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Abstract: A brain Magnetic resonance imaging (MRI) scan of a single individual consists of several
slices across the 3D anatomical view. Therefore, manual segmentation of brain tumors from magnetic
resonance (MR) images is a challenging and time-consuming task. In addition, an automated brain
tumor classification from an MRI scan is non-invasive so that it avoids biopsy and make the diagnosis
process safer. Since the beginning of this millennia and late nineties, the effort of the research
community to come-up with automatic brain tumor segmentation and classification method has been
tremendous. As a result, there are ample literature on the area focusing on segmentation using region
growing, traditional machine learning and deep learning methods. Similarly, a number of tasks have
been performed in the area of brain tumor classification into their respective histological type, and
an impressive performance results have been obtained. Considering state of-the-art methods and
their performance, the purpose of this paper is to provide a comprehensive survey of three, recently
proposed, major brain tumor segmentation and classification model techniques, namely, region
growing, shallow machine learning and deep learning. The established works included in this survey
also covers technical aspects such as the strengths and weaknesses of different approaches, pre- and
post-processing techniques, feature extraction, datasets, and models’ performance evaluation metrics.

Keywords: brain tumor; classification; segmentation; region growing; shallow machine learning;
deep learning

1. Introduction

Machine learning has been applied in different sectors, the majority of the studies
indicate that it was applied in agriculture [1], and health sectors [2,3] for disease detection,
prediction, and classifications. In health sectors the most researched areas are breast cancer
segmentation and classification [4–7], brain tumor detection and segmentation [8], and
lung and colon cancer segmentation and classification [3].

The gold standard in brain tumor diagnosis is biopsy which includes resection and
pathological examination using various cellular (histologic) examination techniques. How-
ever, the diagnosis using biopsy is invasive that may result in bleeding and even injury that
results in functional loss [9]. As a result, non-invasive brain tumor diagnosis using mag-
netic resonance imaging is the mainstay of modern neuroimaging that enables physician to
characterize structural, cellular, metabolic, and functional properties of brain tumor [9,10].

In a conventional structural MRI scan, a healthy brain contains white mater (WM),
gray matter (GM), cerebrospinal fluid (CSF) [11]. The main variation of these tissues in
a structural MRI scan depends on their water content. The white matter (WM), which
is 70% water, is a myelinated axon that connects the cerebral cortex with other brain
regions. Furthermore, it carries information between neurons and connects the right and
left hemispheres of the brain. The gray matter, which is 80% water, contains neuronal and
glial cells that control brain activity, and the basal nuclei which are located deep within

J. Imaging 2021, 7, 179. https://doi.org/10.3390/jimaging7090179 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0001-5118-0812
https://orcid.org/0000-0001-5591-2240
https://orcid.org/0000-0002-0876-2021
https://doi.org/10.3390/jimaging7090179
https://doi.org/10.3390/jimaging7090179
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7090179
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7090179?type=check_update&version=2


J. Imaging 2021, 7, 179 2 of 30

the white matter. Whereas, the cerebrospinal fluid is almost 100% water, and fills the
space between the infoldings of the brain, between the brain and skull, and between the
ventricular system in the brain[11,12].

Clinically, due to the variability in size, locality, rate of growth, and pathology, it is
difficult to understand the manifestation of a brain tumor. However, a brain tumor is
an abnormal mass of tissue, in which some cells grow and multiply uncontrollably. This
uncontrollable growth takes up space within the skull and interferes with normal brain
activity and damages the brain cells. The damage may be caused through increasing
pressure in the brain, by shifting the brain or pushing against the skull, and by invading
nerves and healthy brain tissues [13,14]. Different criteria can be used to classify brain
tumor. A layered based tumor classification schema that has been proposed by WHO
provides a detailed classification techniques that is more pertinent to radiological use. In
this schema the hierarchy from top to bottom four layers, that are, final integrated diagnosis,
histologic classification, WHO grade, molecular information [15]. However, brain tumors
can be more generally grouped into primary and secondary (metastatic) tumors depending
on their place of origin [16]. Primary brain tumors originates in the brain itself and are
named for the cell types from which they originated. These primary tumors can be benign
(non-cancerous) and malignant (cancerous). Benign tumors grow slowly and do not spread
elsewhere or invade the surrounding tissues. However, they can put pressure on the brain
and compromise its function. On the contrary, the malignant tumors grow rapidly and
spread to surrounding tissues. On the other hand, secondary brain tumors originate from
another part of the body. These tumors mainly occur due to cancer cells from somewhere
else in the patient’s body that spread to the brain. The most common causes of secondary
brain tumors are lung cancer, breast cancer, melanoma, kidney cancer, bladder cancer,
certain sarcomas, and testicular and germ cell tumors [13,16,17]. Each of these tumors has
unique clinical, radiographic, and biological characteristics [13].

In MRI scanning, brain examination can be normal or abnormal. The normal brain tis-
sues in MRI are characterized by gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) tissues. Apart from the normal tissues listed earlier the tumorous brain scan
often contains core tumor, necrosis, and edema. Necrosis is a dead cell located inside a core
tumor, while edema is located near active tumor borders. Edema is a swelling that exists
due to trapped fluids around a tumor. It can be vasogenic in non-infiltrative extra-axial
tumors, such as meningioma, or it can be infiltrative that invades WM tracts of a brain in
tumors, such as glioma [10,18]. Furthermore, these tissues often have indistinguishable
intensity features in structural MRI sequences, such as T1-w, T2-w, FLAIR. For instance,
the difficulty in differentiating between the core tumor and associated inflammation was
discussed [19]. In addition to that, Alves et al. [19] demonstrated the difficulty in differenti-
ating tumors using signal intensities alone. They demonstrated using a case where two
patients were diagnosed with two different brain tumor types due to both tumors have
similar intensity features and both are surrounded by extensive edema.

