and fine-tune the recognition
performance by applying chess-specific rules and attributes. The network of our choice,
i.e., the convolutional BiLSTM is considered one of the most powerful tools in offline
handwriting recognition. This is a variant of Recurrent Neural Network (RNN) which is
not susceptible to vanishing gradients. The LSTM works with sequence input and output
data, allowing for variable length moves, which is crucial for a chess game (for example,
both ‘e4’ and ‘Qh4xe1+’ are valid algebraic notation moves). In addition, an LSTM-based
network does not require labeled bounding boxes around individual characters, which
involves a much more intensive ground-truth tagging process. The network’s consideration
of the entire input image and not just a single character allows it to take advantage of
context clues, which are often extremely important when decoding chess moves. If the
network can gain a general understanding of the syntax of algebraic notation (e.g. that
the first characters of a move are often in the form ‘Piece’ ‘a–h’ ‘1–8’, e.g., Nf3), then it can
make much more accurate inferences about the ground truth of an ambiguous character.
The Long Short-Term Memory (LSTM) cells retain information seen earlier in the sequence
more effectively, and the bidirectional LSTM or BiLSTM structure allows the network to
make predictions using information in both the positive and negative time directions. This
bidirectional movement makes inference easier, allowing the network to leverage context
from the entire input as it reads. The GRU networks can function as lighter versions of
LSTMs, since they behave similarly but use fewer trainable parameters; therefore, they are
relatively faster to train [29]. However, we preferred the BiLSTM network because, in most
cases, LSTMs outperforms GRUs in terms of recognition accuracy, which is a key concern
for a framework to be reliable in practical use.

2.3. Post-Processing

Given the availability of two unique scoresheets for each game (one written by each
player), the fixed structure of the algebraic notation for every chess move, and the possibility
to check whether a move is legal by assessing the current board position, we developed
two simple post-processing strategies:

2.3.1. Autonomous System

The autonomous system relies on cross-checking between white and black scoresheets
and spotting invalid notations to improve accuracy. Here, invalid notation refers to a



J. Imaging 2022, 8, 31 10 of 20

syntactic error or an illegal move with respect to game rules. Anything beyond the scope
of acceptable SAN notation (Table 1) is considered as a syntactic error. To spot an illegal
move, we keep the record of the current board position as the system recognizes each
move, and then use an open source chess engine, Stockfish 14.1 [22], to check whether the
predicted move is possible or not. The system compares two predictions for each move
along with their confidence values. The confidence value is calculated as the exponential of
the negative CTC loss between the raw network output and its decoded string [30]. The
system then makes the following decisions:

• If the predictions agree, the system accepts that prediction regardless of their confi-
dence values.

• In case of a prediction conflict where both of the moves are valid, the prediction with
higher confidence score is accepted.

• In case of a prediction conflict where both of the moves are invalid, the prediction
with higher confidence score is accepted.

• In case of a prediction conflict where one of the moves is invalid and one is valid, the
valid prediction is accepted regardless of confidence values.

For example, if the network prediction is ‘NG4’ (invalid) for one sheet and ‘Ng4’
(valid) for the other, the final prediction becomes ‘Ng4’, regardless of their confidence
scores. Alternatively, if both moves were valid (e.g., ‘Ng4’ and ‘Ne4’) or both invalid (e.g.,
‘NG4’ and ‘NG8’), the system then accepts the one with the higher confidence regardless of
their validity. After all predictions of a game, both scoresheets are presented to the user
with confident predictions labeled in blue, lower-confidence predictions highlighted in
pink and invalid or illegal move predictions highlighted in red as shown in Figure 7. We
chose a confidence threshold of 95% in this autonomous approach. This allows the user to
take a brief look after the network generated results and spot obvious issues.

Figure 7. The network output of a scoresheet portion as presented to the user. Low confidence
predictions (<95%) such as ‘Na6’ are presented in magenta, and invalid or illegal moves such as ‘dxe’
are presented in red for quick lookup and correction.

