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Abstract: In recent years, multispectral imaging systems are considerably expanding with a variety of
multispectral demosaicking algorithms. The most crucial task is setting up an optimal multispectral
demosaicking algorithm in order to reconstruct the image with less error from the raw image of a
single sensor. In this paper, we presented a four-band multispectral filter array (MSFA) with the
dominant blue band and a multispectral demosaicking algorithm that combines the linear minimum
mean square error (LMMSE) and the adaptive kernel regression methods. To estimate the missing
blue bands, we used the LMMSE algorithm and for the other spectral bands, the directional gradient
method, which relies on the estimated blue bands. The adaptive kernel regression is then applied to
each spectral band for their update without persistent artifacts. The experiment results demonstrate
that our proposed method outperforms other existing approaches both visually and quantitatively in
terms of peak signal-to-noise-ratio (PSNR), structural similarity index (SS5IM) and root mean square
error (RMSE).
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1. Introduction

Digital color cameras generally sensitive to three bands of the visible electromagnetic
spectrum are used to capture digital color images representing the reflectance of the
observed object. Nowadays, technological advancement has made it possible to overcome
this three-band limitation with the development of multispectral digital cameras to acquire
multispectral images with more than three spectral bands per pixel. There are several types
of multispectral image acquisition systems including single-sensor one-shot cameras which
are equipped with a multispectral filter mosaic. However, in the raw image from the sensor,
each pixel is characterized by a single available spectral band. We will have to reconstruct
the missing spectral bands by the demosaicking method. The reconstruction performance
depends on the optimal choice of MSFA and the multispectral demosaicking algorithm.

Several MSFA patterns are proposed in the literature. To our knowledge, Miao et al. [1]
are the first to propose a generic MSFA model from a binary tree by recursively separating
the checkerboard pattern based on a tree decomposition which defines the number of
spectral bands and the probability of occurrence of each band. Aggarwal et al. [2] mean-
while implemented two MSFA patterns, one random and the other uniform, which can be
generalized to any number of bands. In [3], Monno et al. proposed a five-band MSFA based
on the dominant G band requirement, which is used by Jaiswal et al. in their multispectral
demosaicking algorithm [4]. To overcome the difficulties in combining spectral resolution
and spatial correlation, Mihoubi et al. proposed a 16-band MSFA without a dominant
spectral band [5]. Recently, Bangyong et al. designed a uniform four-band MSFA pattern [6]
with the same probability of occurrence for each band and a nine-band MSFA pattern [7] in
which one band is dominant and the other eight have the same probability of occurrence
arranged in a 4 x 4 mosaic.
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Many multispectral demosaicking algorithms using the designed MSFAs have been
implemented in the literature [8]. Miao et al. [9] proposed a binary tree-based edge-
sensing (BTES) multispectral demosaicking algorithm that recursively performs binary
tree-based edge detection interpolation. However, the performance of this algorithm in
classical edge detection interpolation is limited. Recently, Monno et al. [10-12] proposed
a series of demosaicking algorithms for its proposed five-band MSFA. The first of these
algorithms [10] developed several guide images that were used in the interpolation
of the different spectral bands. The authors used residual interpolation to generate a
guide image for structure-preserving interpolation [11] and proposed adaptive residual
interpolation by adaptively combining two algorithms based on residual interpolation
and selecting an appropriate number of iterations for each pixel [12]. Jaiswal et al. [4]
used the high-frequency component of the G-band to interpolate the other bands based
on an inter-band correlation analysis while Mihoubi et al. [2] proposed a 16-band MSFA
algorithm based on a pseudo-panchromatic image (PPI), which is estimated by applying
an averaging filter to the raw image and then adjusted such that the PPI values are
correlated. The difference between each available value of the adjusted raw image and
PPI is calculated. The calculated local directional weights are then used to estimate
the fully defined difference using an adaptive weighted bilinear interpolation. Each
band is finally estimated by adding a PPI and the difference. In [6], a method of
applying directional interpolation along the edges of an image was proposed. In this
method, the image edges are calculated from the raw image to define the direction
interpolation with the neighbors. Considering the features of the filter arrays, image
edges, and a constant hue, the missing bands per pixel were recovered from the existing
bands. Then, the image is separated into high-and low-frequency components by
applying a wavelet transform, and the high-frequency images that are highly correlated
are modified using luminance information to refine the demosaicked image. In [7],
a multispectral algorithm that estimates the missing dominant band at each spatial
position with a weighted average of the neighboring values of the dominant band
was described. The dominant band reconstructed at different spatial positions is then
used as a guided image to estimate all other missing bands using the guided filter and
residual interpolation.