1.1. Brain Tumor Imaging Modalities

There are a variety of imaging techniques used to study brain tumors, such as magnetic
resonance imaging (MRI), computed tomography (CT), positron emission tomography
(PET), and single-photon emission computed tomography (SPECT) imaging. However, CT
and MR imaging are the most widely used techniques, because of their widespread avail-
ability and their ability to produce high-resolution images of normal anatomic structures
and pathologies [20].

1.1.1. Magnetic Resource Imaging

Magnetic resonance imaging (MRI) of a brain generates several 3-dimensional image
data that comprise the three anatomical views of a brain (axial, sagittal, and coronal)
at different depths of a brain. Depending on the strength of the magnetic field and the
sampling protocols, the image quality, slice thickness, and inter-slice gap vary [21,22].
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During MR imaging, a patient lay in a strong magnetic field, almost 10,000 times stronger
than the earth’s magnetic field, that forces the protons in the water molecule of the body to
align in either a parallel (low energy) or anti-parallel (high energy) orientation with the
magnetic field. Then, a radiofrequency pulse is introduced that forces the spinning protons
to move out of the equilibrium state. When a radiofrequency pulse pauses, the protons
return to an equilibrium state and produce a sinusoidal signal at a frequency dependent on
the local magnetic field. Finally, a radio antenna within the scanner detects the sinusoidal
signal and creates the image [22,23]. The amount of signal produced by specific tissue
types is determined by their number of mobile hydrogen protons, the speed at which they
are moving, the time needed for the protons within the tissue to return to their original
state of magnetization (T1), and the time required for the protons perturbed into coherent
oscillation by the radiofrequency pulse to lose their coherence (T2) relaxation times. As
T1 (spin-lattice, also known as longitudinal relaxation) and T2 (spin-spin, also known as
traversal relaxation) times are time-dependent, the timing of the radio frequency pulse and
the reading of the radiated RF energy change the appearance of the image. In addition,
the repetition time (TR) describes the time between successive applications of RF pulse
sequences, and the echo time (TE) tells the delay before the RF energy radiated by the
tissue in question is measured. The variation of T1 and T2 relaxation times between tissues
gives image contrast on T1- and T2-weighted (T1-w and T2-w) images. The T1-w sequence
is characterized by short TR and short TE while the T2-w sequence is characterized by long
TR and short TE. Tissues with shorter T1 (for example, white matter) appear brighter when
compared to tissues with a longer T1 (for example, gray matter) in magnetic resonance
images. The other intermediate sequence that adopts long TR from T2-w and short TE
from T1-w is a proton density-weighted (PD-w). In PD-w, the number of protons per unit
volume in tissues is the main factor in determining the formation of image [23,24].

In the current neuroimaging techniques different MRI brain scan procedures can
be performed, these include, the conventional structural MRI, functional MRI, diffusion-
weighted imaging (DWI), and diffusion tensor imaging (DTI) [10]. In structural MRI
procedure which mainly differentiates healthy and abnormal brain tissues based on their
water molecule content is the most commonly employed standard imaging technique. This
procedure helps to visualize healthy brain tissues and to map gross brain anatomy, tumoral
vascularity, calcification, and radiation-induced micro hemorrhage [10,11]. The structural
sequences include T1-w, T2-w, FLAIR, and contrast-enhanced T1-w [10]. The functional
MRI (fMRI) on the other hand is used to capture the neural activity inside a brain through
the ratio of oxygenated to the deoxygenated level of blood in the neighboring vasculature
while performing a cognitive or motor task. The fMRI is used to localize eloquent cortex
and differentiate between tumor grades [10]. The DWI captures the random motion of
water molecules in a brain and it is used to characterize a tumor through identification
of its cellularity and hypoxia, peritumoral edema, the integrity of WM tracts, and to
differentiate between posterior fossa tumors [10,25]. Whereas, diffusion tensor imaging
(DTI) is used to analyze the 3D diffusion direction, also known as diffusion tensor, of the
water molecule. The DTI helps to determine local effects of the tumor on white matter tract
integrity including tract displacement, the existence of vasogenic edema, tumor infiltration,
and tract destruction [26].

1.1.2. Computed Tomography Imaging

A computed tomography (CT) scan was used in neuroimaging to help understand
the functional and structural status of clinically significant signs of diseases. However,
it provides less information than an MRI in brain tumor diagnosis. For instance, CT is
inferior to MRI in the characterization of soft tissues like a brain and its use of ionizing
radiation. However, a computed tomography (CT) scan can provide more detailed images
of the bone structures near a brain tumor, such as the skull or spine. A CT scan may also be
used to diagnose a brain tumor if the patient has implants like a pacemaker and when an
MRI is not available. Currently, a CT is commonly used in the diagnosis of diseases like



J. Imaging 2021, 7, 179 4 of 30

acute hemorrhage Parkinson’s, head trauma, and in determining age [27,28]. Therefore,
in this survey work, brain tumor segmentation and classification techniques that use the
brain scan image of MRI are only explored.

The remaining part of the paper is organized as follows, Section 2 illustrates related
works to this survey work and shows their strengths and limitations. In Section 3, the
literature search strategy, including the chronological span, journal databases, the key-
words used for search, and the inclusion and exclusion criteria, is presented. In Section 4,
the commonly used model performance metrics in evaluating the performance of brain
tumor segmentation and classification algorithms are highlighted. In Section 5, different
region growing, conventional shallow supervised machine learning, and deep learning-
based brain tumor segmentation techniques are discussed. Furthermore, the reported
performances are presented. The techniques used in conventional machine learning-based
brain tumor classification and their classification performance are elaborated in Section 6.
In addition, different deep learning models based brain tumor classification techniques
with their reported performance are presented. Finally, the paper presents a discussion on
Section 7 and a conclusion in Section 8.