2.3.2. Semi-Autonomous System

To increase accuracy even further, we can leverage the user to provide input on certain
moves where the predictions are likely to be wrong. This allows significant improvements
to accuracy with minimal interruption to the user. As with autonomous post-processing,
we take in two sets of predictions with their respective confidence values, one for the
scoresheet written by each player. We classify each prediction in each set as confident if
it meets a confidence threshold of 90%, valid if a legal move based on the board position
is syntactically correct . In the following cases, the algorithm makes a decision without
interruption:

• If both predictions are the same and valid, and if at least one of them is confident, the
prediction gets accepted.

• If predictions are different, but only one of them is valid and confident, that prediction
gets accepted.
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If neither of these two cases applies, the system then seeks a manual help by interrupting
the recognition process. Things that can cause this user interruption are as follows:

• Zero Match: When none of the predictions are valid and confident at the same time.
• Weak Match: When the predictions are valid and same, but none of them is confident.
• Strong Conflict: When the predictions are different, but both are valid and confident.
• Weak Conflict: When the predictions are valid but different and none of them is

confident.

Figure 8 shows examples of all four possible cases where the semi-autonomous sys-
tem invokes for a human intervention. For the Zero Match case, the move ‘Bd6’ was
not considered valid based on the board position, and the move ‘Bd7’ was valid but not
confident. For the Weak Match example, both predictions were ‘Ra7’ and that was a valid
move. However, none of those predictions were confident. The Strong Conflict example
involves two confident and valid but mismatched predictions of ‘Rd8’ and ‘Re8’. The weak
conflict example shows predictions of ‘Nxf3+’ and ‘Nxg3+’, each with low confidence
values. Although it is possible to have a chess engine assisted suggestion based on the
predictions for all four of these cases, it is much simpler and more reliable to prompt for a
human intervention to resolve the issue. Therefore, while sacrificing a little convenience
in the automation process, our semi-autonomous workflow ensures a much better PGN
conversion. When this interruption occurs, we display the full scoresheets along with the
network’s predictions, and ask the user to input the correct move. The user interface of a
sample case of Weak Conflict is shown in Figure 9.

Figure 8. Example cases where the user is interrupted for a manual entry in semi-autonomous post
processing system: (a) zero match; (b) weak match; (c) strong conflict; (d) weak conflict.
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Figure 9. The semi-autonomous user interface, displaying both scoresheets with the pertinent moves
highlighted, along with a zoomed view of the moves and the network's guess for each.

2.4. Data Augmentation

Data augmentation is one of the most widely used techniques in machine learning.
This is a way to increase the amount of data by adding slightly altered versions of already
existing data. It works as a regularizer and resists overfitting when training a neural
network model. Since our current HCS dataset [23] is certainly on the smaller side for
training a deep neural network, it was necessary to increase the training set size by data
augmentation. By applying meaningful image transformations to each move-box image,
it is possible to simulate a larger dataset, which almost always ensures a more generally
trained network. We generated 10 augmented images for each sample using one of the
following transformations and range randomly:

• Rotation (between −10° to 10°);
• Horizontal scaling (between −20% to 20%); and
• Horizontal shear (between −15° to 15°).

Figure 10 shows a few samples of these augmented images. There are many other
kinds of data augmentation techniques available that could have been potentially used
with our system, but we kept this process simple with just the basic techniques.

Figure 10. Original image (on top) and ten augmented images. Ground truth: ‘Nb4’.