Multispectral images demosaicked using the previous algorithms suffer from severe
artefacts in edge regions. To overcome these limitations, a new avenue of multispectral
demosaicking called the LMMSE method is being explored. Zhang and Wu [13], in the
demosaicking of color images such as Bayer’s CFA [14], had developed the LMMSE method
which is based on the assumption that the gradient of the G and R/B channels correspond
to low-pass filtering, given their strong correlation. The LMMSE adaptively estimates
the missing G values in both horizontal and vertical directions and then merges them
optimally. A very interesting result is the introduction of the neighborhood in the LMMSE
formulation by Amba et al. [15] for color images they recently extended to eight-band
multispectral demosaicking by applying a linear operator that minimizes the root mean
square error between the reconstructed image and the original raw image [16]. This linear
operator multiplied by the MSFA image provides an estimate of the reconstructed image.
According to [16], the LMMSE method constitutes a good potential candidate for real-time
applications because, after training, it could be integrated into the equipment of the camera
and operate in real time without losing the generality required by the various provisions
present on the market.

The contributions of our paper focused on the LMMSE method in [13] and the adaptive
kernel regression kernel as described in [17] are of three kinds. (1) We identified with
justification a generic four-band MSFA with the dominant blue band for our multispectral
demosaicking algorithm. (2) We proposed the directional LMMSE method for estimating
the missing blue bands and the directional gradient method for the other three spectral
bands. (3) To take into account the details at the edges and the denoising of the reconstructed
image, we have successfully combined the LMMSE method with the adaptive kernel
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regression. This paper is organized as follows: in the second section, we justify our
proposed four-band MSFA and the application assumptions of the LMMSE method. The
existing LMMSE method and the adaptive kernel regression used are described in the third
section. The proposed algorithm and the experimental results are, respectively, presented
in the fourth and fifth sections.

2. Design of the Four-Band MSFA and Application Assumptions of the
LMMSE Method

2.1. Design of the 4-Band MSFA

The identified four-band MSFA is based on the generic method of Miao et al. [1]
based on the binary tree with the probability of occurrence of each spectral band
(Figure 1). The multispectral images of the cave dataset [18] used in our simulations
are acquired with a camera whose sensor is fitted with the liquid crystal tunable filter
(LCTF) [19] (Figure 2) such as the energy of the blue band of wavelength A = 450 nm is
very weak compared to the other bands, followed by the orange band whose wavelength
is A = 600 nm. The red band (A = 700 nm) has the greatest energy preceded by the green
band (A = 550 nm). According to [20], the energy imbalance between the different
spectral bands produces in the demosaicked image, severe degradation of the low-
energy bands due to their sensitivity to noise. It then appears necessary that a balancing
be carried out to optimize the shape of the transmittance filters. To balance the energies
of the different spectral bands and avoid degradation of the low energy bands, we
opted for an MSFA with a dominant blue band with a probability of occurrence of
1/2 followed by the orange band with a probability of occurrence of 1/4, and 1/8 is the
probability of occurrence of the red and green bands.

1/2

14

— —_
18 E B e

i E o B

(@ (b) ©

Figure 1. Four-band MSFA configuration: (a) binary tree considering appearance probabilities
(b) decomposition and subsampling processes (c¢) MSFA configuration.

After balancing the energies of the different spectral bands according to the proposed
MSFA pattern, their spectral sensitivities are shown in Figure 3.

2.2. Application Assumptions of LMMSE Method

The LMMSE method as used for RGB images obeys two assumptions. Firstly, in
natural images, the different spectral bands are strongly correlated. Then, the gradient
of the different bands remains constant and constitutes a smooth process (low pass) [13].
To verify these assumptions, we first determined in Table 1, the spectral correlation
of the different spectral bands of the cave dataset [18] multispectral images used. The
spectral correlation of two bands is best if the correlation coefficient between these
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two bands is between 0.5 and 1. From the analysis of Table 1 and with a few minimal
exceptions, all the spectral bands of the different multispectral images are strongly
correlated. Secondly, we have plotted the power spectral functions of the gradients of
the different bands for three multispectral images (Figures 4-6). When we analyze these
different spectral functions, we have realized that the power of the different gradient
signals is concentrated in the low-frequency band then that each of these functions has
a peak around the zero frequency. Thus, the two above-mentioned are therefore verified
for our simulation multispectral images.