2. Related Works

The quest to find a better autonomous brain tumor segmentation and classification
technique that can aid physicians in brain tumor diagnosis have been an active research
area. As a result, several survey works have been completed to foster the research in the
field and recap techniques used in brain tumor segmentation and classification. In Table 1,
only some of the recent pieces of literature that are related to our survey work are listed.
Furthermore, their strengths and limitations are clearly discussed.

Table 1. Survey literature on brain tumor segmentation and classification techniques.

Author and Publication Year Strength Limitation

Sharma and Shukla [29] 2021 Thresholding, conventional supervised
and unsupervised based segmentation
techniques are briefly described.

• A very shallow discussion on deep
learning based brain tumor segemen-
tation and classification.

• The performances of the surveyed lit-
erature are not inculded.

Rao and Karunakara [30] 2021

• Differnt brain tumor segmentation
techniques that includes thresholding,
region growing, atlas, deep learning,
and conventional supervised and un-
supervised machine learning based
have been discussed.

• The performances of tumor classifi-
cation techniques were clearly pre-
sented.

• Chronologically majority of the re-
viewed papers on brain tumor classi-
fication are from 2019 and earlier. Ex-
cept two literature that are published
on 2020.

• The segmentation and classification
techniques are not clearly distin-
gushed while presenting their per-
formce metrices.

Magadza and Viriri [31] 2021

• Deep learning based brain tumor seg-
mentation techniques are presented
in detail; including, their building
blocks

• The survey does not include brain tu-
mor classification techniques and con-
ventional machine learning based tu-
mor classification and segmentation
techniques.

• Segmentation performce of top per-
forming models on BRATs dataset is
provided.
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Table 1. Cont.

Author and Publication Year Strength Limitation

Tiwari et al. [32] 2020

• A detailed hierarchical classification
of brain tumor presented.

• A brain tumor segmentation tech-
niques, including: those based on
thresholding, conventional super-
vised and unsupervised machine
learning, and deep learning are dis-
cussed.

• Conventional machine learning and
deep learning based brain tumor clas-
sification techniques are surveyed.

• Chronologically, literature earlier
than and including 2019 are reviewed.

• A small number of deep learning
based brain tumor segmentation and
classification literature are reviewed.

Kumari and Saxena [33] 2018

• A limited literature that encompases
different segmentation techniques in-
cluding thresholding, deep learning,
and supervised and unsupervised ma-
chine learning techniques were re-
viewed.

• Rather than reviewing literature on
brain tumor classification, the paper
only discusses the pros and cons of
the classification algorithms.

• Aside from the limited discussion on
brain tumor segmentation techniques,
the review did not include the perfor-
mance of proposed techniques.

• Furthermore, the review work incor-
porates literature before 2018.

Our work is tailored to provide a comprehensive survey of recently proposed different
brain tumor segmentation and classification techniques, including region growing, shallow
machine learning, and deep learning. The established work in this survey also covers
technical aspects, such as the strengths and weaknesses of different approaches, together
with their performance.

3. Method

In this survey work, peer reviewed research papers from 2015 to 2021 that were
published on Scopus and Web of Science indexed journals are surveyed to investigate the
region growing, deep learning based brain tumor segmentation techniques, and machine
learning and deep learning based brain tumor classification techniques. The databases
that are extensively searched for this survey work were: (1) IEEE Xplore Digital Library,
(2) Science Direct, (3) PubMed, (4) Google Scholar, and (5) MDPI. The search criterion
includes (“Brain Tumor”) AND (“Region Growing”) AND (“Segmentation”) AND (“Deep
Learning”) AND ("Machine Learning") AND ("Classification"). The methodology used for
selecting literature is clearly shown in Algorithm 1. In addition, the paper inclusion criteria
(IC) and exclusion criteria (EC) is indicated on Table 2.

Table 2. Inclusion and exclusion criteria for paper selection.

IC EC

IC1: Paper must be peer reviewed. EC1: Duplicate studies in different databases.

IC2: Journals on which papers published must be either
scopus or web of science indexed

EC2: Study that uses imaging techniques other than
MRI.

IC3: The paper should use only MRI brain images EC3: Study which is less cited by other peer reviewed
papers.

EC4: MSc and PhD papers.

EC5: Case study papers.
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Algorithm 1 Paper search strategy from different search databases.

1: procedure TOPIC(Application of Machine Learning and Region Growing Techniques in Brain Tumor Segmentation

and Classification)

2: SearchDatabases← IEEEXplore, GoogleScholar, ScienceDirect, PubMed, MDPI

3: SearchYear ← 2015− 2021 AND Few papers f rom older years asexceptional to enrich Section 1

4: i← 1 . Initialize counter

5: N ← 5 . N is the number of search databases

6:

7: for i ≤ N do

8: Keyword← braintumor, deeplearning, machinelearning, regiongrowing, segmentation, classi f ication

9: if SearchLink ∈ SearchDatabases and Year ∈ SearchYear then

10: Search (Brain Tumor AND Region Growing AND Segmentation AND Deep Learning AND Machine

Learning AND Classification)

11: end if

12: end for

13: if Numbero f Papers ≥ 0 then

14: Refine Papers

15: ApplyInclusionCriteria← IC1, IC2, IC3

16: ApplyExclusionCriteria← EC1, EC2, EC3, EC4, EC5

17: end if

18: end procedure

4. Performance Measuring Metrics

Evaluating the segmentation and classification performance of a machine learning
algorithm is an essential part of a research project. A machine learning model may give a
satisfying result when evaluated using a metric, for instance, accuracy score but may give
poor results when evaluated against other metrics such as precision or any other metric.
Therefore, most of the time various evaluation metrics are applied to measure and compare
the model performance.