3. The Handwritten Chess Scoresheet (HCS) Dataset

There were no publicly available chess scoresheet image datasets that we could use
when we first presented this approach in [5]. Therefore, we developed our own, the HCS
dataset [23], to train and test our network. This dataset consists of 158 total games, 53 of
which had both copies from the players with white and black pieces and the remaining
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105 with just one copy, making a total of 211 pages of chess scoresheet images. All the
images were digitized using a standard cellphone camera in natural lighting conditions.
These images are tightly cropped, and a standard corner detection based transformation is
applied to eliminate perspective distortion. The headers and footers were also cropped out
from each image in order to maintain player anonymity. The scoresheets were collected
from actual chess events; they were not artificially prepared by volunteers. Despite posing
challenges for training, identifying handwriting “in the wild” has more generality than
identifying text from artificial, pristine images. The data are therefore very diverse, con-
sisting of many different handwriting and scoresheet styles, varieties in ink colors, natural
occurrences of crossed-off, rewritten and out-of-the box samples, a few of which are shown
in Figure 11.

Figure 11. Clear samples (left) and messy samples (right) from the HCS dataset [23]. Original moves
are annotated beside the samples in blue.

Each scoresheet in the dataset contains 120 text boxes (60 boxes for each player).
However, many of these boxes are empty since most chess matches last for far fewer than
60 moves. Omitting the empty boxes, there are approximately 13,810 handwritten chess
moves currently in our dataset, with an average of approximately 33 moves (66 for each
player) per game. Some of these scoresheets came with a photocopied or carbon copied
version as well. These were included in the dataset since such variations of images provide
a natural form of data augmentation which can be useful for the training process. We
manually created the ground truth version of each game and stored it in a text file. A
sample is shown in Figure 12. Both the images and the ground truth text files are stored
with a naming convention given by:

[game#]_[page#]_[move#]_[white/black].png/txt

Furthermore, we created an additional dataset to improve the overall balance of our
training data. One of the major problems with our first attempt as reported in [5] was
caused by moves that occur rarely. For example, short castles (written as ‘O-O’) are way
more common than long castles (written as ‘O-O-O’). This also reflects our dataset as we
have around 10 times more samples of castles short than long. Since the network was not
well trained with enough data to recognize the long castles, it consistently predicted those
as short castles too, which greatly affected the recognition accuracy in our earlier attempt.
Other moves like pawn promotions (e.g., ‘f8 = R’) or disambiguating moves (e.g., ‘Nbd7’
or ‘R1f7’ ) are also very rare, and we did not have enough samples in our dataset that is
required for a robust training. Therefore, we opted to craft a small dataset of less frequent
moves to mitigate this problem. The images of this dataset were not collected from actual
games, rather artificially created with the help of volunteer chess players. This contains:

• 20 samples of long castles or ‘O-O-O’.
• 20 samples’ pawn promotions from a random file (between ‘a’ and ‘h’) to random

promotion pieces (‘Q’, ‘R’, ‘B’ or ‘N’), a few with random events like capture, check, or
mate.
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• 20 samples’ random disambiguation moves, 10 from disambiguation files and 10 from
disambiguation ranks a few with random events like capture, check, or mate.

Figure 12. Cropped samples of raw images (left) and associated ground truth labels (right) from the
HCS dataset [23].

A set of sample images from this less frequent moves dataset is shown in Figure 13.
We used the same data augmentation techniques described earlier with this additional
dataset as well.

Figure 13. Samples from the less frequent moves dataset. These images are not taken from real games,
rather created artificially with the help of volunteers. This is also a part of the HCS dataset.

To summarize, this release of the HCS dataset contains:

• 211 images of scoresheets from 158 unique games collected from actual chess events.
Only 53 of these games come with both players’ scoresheet,

• 60 images of less frequent moves dataset artificially created with the help of volunteer
chess players,

• 8 samples of empty/blank scoresheet images and
• 25,327 extracted move box images which include 13,810 of written moves and 11,517

of unused blank boxes from the scoresheets.

The HCS dataset is public and free to use for researchers who want to work with
similar problems [23].

4. Training and Results

We used the following set of data for training our BiLSTM network:

• 161 scoresheet images from our HCS dataset. This includes 28 games where both
players’ scoresheets were available and 105 games with single scoresheets. There are
9370 raw move images which with our 10:1 data augmentation scheme expanded into
93,700 training images.

• 60 additional images of less frequent chess moves from the HCS dataset (described in
Section 2.4 which after augmentation expanded into 600 additional training images.