Normalized Transmission

0.2 4}\
00 i
400 450 500 550 600 650 700 750 800
nm

(@) (b)

Figure 2. (a) The LCTF (b) The LCTF at several wavelength settings [19].

Sensitivity

400 500 600 700
Wavelength(nm)

Figure 3. Spectral sensitivity of the 4-band filters.
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Table 1. Spectral correlation coefficients for red/green (Cy¢), red/blue (C), red/orange (Cyo),
blue/green (Cy,), blue/orange (Cy,) and orange/green (Cog).

Images Cig Cup Cio Cug Cpo Cog
Beads 0.5469 0.4267 0.2773 0.6887 0.8381 0.2498
Balloons 0.8000 0.6647 0.6529 0.9602 0.9666 0.8968
Pompoms 0.6138 0.1869 0.0152 0.7798 0.9021 0.5075
Cloth 0.9700 0.9222 0.6599 0.9654 0.8180 0.6679
Statue 0.9818 0.9413 0.8688 0.9859 0.9797 0.9356
Face 0.9817 0.9530 0.8665 0.9896 0.9637 0.9248
Food 0.9882 0.9008 0.6753 0.9362 0.9168 0.7244
Feathers 0.8995 0.8398 0.7235 0.9733 0.9046 0.8378
Flowers 0.9247 0.7965 0.6781 0.9438 0.9317 0.7952
Beans 0.9454 0.9136 0.8465 0.9652 0.9576 0.8772
Painting 0.9610 0.8192 0.6973 0.9348 0.9674 0.8332
Thread 0.9002 0.8467 0.7339 0.9518 0.9326 0.7982
Clay 0.6538 0.5807 0.2737 0.7703 0.7579 0.200
Superballs 0.6448 0.7475 0.5906 0.7482 0.8802 0.3602
Toys 0.9685 0.8780 0.6065 0.9441 0.8567 0.6685
Glass 0.7431 0.4076 0.2074 0.8667 0.8476 0.5632
CD 0.828 0.7183 0.7070 0.8780 0.7761 0.5789
Hairs 0.9814 0.9524 0.8965 0.9919 0.9862 0.9591
Peppers 0.9049 0.7097 0.5233 0.9265 0.8626 0.6935
Sponges 0.5476 0.3080 0.0675 0.9068 0.8371 0.5745
Paints 0.9744 0.9525 0.9001 0.9892 0.9583 0.9219
Beers 0.9461 0.8127 0.6932 0.9524 0.9772 0.8751
Chart_Toy 0.9951 0.9866 0.9674 0.9964 0.9906 0.9792
Sushi 0.9813 0.9559 0.7866 0.9804 0.8892 0.7964
Lemons 0.8715 0.7262 0.6711 0.9658 0.9897 0.9325
Slices 0.9443 0.8963 0.8522 0.9838 0.9679 0.9287
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Figure 4. The power spectrum functions of the gradient signal in balloons image (a) green—red
(b) green—blue (c) green—orange (d) red—blue (e) red —orange (f) blue—orange.
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Figure 5. The power spectrum functions of the gradient signal in hairs image (a) green—red
(b) green—blue (c) green—orange (d) red—blue (e) red—orange (f) blue—orange.
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Figure 6. The power spectrum functions of the gradient signal in beers image (a) green—red
(b) green—blue (c) green—orange (d) red—blue (e) red—orange (f) blue—orange.

3. Overview of LMMSE and Kernel Regression Methods
3.1. LMMSE Demosaicking Method

In their color image demosaicking algorithm, Zhang and Wu [13] used the LMMSE
method to estimate the missing G bands at different pixels. We briefly present here the
estimate of the G-band at each spatial position (i, j) of the red pixels in the CFA image.
Thus, the missing G-band at the red pixels is obtained according to the formula used:

Gij=Rij+Agr(i,])

M
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The gradient Ag,r of the red and green bands is estimated in both horizontal and
vertical directions such as:

A . G , if Gis interpoleted
h _ ,]
Bgr(ir]) {G R;j", if Ris interpoleted @
A .. G;ii"—R; U, if Gisinterpoleted
v _ 1]
B ir]) {G, R;;%, if Ris interpoleted ®)

Before calculating the gradient, a second order Laplacian interpolation is used be-
forehand to know at each pixel, the “missing samples”. The noises associated with the
directional gradient estimate are determined as:

{gg,rh(l:/]:) - Ag,r(l/]) - ég,rh(l,]) (4)
€g,rv(l,]) = Ag/r(l,]) — Ag,rv i,7)

—~

So, we have:
(B = )~ 5
AgrP(i,]) = Dgr(i, ) — €g,r° (i)
The gradient Ag, is estimated by the LMMSE method. Let us denote by x the gra-

dient Ag ;, y the associates Ag,yh and Ag,rv and ¢ the associated noises eg,rh and ¢g,°. The
Equation (5) becomes:

y(i,j) = x(i,j) + 0(i,j) (6)

The optimal estimate of the minimum mean square error (MMSE) of x is defined:

¢ = Elx/y) = [ xp(x/y)dx @)

However, in practice, the probability p(x/y) is rarely known making estimation of
MMSE difficult. Therefore, instead of MMSE, the authors used the LMMSE method to
estimate x, such as:

Cov(x,y)
Var(y)

E[x] is the mathematical expectation of x, Cov(x, y) the covariance and Var(y) the vari-
ance of y. By setting yy = E[x], 03> = Var(x) and 0y? = Var(8), the Equation (8) becomes:

2= Elx] + (v —Ely) ®)

2
fzﬂx‘Fm(}/_ﬂx) 9)
For an optimal estimate of £, the latter is estimated adaptively by merging the values
determined in both horizontal and vertical directions in the neighborhood of y. Denoting
by £,(n) and £,(n) the horizontal and vertical LMMSE estimates of x obtained from the
Equation (9), then by wy, and w, the both horizontal and vertical weights, respectively, the
optimal LMMSE estimate of x is defined by:

(i, j) = wi (i, )2 (i, j) + wo i ])- %o (i, ) (10)
With wy, (i, j) + wo(i,j) = 1 to minimize the estimation error.
SN 7))
Wi ) = G2 o, 20

oz, 2(i,])
73,2 (1)) +0%, (i)

(11)
wy(i, j) =
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Xy, and X are the estimation errors of £, and £, such that:
o(i,j) = x(i,]) = Xo(i, )

Ughz and O'yvz are, respectively, the variances of X; and X,.
More information is given in [13].

3.2. Kernel Regression Method

Takeda et al. [17] proposed a kernel regression that is used in the iterative reconstruc-
tion of color images, and which takes into account limitations such as strong denoising
along the edges, the high retention of detail in the edges, and the limited presence of blur
in the reconstructed image. The estimate of y pixel at x; location is defined as:

yi=z(x)+ €5 i=1,2,............ P (13)

€, is the associated noise and z(.) the regression function obtained by Taylor expansion
of N-order.

z(x;) = Bo + ﬁlT(xi —x)+ ,Bvaech{(xi —x)(x; — x)T} +... (14)

vech(.) is a half-vectorization operator of the lower triangular portion of a symmetric

matrix such as:
a b T
vech ( {b d} ) =[a b d]

a b c (15)
vech([b e f])-[abcefi]T
c f i

The B, are obtained as below:

Bo = z(x) .
0. e
B =[5, &) (16)

1 [d%2(x) A %z(x)  9%z(x) T
ﬁZ - 2 ale 4 axlaxz’ azxz

They are computed by the following optimization problem:
p 2
?éir}} Y. [yi — Bo — P17 (x; — x) — BaTvech{(x; — x)(x; —x)T} — } Ky(xi—x) (17)
nsi=1

1 _
Kt (xi) = WH)K(H %) (18)

K is the kernel function and H the 2 x 2 smoothing matrix of order defined by:
Hi = h“l/liI (19)

h is a global smoothing parameter, y; a local density parameter which controls the
kernel size and I an identity matrix.

3.3. Adaptive Kernel Regression

The adaptive kernel regression is an extension of the classical kernel regression [17]
and structured in the same way as in Equation (17) where the classical kernel is replaced by
the adaptive kernel.

Kadapt (xi — ) (yi —y) = Kp, (xi — x)Ky(yi —y) (20)
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H; = hsl is the spatial smoothing matrix. To avoid computational complexity, the
order estimation is limited to N = 0. The necessary calculations are then limited to those
which estimate the parameter 8, such as:

£(x) = Bo (21)

The value of a spectral band at a spatial position is determined by:

P
P K VKo (v — .
2(3{) _ Zl?l H; (xl x) h(yl y)yl (22)
Y1 K, (xi — )Ky(vi — )
Expressing K,y in spatial and radiometric terms weakens the performance of the

estimate. Consequently, the adaptive kernel is replaced by an adaptive steering kernel, the
denoising of which takes place most strongly along the edges.