In a segmentation task, true positive (TP) represents a pixel that is correctly predicted
to belong to the given class according to the ground truth, whereas a true negative (TN)
represents a pixel that is correctly identified as not belonging to the given class. On the
other hand, a false positive (FP) is an outcome where the model incorrectly predicts a
pixel not belonging to a given class. A false negative (FN) is an outcome where the model
incorrectly predicts the pixel belonging to a given class. Similarly, for tumor classification
task, TP represents a tumor class that is correctly predicted to belong to the given class
according to the ground truth whereas a TN represents a tumor class that is correctly
identified as not belonging to the given class. By the same token, false positive (FP) is
an outcome where the model incorrectly predicts a tumor class not belonging to a given
class. A false negative (FN) is an outcome where the model incorrectly predicts the class
belonging to a given class. Therefore, keeping different performance metrics used in brain
tumor segmentation and classification literature are listed as follows.

Accuracy (ACC) measures the ability of a model in correctly identifying all class or
pixels, no matter if it is positive or negative.

ACC =
TP + TN

TP + TN + FP + FN
(1)
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Sensitivity (SEN) indicates the frequency of correctly predicted positive samples/pixels
among all real positive/samples. It measures the models ability in identifying positive
samples/pixels.

SEN =
TP

TP + FN
(2)

Specificity (SPE) is the proportion of actual negatives, which was predicted as the nega-
tive (or true negative). It tells the percentage of classes/pixels could not correctly identified.

SPE =
TN

TN + FP
(3)

Recall (RE) describes the completeness of the machine learning model’s positive
predictions relative to the ground truth. It tells the percentage of classes/pixels annotated
in our ground truth, are also included in model’s prediction.

RE =
TN

TP + FN
(4)

Precision (PR) also known as positive predictive value (PPV) describes how often
the model predicting correct class/pixel. It tells the the correct proportion of models
predicted positives.

PR =
TP

TP + FP
(5)

F1-Score is the most popular metric that combines both precision and recall. It repre-
sents harmonic mean of the two.

F1score = 2
PR ∗ RE

(PR + RE)
(6)

Intersection over union (IoU) also known as Jaccard index (JI) measures the percent
overlap between the annotated ground truth mask and the model’s prediction output.

IoU =
TP

TP + FP + FN
(7)

Dice similarity coefficient (DSC) measures the spatial overlap between the ground
truth tumor region and the model segmented region. A zero DSC value indicates no spatial
overlap between the ground truth tumor region and model annotated result whereas a
value indicates a indicating complete overlap between the two.

DSC =
TP

1
2 (2TP + FP + FN)

(8)

Area under the curve (AUC) measure of the ability of a classifier to distinguish
between classes and is used as a summary of the receiver characteristics curve and it is an
area under true positive rate vs. false positive rate.

Similarity index (SI) refers to the similarity between the expert annotated ground truth
and the model’s segmentation. It describes the similar identity between the input image
and the detected tumor region.

SI =
2TP

2TP + FP + FN
(9)

5. Brain Tumor Segmentation Methods

Brain tumor imaging using techniques, such as MRI and CT, generate a significantly
large number of images. Brain MRI scan of a single individual consists of several slices
across the 3D anatomical view. Therefore, manual segmentation of brain tumors from
magnetic resonance (MR) images is a challenging and time-consuming task. In addition,
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the artifacts introduced in the imaging process results in low-quality images that make
the interpretation difficult. As a result, the manual brain MRI segment is susceptible for
inter and intra observable variability. To alleviate these challenges and help radiologist,
different automatic brain tumor segmentation techniques have been proposed in literature.

On these literature, authors have proposed an automated system for brain tumor
segmentation techniques that provides objective, reproducible segmentation that are close
to the manual results. These automated brain tumor segmentation can help to alleviate the
difficulties associated with manually analyzing brain tumors. This will speed-up the brain
image analysis process, improve diagnosis outcome, and make easy the follow-up of the
disease through evaluating tumor progression [34].

In this section, among the proposed brain tumor segmentation techniques in the
literature; region growing, machine learning, and deep learning based techniques will be
surveyed to identify the experimental dataset, pre-processing, feature extraction, segmen-
tation algorithm, and the reported performance.

5.1. Region-Based and Shallow Unsupervised Machine Learning Approach

One of the most commonly used segmentation techniques in automated image pro-
cessing applications is region-based segmentation. Regions in an image are a group of
connected pixels that satisfy certain homogeneity criteria, such as pixel intensity values,
shape, and texture [35]. In a region-based segmentation the image is partitioned into
dissimilar regions so that the desired region is located precisely [36]. The region-based
segmentation takes into account the pixel values, such as gray level difference and variance,
and spatial proximity of pixels, such as Euclidean distance and region compactness in
grouping pixels together. In brain tumor segmentation, region growing, and clustering
algorithms are the most commonly used region based segmentation technique.

Clustering-based segmentation is one of the powerful region based segmentation
techniques where an image is partitioned into a number of disjoint groups. In clustering
based segmentation pixels with high similarity categorized in a given region whereas
dissimilar pixels categorized into different regions [37]. Clustering techniques, which
are an unsupervised learning method, have been widely investigated in medical image
segmentation. However, in this survey work some of the most popular clustering methods,
such as k-means and its varieties [38–44], fuzzy c-means [38,39,41,45], subtractive clustering
(SC), and hybrid techniques [46–48].