• 15 annotated scoresheets or 1160 move images collected from web scraping which
after the same augmentation scheme expanded into 11,600 additional training images.

This entire combination gave us a total of 105,900 move images which is a decently
sized dataset to obtain a robust training. These data are separated into batches of 32, and
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trained with a learning rate of 0.0005 using the Adam optimizer for 50 epochs. For testing,
we used 25 games or 50 scoresheets, which translates into 1905 testing image pairs or 3810
total move images. This is roughly 15% of our HCS dataset. This test set was composed
of data from writers/players unseen by the network during training. Not all of the games
in our dataset have unique white and black player copies, which is fine for the network
training with our approach. However, since our post-processing pipeline uses a comparison
framework from two copies of the same game, the test set is carefully chosen with the games
where both white and black player scoresheets are available, which also means that the user
needs to submit both scoresheets for a game in order to use our post-processing schemes.

Table 3 presents the performance of our system with different pre and post processing
conditions. We used the Live Text as introduced in iOS 15 [31] and macOS Monterey
12 [32] by Apple Inc. (California, USA) to its supported devices like iPhones, iPads, Mac
computers, etc. to compare our raw move recognition accuracy against an off-the-shelf
solution to this problem. The Live Text feature attempts to spot and recognize texts from an
image, and generally it works great with handwriting. The move recognition accuracy we
obtained with Live Text on a smaller test set is less than 20% compared to the 87.8% of raw
recognition accuracy we obtained without any pre or post processing. A sample showing
how Live Text struggles to recognize the moves is shown in Figure 14. This goes to show
why a generic offline handwriting recognition solution might not be a viable option for a
specialized problem like this.

As can be seen from Table 3, the effect of the four-corner-marking preprocessing over
our default text box extraction method is fairly small (around 1%) but is consistent across
every test scenario. The four-corner-marking approach comes with a cost of convenience,
since the user needs to manually mark the corners of a scoresheet table (Figure 4. Therefore,
the default text box extraction method might be more desirable for most practical cases.
However, in situations where the absolute best performance out of the system is needed,
or maybe with specific types scoresheets where the default text extraction process is not
functioning well, the four-corner-marking is a more reliable option for our system.

Table 3. Character Recognition Accuracy (CRA), Move Recognition Accuracy (MRA), and Interrup-
tion Rate are for various levels of pre and post-processing.

Preprocessing Post-Processing Interruption Rate CRA MRA
Text Box Extraction None N. A. 94.3% 87.8%

Four-Corner-Marking None N. A. 94.7% 89%

Text Box Extraction Autonomous N. A. 97.7% 94.9%

Four-Corner-Marking Autonomous N. A. 98.2% 95.6%

Text Box Extraction Semi-Autonomous 4% 99.3% 98.4%

Four-Corner-Marking Semi-Autonomous 4% 99.6% 99.1%

The autonomous post-processing with default text box extraction is an uninterrupted
workflow, which gave us a move recognition accuracy of 94.9%. This translates into less
than four error cases for a game of average length. This already competes with the legacy
approach of pure manual entry with casual human error, especially when recording a lot
of games at a stretch. Furthermore, we present the complete scoresheet along with the
predictions and their corresponding confidence values. During this presentation, if a move
is invalid or illegal, we mark it with red and if the move is legal but below a confidence
threshold of 95%, we mark it with magenta. This allows the user to quickly spot, check and
correct for any prediction errors or inconsistencies. Figure 7 shows an example prediction
output of our autonomous pipeline.
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Figure 14. Demonstration of the Live Text feature in iOS 15 with an iPhone [31]. The left image shows
the Live Text detection on a column of a test scoresheet, and the right image shows the predicted
outputs. The correct predictions are colored green and the incorrect predictions in red.