Kadapt (xi = x,yi —y) = Kygsteer (X; — x) (23)
The steering matrix is defined as:

1

HiSfL’EV — h,‘l/lici_7 (24)

The C; are symmetric covariance matrix used to temper the blurring effect around
edges and whose values are obtained by a differentiation between the value of the central
pixel and those of the neighboring pixels. The global smoothing parameter & makes it
possible to have a strong denoising effect and the steering kernel is a Gaussian kernel.

) =Y det(C;) exp{ (=) Ci(xi —x) } 25)

- 2mh?p? 2hi*pi?

KHistefr (x,' -

L Zy (x]')le (x]') L Zx (xj)zxz (x/)
x]'€wi X]'Ewi

where z,, () and zy, () are the first derivatives along x; and x, directions and w; is a local
analysis window around the position of interest. We set the smoothing parameter #; to
2 to have a strong denoising effect along edges and the local density parameter y; to 1 for
kernel size control.

4. Proposed Multispectral Demosaicking Method

The proposed algorithm is subdivided into six main steps. The blue band being
the dominant band of our MSFA (Figure 1c), this band is the first one estimated at the
other pixels.

4.1. Blue Band Estimation by LMMSE Method
We estimate the blue band missing at the orange pixel by applying the formula:

B(i,j) = O(i, j) + Dpo (i, ) (27)

The gradient Ay, is interpolated by the LMMSE method of Equations (10) and (11).
We adopt the same strategy to estimate blue bands at red and green pixels such as:

noeon R, ) —O—Ah,r(i,j), in R pixels
Blig) = { G(i,j) + Ab,g(i/j)/ in G pixels (28)

4.2. Orange Band Estimation at Red and Green Pixels
The green and red bands have identical neighborhoods.
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The gradient values A, in the four directions (Figure 7) northwest (nw), northeast
(ne), southwest (sw) and southeast (se) in the neighborhood of a green or red pixel are,
respectively, denoted by:

nw .. ne .. sw .. se ..
Abo(i/j): A b0(1/])+A ho(l/])IA bD(Z/])+A bo(l/]) (29)

o e EEE B
se swW se
(b) (c)

Figure 7. (a) Four-band MSFA (b) neighborhood of G-band (c) neighborhood of R-band.

Each orange band is then estimated at the green and red pixels by the formula:
O(i, ) = B(i,j) — Auo (i, ) (30)
4.3. Green Band Estimation at Red Pixels and Vice Versa

We apply the same strategies as before but in a wider neighborhood (Figure 8) in the
north (1), south (s), east (¢), and west (w) directions.

R(i,j) = B(i,j) — Ap (i, ) (31)

G(i,j) = B(i,j) — Apg (i, ) (32)

(@) (b) c)

Figure 8. (a) Four-band MSFA (b) neighborhood of G-band (c) neighborhood of R-band.

4.4. Red and Green Bands Estimation at Orange Pixels

The Figure 9 shows the neighborhood of orange band for original and estimated red
and green pixels.
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(a) (b) ()

(b) (c)

Figure 9. (a) Four-band MSFA (b) neighborhood of O-band for original and estimated red pixels
(c) neighborhood of O-band for original and estimated green pixels.

Taking into account the neighborhood of the orange bands for the red and green pixels
(Figure 9), original or estimated, we estimate the red and green spectral bands for the
orange pixels according to the formulas:

R(i,j) = B(i,j) = Ay, (i,) (33)
G(i, ) = B(i,j) — Apg (i, ) (34)

where A! j and A, o are respectively the gradient values in the four directions (Figure 9b,c)
for the red and green pixels.

4.5. Red, Green, and Orange Bands Estimation at Blue Pixels

From Figure 10b—d, we can see a symmetry of the neighborhood of the blue pixels for
the red, green and orange pixels. If we denote by A"y, ; A®yy; AV, and A€y, the directional
gradients of the blue and orange pixels in a neighborhood, we compute the average of the
gradient bilinearly as follows:

Anho(irj) + Asbo(irj) + Aebo(irj) + Awbo(irj)

Abo(i/j) = 4

(35)

Figure 10. (a) Four-band MSFA (b—d) neighborhood of B-band for original and estimated orange, red
and green pixels.