K-means clustering is an unsupervised machine learning algorithm and it is com-
monly used to segment a region of interest from the remaining part of an image. K-means
has been extensively tested in brain tumor segmentation and has shown acceptable ac-
curacy [48]. The minimal computational requirement [37,48], simplicity to implement on
large dataset [49], adaptation to new examples, and guaranteed convergence are some of
the advantages that makes K-means popular segmentation algorithm. However, k-means
suffers with incomplete delineation of the tumor region [49], selection of the initial centroid
is not optimum [37,43], and it is sensitive to outliers [48,50]. Due to these limitations a
number of solutions have been proposed, including, evenly spreading the initial cluster
centers (k-means++), hybridizing k-means with other clustering techniques [49], adaptively
initializing cluster centers, such as adaptive k-means [43], modified adaptive k-means
(MAKM), and histogram based k-means.

Fuzzy c-means works by assigning membership values to each of the pixels in an
image corresponding to the centers of the clusters depending on a certain similarity cri-
teria [51]. In fuzzy c-means (FCM) clustering objects can belong to more than one cluster
based on its degree of membership. Therefore, in such a type of soft clustering technique,
image pixels can occupy multiple clusters. As a result, compared to hard-clustering tech-
niques such as k-means, FCM performs better on relatively noise free images. However,
in medical images such as brain MRI that can be easily affected by unknown noises, the
FCM performance is severely affected [52]. A number of researches have been performed
to improve the limitation of FCM [53–56].
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In region growing brain tumor segmentation, tissues including tumorous regions are
partitioned based on certain similarity criterion, such as homogeneity, texture, sharpness,
and gray levels. The technique starts by selecting an initial seed based on predefined
methods. Then, the neighboring pixels are added progressively to the seed pixel [57]. The
region growing based segmentation can properly segment regions with similar properties
and spatially separated regions. However, it is sensitive to noise and influenced by the
similarity criterion [57]. Therefore, it may end up with disconnected regions and results
in a hole in the segmented region. Furthermore, finding a good initial seed is not an easy
task [57]. Region growing and conventional unsupervised machine learning based brain
tumor segmentation techniques proposed in literature are summarized in Table 3. The
table indicates the brain MRI dataset used in the experiment, the centroid initialization
techniques, the objective function, and the segmentation performance.

5.2. Supervised Shallow Machine Learning Based Approach

Supervised machine learning-based brain tumor segmentation approaches trans-
formed the image segmentation problem into a tumorous pixel classification problem. The
input vector for these supervised learning models consisted of different extracted features,
and the output is a vector of desired classes for segmentation. In brain tumor segmenta-
tion, where tumor regions are often scattered all over the image, pixel classification rather
than classical segmentation methods are often preferable [65]. Therefore, the traditional
supervised machine learning algorithms have been used in the segmentation of a brain
tumor from a head MRI scan [66–76].

Table 3. Region growing and shallow unsupervised machine learning based brain tumor segmentation.

Paper Dataset Segmentation
Technique

Objective
Function

Performance

[58]
BRATS 2015

BRATS-MICCAI

Multi-level
thresholding with

level-set
segmentation

Euclidean
distance JI 81.94%, DSC 89.91%

[48] https://radiopaedia.org/
(accessed on 3 May 2021)

K-means and FCM Euclidean
distance

ACC 56.4 %

[43] BRATS
K-means with

histogram peaks
centroid initialization

Euclidean
distance -

[39] BRATS
Patch based k-means

with FCM
Euclidean
distance SI 91%

[42] BRATS 2012 Random
Sum of

Squared
Error

DSC 91%

[44]
MRI images collected by

authors
Bi-secting

(No initialization)

Sum of
Squared

Error
ACC 83.05%

[59] BRATS Force Clustering
Distance

(in pixels) -

[60] BRATS 2017 Random
Euclidean
distance DSC 62.5%

[61] MRI images collected by
authors DPSO 1 Euclidean

distance
ACC 99.98%, SEN 95.02%,
SPE 99.92% DSC 93.09%

https://radiopaedia.org/
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Table 3. Cont.

Paper Dataset Segmentation
Technique

Objective
Function

Performance

[62]
MRI images collected by

authors

FCM preceded
by gross tumor

volume segmentation
with random

centroid intialization

Inter-cluster
variance

DSC 95.93 ± 4.23%,
JI 92.81 ± 6.56%,

SPE 95.31 ± 6.56%,
SEN 98.09 ± 1.75%

[63]
MRI images collected by

authors
DWT 2 based

genetic algorithm (GA)
fitness function

variance ACC 97%

[64]
MRI images collected by

authors

semi-automatic
cellular automata

seeded segmentation
with morphological

post-processing

pixel similarity
function

DSC 90.88 ± 4.19%,
JI 84.11 ± 6.74%,

SPE 99.99 ± 0.01%,
SEN 91.20 ± 7.00%

1 Darwinian Particle Swarm Optimization, 2 Discrete Wavelet Transform.

In this section, as shown in Table 4, most relevant literature on brain tumor segmenta-
tion using traditional machine learning algorithms, such as support vector machine (SVM),
artificial neural network (ANN), random forest (RF) are surveyed to identify data used,
the pre-processing, feature extraction techniques, the classifier model, and whether or not
post-processing is implemented.

5.3. Deep Learning-Based Approach

Deep learning methodologies produce automatic features that avoid or minimize
the need for handcrafted features. In the deep learning-based brain tumor segmentation
approach, the general strategy is to pass an image through the pipeline of deep learning
building blocks and input image segmentation is performed depending on the deep fea-
tures. In literature, there are a variety of deep learning techniques proposed for segmenting
brain tumors. Some of such blocks contain deep convolutional neural networks (DCNNs),
convolutional neural network (CNN), recurrent neural networks (RNNs), long short-term
memory (LSTM), deep neural networks (DNNs), deep autoencoders (AEs), and generative
adversarial networks (GANs). In this section, literature in terms of these building blocks,
the dataset used, and the reported performance are presented as shown in Table 5.