The most drastic improvement is found with the semi-autonomous system with a
recognition accuracy of 98.4% (99.1% with four-corner-marking). This is around 11% gain in
accuracy, while only requesting user input on 4% of the moves. This means, for a 30 move
game (30 × 2 total moves from both players), a user will be prompted for manual entry
2–3 times on average. In our case, many scoresheets went without any interruption, while,
for a few faded and quite illegible scoresheets, it was invoked frequently. The best error
rate of 0.9% we obtained out of the system using the four-corner-method combined with
semi-autonomous post-processing. This is arguably much better than what we expect from
the legacy approach of manual entry. Furthermore, many of these errors are caused when
players accidentally write different moves, and one of those moves is above the confidence
threshold while the other is not. This means that the user is not prompted for the move
(considering both of the moves are valid and legal), and whichever has a higher confidence
value is selected. This selection, whether correct or not, is currently counted as an error
since the selected move contradicts one of the two samples we have from the players. This
error is common, so our true accuracy may be slightly higher than the measured accuracy
of 99.1%. Since our current ground truth values are based on the handwriting itself, and
not what was played in the game, we may be outputting a prediction which is correct to
the game, but not to the handwriting of one scoresheet.

Errors from both autonomous and semi-autonomous systems are primarily caused by
incorrect prediction, when the network does not accurately recognize an individual move.
These errors generally fall into one of three categories: rare move structures (~20%), illegible
writing (~50%), or information lost due to cropping (~30%). Rare or less frequent moves
such as pawn promotions, moves involving disambiguation files/ranks, or long castles
were a major problem in our first attempt [5]. While easily recognizable to a human, our
real event dataset includes very few (or sometimes no) examples of these move structures,
so the network tended towards a simpler and shorter prediction. With the introduction of
the less frequent moves dataset as described in Section 3, the issues with the rare structured
moves have been heavily mitigated. Ideally, a larger dataset should reduce this type of
error even more. Messy, illegible writing which includes crossed-out or cramped letters
(examples shown in Figure 11) often causes single move errors; however, most of these are
solved with our post-processing algorithm. Both the autonomous and semi-autonomous
algorithms cross-check both player’s scoresheet, one of which is likely to be written in a
better way. Finally, many players do not write a move entirely within its move-box, and
this missing information also causes prediction errors.
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Along with reporting the excellent performance, we also wanted to quantify the
amount of time our different approaches take compared with the time it takes for pure
manual entry. In this regard, we collected data by talking with a number of chess event
organizers and by involving a number of volunteers to digitize scoresheets using our
framework with different pre- and post-processing approaches. The summary of this
timing research is presented in Table 4. Although this is a very small scale research, it
should reflect the actual time requirements with a reasonable degree of error. As can be
seen, our worst workflow still is twice as fast as best possible cases of manual entry when
there are no conflicts or issues with the scoresheets. In addition, these numbers add up
pretty quickly for a medium to large tournament. For a chess event with 31 games (e.g.,
FIDE World Cup 2021), even our most time-consuming workflow can save more than
two-and-half hours of manual labor while giving a 99.1% move recognition accuracy. It is
tough to estimate how many OTB chess events happen everyday around the globe, but, for
sure, that number is a huge one. This implies that our framework or frameworks like this
can have a massive impact in the chess world events, let alone the convenience it provides
to a player for his/her own growth.

Table 4. Timing estimation for digitization of handwritten chess scoresheets with different ap-
proaches and scenarios. Numbers presented are obtained from a small-scale research and voluntary
contributions.