Therefore, the missing orange band at the blue pixels is estimated by the relation:
O, /) = B(irj) = Buo(i,j) (36)
Similarly, we estimate the red and green bands at the blue pixels such as:
R(i,j) = B(i,j) = Ay (i, ) (37)

G(i,j) = B(i,j) — Apg (i, ) (38)



J. Imaging 2022, 8, 295

12 0f 18

4.6. Estimated Bands Enhancement Using Adaptive Kernel Regression

Although the previous estimation formulas have worked well for color images as
in [13], their use for multispectral images remains limited, especially not taking into
account details in the strong edge or rich texture. To correct these imperfections, each
estimated spectral band is refined by using the adaptive kernel where we replaced the
refined Equation (21) with the formula as defined in [21]. Thus, the refined a spectral band
at xp location is defined by:

1

2(xp) = Y Kpgteer (x; — ) M(x;)S(x;) (39)
Wxyp x;ieNp

where N, is the set of neighbor pixel locations of the location x,, S(x;) the sampled value

at the location x;, M(x;) the binary mask at the location x; that set to one if the data are

sampled at an associated location and set to zero otherwise and wy, is the normalizing

factor, which is the sum of kernel weights. The adaptive steering kernel Ky steer is computed

according to Equation (25) and the covariance matrix Cy, according to Equation (26).

5. Experimental Results

In our experiments, we used 26 images from the 32 (the others being resemblances)
of the cave dataset [18], in which multispectral images consist of 31-band multispectral
images acquired under illuminant D65. The 31-band images were acquired every 10 nm at
between 400 and 700 nm. The image size was 512 x 512 pixels. The CAVE dataset is often
used as a standard multispectral image dataset.

To evaluate the performance of the proposed algorithm, we compared it with recent
four-band multispectral demosaicking methods, namely generic binary tree edge sensing
(BTES) [9], directional filtering and wavelet transformation (DFWF) [6], adaptive spectral-
correlation based demosaicking (ASCD) [4] and neighborhood in linear minimum mean
square error (N-LMMSE) [16]. ASCD and N-LMMSE are a five-band and eight-band
methods, respectively, which we implemented to four-band for comparison purposes.
Visual and objective evaluations were also conducted.

5.1. Visual Performance Evaluations

For evaluation purposes, we selected four images with detailed structures as shown
in Figures 11-14. From the partially zoomed-in view images (red areas in original im-
ages), one notes the visible presence of blurring and false colors artifacts in the images
demosaicked with the algorithms BTES, DFWF, ASCD, and N-LMMSE as is the case in
Figures 12b—e, 13b—e and 14b—e which, respectively, display the green, blue, and orange
bands of the feathers, hairs, and cloth images. In Figure 11b—e showing the red band of the
face image, these artifacts are more visible with the BETS and N-LMMSE algorithms. In
Figure 12, we note the presence of ghost noise in part of the reconstructed images with the
BTES, DFWEF, ASCD, and N-LMMSE algorithms. The quality of the reconstructed image
is considerably reduced by these artifacts which are due to the lack of edge-preserving of
the BTES, DFWF, ASCD, and N-LMMSE algorithms. Our proposed method reconstructs
images without significant blurring or zipper artifacts (Figures 11f, 12f, 13f and 14f). The
four reconstructed images with our proposed demosaicking algorithm preserve details at
edges and in textured areas better than the other algorithms. Overall, by comparing the
results of the visual assessment, we can confidently say that our proposed method is better
than the BTES, DFWF, ASCD, and N-LMMSE algorithms.
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(a) Original {b) BTES (c) DFWF

(d) ASCD (e) N-LMMSE (f) Proposed

Figure 11. Visual comparison of red band in face image.

) T

{b) BTES

(dy ASCD (e} N-LMMSE (f) Proposed

Figure 12. Visual comparison of red band in feathers image.
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(a) Original {(b) BTES (c) DFWF

(d) ASCD (e) N-LMMSE (f) Proposed

Figure 13. Visual comparison of red band in hairs image.

{a) Original (b) BTES
.
(d) ASCD {e) N-LMMSE (f) Proposed

Figure 14. Visual comparison of red band in cloth image.

5.2. Quantitative Performance Evaluations

To quantitatively assess the objective performance of our proposed algorithm, we used
the PSNR, SSIM, and RMSE metrics as described in [6,22] and calculated from the original
and demosaicked images. The average values of PSNR, SSIM, and RMSE obtained from
various algorithms are shown in Tables 2—4, respectively, such that the best scores are in
bold. Note that the lower the value of RMSE, the better the performance of the algorithm.
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Table 2. The PSNR average results of demosaicking algorithms.