Table 4. Summary of a shallow machine learning based segmentation.

Paper Dataset Preprocessing Features Model Post-
Processing Performance

[66] Clinically
collected MRI N4ITK deep features

from CNN SVM - DSC 88%, SEN 89%,
PR 83%

[67] Clinically
collected MRI Registration Intensity

texture

Multi-
kernel
SVM

Region
growing

TP 98.9%, FP 4.5%,
FN 3.1%

[68] BRATS 2013
N4ITK,

histogram
matching, SLIC 1

Gray
statistical,

GLCM SVM -
DSC 86.12%,
SEN 79.69%,
SPE 99.48%

[70] BRATS 2015 - Intensity,
texture

ANN,
SVM -

SVM: DSC 88.7%,
IOU 79.7%,

ANN: DSC 90.79%,
IOU 83.1%
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Table 4. Cont.

Paper Dataset Preprocessing Features Model Post-
Processing Performance

[71] BRATS 2015,
[77–79] -

Dual
pathway

tree
based

features

ccRF 2 mpAC 3 DSC 89%, SPE 90%,
SEN 85%

[72] BRATS 2012 registration,
normalization

intensity,
similarity,
blobness

RF

Independent
connected
component

analysis

DSC 96.5%

[74] [80]

N4ITK,
normalization,

histogram
matching

intensity,
gradient,
context

RDF 4 morphological
filtering

DSC 86.41%, SEN 82%,
PR 92.92%

[75] BRATS 2015
noise

removal,
enhancement

first
higher
order

features,
texture

RF
morphological

other
filtering

DSC 98.4%, SEN 97.9%,
SPE 80.7%, ACC 97.7%

[76] BRATS 2015 histogram
enhancement

Gabor
wavelet,
intensity

RF
morphological

other
filtering

DSC 85.5%, SEN 77.1%,
SPE 99.3%

1 Simple Linear Iterative Clustering, 2 Concatenated and Connected Random Forest, 3 Multiscale Patch Driven Active Contour, 4 Random
Decision Forest.

Table 5. Summary of deep learning based brain tumor segmentation techniques.

Paper Dataset Preprocessing Model
Architecture

Performance

[81] BRATS
2013 &

2015

bias field correction,
intensity and patch

normalization,
augmentation

Custom CNN DSC 88%, SEN 89%,
PR 87%

[82] BRATS
2013 intensity normalization,

augmentation

HCNN + CRF-RRNN 1 SEN 95%, SPE 95.5%, PR 96.5%,
RE 97.8%, ACC 98.6%

[83] BRATS
2015 Z-score normalization

on the image,

Residual Network+
Dilated convolution

RDM-Net 2

DSC 86%

[84] BRATS
2015 Z-score normalization

Stack Multi-connection
Simple Reducing_Net

(SMCSRNet)

DSC 83.42%, PR 78.96%, SEN 90.24%

[85] BRATS
2019

- Ensemble of a 3D-CNN
and U-net

DSC 90.6%

[86] BRATS
2015

Bias correction,
intensity normalization

Two-PathGroup-CNN
(2PG-CNN)

DSC 89.2%, PR 88.22%, SEN 88.32%

[87] BRATS
2018

- Hybrid two track U-Net
(HTTU-Net)

DSC 86.5%, SEN 88.3%, SPE 99.9%
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Table 5. Cont.

Paper Dataset Preprocessing Model
Architecture

Performance

[88] BRATS
2015

- P-Net with bounding
box and image specific
fine tunning (BIFSeg)

DSC 86.29%

[89] ADNI denoising,
Skull stripping,
sub-sampling

Multi-scale CNN
(MSCNN)

ACC 90.1%

[90] BRATS
2017

Intensity normalization,
resizing, Bias field

correction

Cascaded 3D U-nets DSC 89.4%

[91] BRATS
2015 &

2017

Down sampling 3D Center-crop
Dense Block

BRATS 2015: DSC 88.4%, SEN 83.8%
BRATS 2017: DSC 88.7%, SEN 84.3%

[92] BRATS
2018 &

2019

Z-score normalization,
cropping

3D FCN 3 BRATS 2018: DSC 90%, SEN 90.3,
SPE 99.48%; BRATS 2019: DSC 89%,

SEN 88.3%, SPE 99.51%

[93] BRATS
2018

intensity normalization,
removing 1% of
highest & lowest

intensity

DCNN
(Dense-MultiOCM 4)

BRATS 2018: DSC 86.2%, SEN 84.8%,
SPE 99.5%

[94] TCIA Image cropping,
padding, resizing,

intensity normalization

U-Net DSC 84%, SEN 92%,
SPE 92%,
ACC 92%

[95]
BRATS
2013,
2015,
2018

- AFPNet 5 + 3D CRF
BRATS 2013 DSC 86%,
BRATS 2015 DSC 82%,

BRATS 2018 86.58%

[96] BRATS
2015,
2017

z-score normalization
Inception-based U-Net
+ up skip connection +

cascaded training
strategy

DSC 89%, PR 78.5%, SEN 89.5%

[97] BRATS
2015,

BrainWeb

cropping,
z-score normalization,

min-max normalization
(BrainWeb)

Tripple intersecting
UNets (TIU-Net)

BRATS 2015: DSC 85%,
BrainWeb DSC 99.5%

[98] BRATS
2015

- LSTM multi-modal
UNet

DSC 73.09%, SEN 63.76%,
PR 89.79%

1 Heterogeneous CNN + Conditional Random Fields-Recurrent Regression based Neural Network, 2 Deep Residual Dilate Network with
Middle Supervision, 3 Fully Convolutional Neural Network, 4 OCcipito Module, 5 Atrous-Convolution Feature Pyramid.