Digitization Workflow Est. Avg Time
Without any Interrupts 4–6 mins

With a Chess Board
to Resolve Conflicts

8–10 mins

With the need of Player
Intervention to Resolve Conflicts

12–15 mins

Manual
Approach

Averaging a
4 round Swiss Tournament

6–8 mins

Text Box Extraction &
Autonomous Post-Processing

<1 min

Text Box Extraction & Semi-
Autonomous Post-Processing

1–2 mins

Four-Corner-Marking &
Autonomous Post-Processing

1–2 mins

Presented
Approach

Four-Corner-Marking & Semi-
Autonomous Post-Processing

2–3 mins

Since, we could not find any similar work reported for handwritten chess scoresheet
recognition, and off-the-shelf solutions like Apple’s Live Text are not useful for this prob-
lem, we can only compare our work to our former attempt, as presented in [5]. For the
autonomous post-processing, our character recognition accuracy and move recognition
accuracy went up by 2.7% and 5.5% respectively. For the semi-autonomous post-processing,
we improved our character recognition accuracy and move recognition accuracy by 1.5%
and 1.9%, respectively, while the interruption rate went down by 3%. This improvement is
caused by a number of things. Firstly, we used more than twice the amount of data. We
utilized the Stockfish chess engine to further identify possible errors in detection. Lastly, we
crafted an additional dataset for rare occurrence moves which balanced our dataset a little
more than our previously used training set. Obviously, the system will become more robust
with more data, but there is still room for improvement in post processing. Currently, our
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evaluation metric is based on what the players wrote, but not what the actual game is.
With this approach, if a player mistakenly writes a valid move which is not what he/she
played, the move might not be immediately considered as an illegal move. Rather, at a later
stage of the game, a contradiction might occur causing an actual true move to be labeled
illegal. This problem can be resolved if we can keep track of all probable paths of the game,
and at the end we would present the entire game path which causes the least amount of
contradictions with what the players wrote in their scoresheets.

5. Conclusions

Although the core of this approach of scoresheet digitization was first presented by us
in [5], we have made a substantial amount of progress since then. We upgraded our dataset
and training process, introduced a more reliable preprocessing technique and improved
our post-processing pipeline by utilizing a chess engine. Starting with this relatively small
HCS dataset, we were able to achieve an accuracy of almost 95% with no human interaction
needed other than just to take the photos with his/her cell phone camera. This autonomous
approach almost instantly presents the resultant scoresheet to the user with highlights for
the low confidence predictions and possible illegal or invalid moves. This also allows the
user to quickly correct a few moves if needed. Our semi-autonomous approach increased
this accuracy to around 99% with an average of less than three interrupts per game needed
for human intervention. Although this accuracy is potentially way better than actual human
level performance in most practical scenarios, even a 1% error rate can cause big issues
in some sensitive cases. This small gap from a perfect result could be further reduced by
getting more data for training and adding more samples of rare occurrence moves whether
synthetically or organically. Along with that, a more sophisticated post-processing system
could be deployed which not only makes predictions move by move, but presents an entire
game with least edit distance required from the series of predictions. With tools from
graph theory, it could be possible to determine the fewest number of alterations required
in order to have a top-to-bottom valid game—this could take the system accuracy even
closer to a 100% accurate system. Another possibility is to utilize the most played moves in
a certain position in the post-processing, which could be especially useful in common chess
openings. Thanks to the rapid growth in online chess, lots of open source databases are
available to get this information. In order to encourage further research and development
in this area, we offer our HCS dataset to the public [23]. We also have a future plan to make
this framework openly accessible to the chess community.

The applications of deep learning have been assisting us in countless different ways,
and yet almost no meaningful attempt has been made to resolve this seemingly obvious
problem of chess scoresheet digitization. The chess world is a gigantic community and the
number of events and activities is always growing. A handwriting recognition framework
can be particularly useful with chess since players are bound to record moves by hand in
order to prevent computer aided cheating. Although the process of digital record keeping
with human labor has never been considered as a problem, we do not have to keep the
legacy approach when and if the technology allows us to improve. Here, we present an
attempt to save thousands of man-hours currently being spent by event organizers to
transform chess scoresheets into standard PGN files. While saving a substantial amount of
manpower, our framework also makes the record-keeping process extremely convenient
and arguably more reliable. Chess scoresheet digitization has a variety of uses from
post-game engine analysis to efficient game-publishing, and in most professional and
serious events, it is mandatory to keep these records. Therefore, we firmly believe that our
presented approach can have a big influence, and potentially revolutionize the chess event
management system practiced today.
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