PSNR
Images
BTES DFWF ASCD N-LMMSE Ours

Beads 30.7458 33.2131 30.2940 28.1932 29.8430
Balloons 42.0289 46.9371 39.2510 38.5023 40.0571
Pompoms 38.4598 41.2875 35.1001 31.7721 33.7244
Cloth 28.5308 31.3640 28.9022 33.1767 34.1697
Statue 40.6305 44.1420 31.5929 39.8950 41.2060
Face 38.2092 40.2888 35.9277 38.1173 41.1619
Food 40.0772 43.2572 37.0315 40.0100 40.0189
Feathers 35.1460 39.4372 33.0949 31.2218 34.8913
Flowers 39.1085 38.4263 33.0538 33.6341 38.6609
Beans 32.6284 36.9307 32.2185 29.4240 34.0663
Painting 30.8851 34.8590 28.4571 30.9910 34.7533
Thread 36.3351 41.3007 31.6812 35.3227 39.5297
Clay 32.2509 36.1485 34.3987 31.2567 34.4575
Superballs 41.7985 44.9294 36.3779 34.7720 37.0399
Toys 42.7080 43.4266 36.7039 35.6316 38.8146
Glass 26.4927 31.1506 31.3545 30.8802 33.5763
CD 36.4992 34.8518 37.8778 36.2179 39.8332
Hairs 32.9339 36.8394 36.2247 36.8732 39.9698
Peppers 35.0235 33.4378 36.0790 34.4836 36.8838
Sponges 30.5707 25.5476 31.2702 29.3916 30.1159
Paints 27.2903 28.2379 32.4600 33.0013 33.6658
Beers 36.1153 29.1305 33.6159 30.5370 33.5116
Chart_Toy 28.0560 31.1273 32.6595 34.7302 37.9766
Sushi 37.2125 38.8466 39.4100 40.0039 42.3519
Lemons 31.9442 35.3157 38.6506 32.8326 36.7108
Slices 31.0185 35.2776 35.3538 38.1607 40.1883
Average 34.7192 36.7581 34.1939 34.1935 36.8146

Table 3. The SSIM average results of demosaicking algorithms.

SSIM

Images
BTES DFWF ASCD N-LMMSE Ours
Beads 0.8719 0.7840 0.8368 0.8073 0.8756
Balloons 0.9903 0.9398 0.9449 0.9561 0.9748
Pompoms 0.9549 0.8606 0.8956 0.9001 0.9046
Cloth 0.8476 0.9155 0.7864 0.9153 0.9278
Statue 0.9413 0.9739 0.9354 0.9419 0.9797
Face 0.9718 0.9830 0.9471 0.9528 0.9881
Food 0.9749 0.9667 0.9649 0.9675 0.9804
Feathers 0.9480 0.9197 0.8924 0.9208 0.9482
Flowers 0.9519 0.9165 0.8917 0.9394 0.9575
Beans 0.9524 0.9019 0.8836 0.9190 0.9356
Painting 0.8798 0.8887 0.7743 0.8985 0.9127
Thread 0.9208 0.9561 0.8757 0.9577 0.9731
Clay 0.9780 0.9017 0.8837 0.9216 0.9455
Superballs 0.9807 0.9156 0.9299 0.9399 0.9548
Toys 0.9701 0.9513 0.9269 0.9522 0.9769
Glass 0.9145 0.8843 0.8681 0.9148 0.9392
CD 0.9791 0.9378 0.9470 0.9560 0.9741

Hairs 0.9536 0.9717 0.9127 0.9654 0.9785
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Table 3. Cont.

SSIM

Images
BTES DFWF ASCD N-LMMSE Ours
Peppers 0.9842 0.9058 0.8879 0.9132 0.9478
Sponges 0.9693 0.8927 0.8862 0.8890 0.9014
Paints 0.9380 0.9159 0.9195 0.9300 0.9690
Beers 0.9766 0.9490 0.9026 0.9565 0.9705
Chart_Toy 0.9338 0.9538 0.9131 0.9696 0.9740
Sushi 0.9749 0.9443 0.9726 0.9698 0.9817
Lemons 0.9609 0.9353 0.9518 0.9355 0.9578
Slices 0.9455 0.9278 0.9329 0.9549 0.9751
Average 0.9486 0.9228 0.9025 0.9325 0.9542