6. Brain Tumor Classification Methods

Based on the WHO’s classification of central nervous system (CNS) tumors, there are
more than 150 types of CNS tumors that are mainly categorized into primary and metastatic
(secondary) tumors [99]. The primary tumors originate from the brain or the immediate
surrounding tissues. Whereas, metastatic tumors arise from other body parts and migrate
to the brain through the bloodstream. Metastatic tumors are considered cancerous or
malignant, while primary tumors can be benign or malignant.

A biopsy is the existing gold standard procedure in brain tumor classification. How-
ever, it usually requires definitive brain surgery to take a sample [100,101]. On the other
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hand, an automated brain tumor classification from an MRI is non-invasive so that it avoids
tumor sample taking procedure and it is safer. In addition, the machine learning-based
brain tumor classification from an MRI scan can improve the diagnosis and treatment
planning [101]. As a result, an automatic brain tumor classification from MRI images using
machine or deep learning techniques is an active research area, and promising results have
been achieved [100,102–106].

6.1. Conventional Machine Learning Based Approach

Machine learning is a paradigm where a machine is given a task where its performance
improves with experience. Machine learning techniques are commonly grouped into three
major types: supervised, unsupervised, and reinforcement learning [107]. Supervised
learning is based on training a data sample from the data source with correct classification
already assigned by domain experts, whereas, in unsupervised learning, the algorithm
finds hidden patterns from the unlabeled data. On the other hand, reinforcement learning
is carried out by making a sequence of decisions using reward signals. Therefore, the algo-
rithm learns through receiving either rewards or penalties for the actions it performs [107].
Machine learning has been used in the classification of brain tumors from MRI images, and
promising classification performance has been reported [108–115].

The traditional machine learning-based brain tumor classification techniques often
consist of preprocessing, segmentation, feature extraction, and classification stages.

6.1.1. Pre-processing

Brain MRI scans are significantly affected by different types of noises, including salt
and pepper, Gaussian, Rician, and speckle noise [116–118]. These noises impose challenges
in machine learning-based applications [117,119]. Therefore, obtaining high-quality im-
age denoising is one of the important tasks in the pre-processing stage. Each method
used in MRI denoising has its advantages and disadvantages. Several methods have
been developed for reducing noises based on statistical property and frequency spec-
trum distribution [119]. In addition to denoising, tasks such as removing tags, smoothing
the foreground region, intensity inhomogeneity correction, maintaining relevant edges,
resizing, cropping, and skull stripping are part of pre-processing [110–112].

6.1.2. Region of Interest (ROI) Detection

In an MRI brain scan, the segmentation task labels each voxel in an MRI image to
specify its tissue type and anatomical structure [119]. The objective of ROI detection in
tumor classification is to locate the tumor region from an MRI scan, improve the visualiza-
tion, and allow quantitative measurements of image structures in the feature extraction
stage [108,112]. Brain tumor segmentation can be performed in three different ways,
namely, manual segmentation, semi-automatic segmentation, and fully automatic segmen-
tation [119]. The autonomous brain segmentation techniques have been briefly discussed
in Section 5.

6.1.3. Feature Extraction

The feature extraction techniques are mathematical models based on various im-
age properties. The different types of features include texture, brightness, contrast,
shape, Gabor transforms, gray-level co-occurrence matrix (GLCM), and wavelet-based
features [115,120], histogram of local binary patterns (LBP) [121]. On the other hand, re-
cently, deep features that are obtained from deep neural networks such as CNN have been
used as input to SVM classifier to classify brain tumors [122]. In brain tumor classification,
it is customary to fuse several features from different extraction models to improve the
discrimination power of the machine learning model [123]. Furthermore, feature selection
is applied for dimensionality reduction.
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6.1.4. Classification

Different classification techniques have been proposed by many authors for identifying
tumor types from brain images. Different authors have classified tumor into a variety of
ways, for instance meningioma, glioma, and pituitary [109,121,122,124,125]; astrocytoma,
glioblastoma, and oligodendrogliamo [112]; glioma tumor grades (I–IV) [113]; benign
and malignant stages(I–IV) [126–129]; diffuse midline glioma, medulloblastoma, pilocytic
astrocytoma, and ependymoma [102]; multifocal, multicentric, and gliomatosis [130];
ependymoma and pilocytic astrocytoma [120].

In brain tumor classification, the most commonly used classifiers are neural net-
work [108–111,131], support vector machines (SVM) [108,115,124,127–130,132,133], K-
nearest neighbor (KNN) [112,121,130,134], Adaboost [126], and hybrid models [113,135,136].
The neural network was implemented using different architectures, such as feedforward
neural network [110,125], multilayer perceptron neural network [109,137], and probabilistic
neural network (PNN) [111,131]. Support vector machine (SVM) was commonly imple-
mented using three kernels, linear, homogeneous polynomial, and Gaussian radial basis
function (RBF) [108,115]. In the KNNclassifier, the testing feature vector is classified by
finding the k-nearest training neighbor, that is, the classifier does not use any model to
match and is only based on memory. However, KNN uses different measurements such as
euclidean distance, city block, cosine, and correlation to find the nearest distance between
the testing and training class feature vectors [134].

A summary of recent shallow machine learning-based brain tumor classification
techniques is given on Table 6.