Table 4. The RMSE average results of demosaicking algorithms.
RMSE

Images
BTES DFWF ASCD N-LMMSE Ours
Beads 0.0407 0.0398 0.0347 0.0470 0.0340
Balloons 0.0164 0.0160 0.0162 0.0191 0.0140
Pompoms 0.0279 0.0273 0.0237 0.0288 0.0257
Cloth 0.0342 0.0315 0.0408 0.0201 0.0197
Statue 0.0121 0.0118 0.0262 0.0113 0.0096
Face 0.0118 0.0114 0.0178 0.0169 0.0100
Food 0.0137 0.0134 0.0173 0.0171 0.0109
Feathers 0.0227 0.0218 0.0286 0.0229 0.0184
Flowers 0.0176 0.0189 0.0247 0.0175 0.0139
Beans 0.0245 0.0232 0.0279 0.0255 0.0209
Painting 0.0207 0.0163 0.0396 0.0208 0.0189
Thread 0.0199 0.0186 0.0303 0.0182 0.0113
Clay 0.0101 0.0315 0.0320 0.0290 0.0208
Superballs 0.0217 0.0212 0.0205 0.0168 0.0152
Toys 0.0181 0.0180 0.0239 0.0157 0.0132
Glass 0.0228 0.0322 0.0314 0.0236 0.0218
CD 0.0076 0.0202 0.0168 0.0127 0.0115
Hairs 0.0117 0.0156 0.0183 0.0140 0.0103
Peppers 0.0087 0.0244 0.0236 0.0163 0.0152
Sponges 0.0172 0.0679 0.0445 0.0441 0.0401
Paints 0.0210 0.0395 0.0287 0.0280 0.0216
Beers 0.0120 0.0363 0.0260 0.0277 0.0225
Chart_Toy 0.0209 0.0277 0.0269 0.0153 0.0129
Sushi 0.0107 0.0127 0.0123 0.0108 0.0082
Lemons 0.0142 0.0207 0.0144 0.0176 0.0155
Slices 0.0135 0.0175 0.0190 0.0126 0.0100
Average 0.0179 0.0244 0.0256 0.0211 0.0171

A careful analysis of Table 2 shows that the DFWF algorithm produced the highest
PSNR value which is 46.9371 while it is 42.3519 for the proposed method. Moreover, this
method gives better PSNR scores for twelve images out of twenty-six while ours produces
ten images. The N-LMMSE method gives no good score but the other two algorithms for
two images each. Images for which the PSNR values are high for the DFWF algorithm are
smoother images, but not textured images. The results of the average values of the PSNR
show that our proposed method ranks first in the competition with DFWF, while N-LMMSE
comes in last. In Table 3, according to the SSIM values, our algorithm outperforms all
others with a higher value of the metric for both sixteen out of twenty-six images and for
the average value. It is followed by BTES with a better score of the SSIM for ten images,
the other three methods come in last. In Table 4, our algorithm produced better RMSE
scores for seventeen images, unlike the others which have low scores. The RMSE values
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confirm the previous results with a lower mean value for our proposed method than
the other algorithms. We can therefore see that overall, the values of PSNR, SSIM, and
RMSE obtained with our algorithm are better than those of the BTES, DFWF, ASCD, and
N-LMMSE methods.

6. Conclusions

In this study, we identified a four-band MSFA pattern for single-sensor cameras,
arranged in a 6 x 6 moxel half filled with the blue band taking into account the properties
of the liquid crystal tunable filter with which the sensor surface of the camera used is
covered to acquire simulation images of the cave dataset. Based on the existing one, we
then proposed a consequent algorithm that combines the LMMSE method and the adaptive
kernel regression. In the proposed algorithm, we estimated the missing blue bands by
the LMMSE method and the other spectral bands by the directional gradient method
which relies on the estimated blue bands. Finally, applying the adaptive kernel regression
gradient method to each spectral band refines the band by ridding it of artifacts that can
adversely affect the reconstruction performance. In the experiment, we evaluated the
proposed algorithm both visually and quantitatively with the existing algorithms BTES,
DFWE, ASCD, and N-LMMSE. The results show that our proposed algorithm outperforms
the others both visually and in terms of PSNR, SSIM, and RMSE.

The future work consists in deepening the algorithm in terms of the number of spectral
bands by varying the moxels such as they are of 4 x 4 and 8 x 8 support to fully appreciate
the degradation behavior of each spectral band.
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