6.2. Deep Learning Approach

Even though promising progress has been made in classifying brain tumors into
their respective types from an MRI brain scan using shallow supervised machine learning
algorithms, there are still challenges in classifying brain tumors from an MRI scan. These
challenges are mainly due to the ROI detection, and extracting descriptive information
using traditionally handcrafted feature extraction techniques is not efficient [122]. This
inefficiency mainly arises due to the complex structure of brain anatomy and the high-
density nature of the brain.

Unlike shallow machine learning algorithms, deep learning is based on learning data
representations and hierarchical feature learning. In deep learning-based brain tumor
classification, the deep learning models discover the descriptive information that optimally
represents different brain tumors. This nature of deep learning transforms the brain tumor
classification from handcrafted feature-driven into data-driven problem [103]. Among
the deep learning models, a convolutional neural network (CNN) is widely used in brain
tumor classification tasks, and a substantial result has been achieved [100].

In the reviewed literature, there are differences in the techniques used for the classi-
fication of brain tumors. The difference encompasses: (i) the dataset used for classifica-
tion including tumor types, (ii) the implemented pre-processing and data augmentation
techniques, (iii) whether or not the ROI segmentation was used as a prior step in the
classification, (iv) whether a pre-trained or custom-designed deep learning model is used.
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Table 6. Summary of conventional ML based brain tumor classification techniques.

Paper Dataset Preprocessing ROI
Detection Feature Extraction Classifier Tumor Types Performance

[108] Local dataset Median and
weiner filter

k-means
modified FCM

shape features,
statistical features

ANN Benign
malignant stage (I-IV)

SPE 100%, SEN 98%, ACC 97.73%, BER 0.0294

[109] [138] Median and
weiner filter

manually 2-D DWT
2-D Gabor feature

ANN Glioma (GL),
Meningioma (MG)

Pituitary tumor (PT)

overall ACC 91.9%, SPE (GL) 96.29%,
SPE (MG) 96%, SPE (PT) 96.2%, SEN (GL) 95.1%,

SEN(MG) 86.97%, SEN(PT) 91.24%

[110] Local dataset resizing
skull removing

Canny Gabor filter,
GLCM
DWT

ANN Benign and
malignant
stage (I-IV)

SPE 98.5%, SEN 99.1%, ACC 98.9%

[139] Local dataset resizing - PCA 1 PNN Benign
malignant stage

SPE 100%, SEN 92.3%, ACC 97.4%

[112] TCIA resizing,
cropping,

median filtering

morphological,
watersheed

shape features KNN Astrocytoma
Glioblastoma

Oligodendroglioma

ACC 89.5%

[115] Local dataset wavelets thresholding DWT coeficients
statistical features

SVM Benign
malignant

ACC (linear) 92%, ACC (kernel) 99%

[134] BRATS and
Local dataset

enhancement
median filter Morphological GLCM features SVM

Benign
malignant

BRATS:
SVM (linear):SPE 100%, SEN 72%, ACC 82.5%

SVM (Quadratic):SPE 73.3%, SEN 88%,
ACC 82.5%

SVM (RBF): SPE 100%, SEN 76%, ACC 85%
Clinical:

SVM (linear):SPE 60%, SEN 76%, ACC 68%
SVM (Quadratic):SPE 88%, SEN 100%,

ACC 94%
SVM (RBF): SPE 100%, SEN 92%, ACC 96%

[120] Local dataset Gabor transform
texture
wavelet

SVM Ependymoma
Pilocytic Astrocytoma

SPE 80%, SEN 93%, ACC 88%, AUC 0.86
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Table 6. Cont.

Paper Dataset Preprocessing ROI
Detection Feature Extraction Classifier Tumor Types Performance

[140] BRATS-2015 wavelet filters,
inhomogeneity

correction

edge detection,
morphological

operations

shape,
texture,

intensity

PSO 2-
SVM

Benign,
malignant

SPE 94.8%, SEN 100%

[136] - median filtering
skull removing

thresholding GLCM GA-
SVM

Benign,
malignant

-

[130] REMBRANDT - - texture
features

SVM Multifocal,
Multicentric,
Gliomatosis

PR 90%, SEN 90%, ACC 90%, F1-Score 90%

[133] Local dataset Image fusion
with contourlet

transform

Otsu’s
thresholding

curvlet transform
GLCM features

SVM Benign,
Malignant

ACC 93%

[125] [138] min-max
normalization,

- NGIST
features

RELM 3 Meningioma,
Glioma,
Pituitary

ACC 94.23%

[126] Local dataset median
filter

thresholding GLCM texture
features

Adaboost Benign,
Malignant

SPE 62.5%, SEN 88.25%, ACC 89.90%

[127] Local dataset resizing
enhancement

morphological,
thresholding

GLCM
statistical

texture
features

SVM Benign,
Malignant

SPE 62.5%, SEN 88.25%, ACC 89.90%

[128] Local dataset noise removal,
enhancement

Expectation
maximization,

levelset

GA,
statistical
features

SVM Benign,
Malignant

SPE 100%, SEN 98%, ACC 98.30%
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Table 6. Cont.

Paper Dataset Preprocessing ROI
Detection Feature Extraction Classifier Tumor Types Performance

[124] [138]
down sampling

Gabor filter - statistical
features SVM

Meningioma,
Glioma,

Pituitary

Meningioma:
SVM (linear):RE 0.63, PR 0.66, ACC 82.38%
SVM (poly):RE 0.62,Pr. 0.73, ACC 84.33%

Glioma:
SVM (linear):RE 0.82, PR 0.82, ACC 83.01%
SVM (poly):RE 0.88, PR 0.79, ACC 84.01%

Pituitary:
SVM (linear):RE 0.94, PR 0.90, ACC 95.27%
SVM (poly):RE 0.91,PR 0.94, ACC 95.43%

[122] Kaggle Brain
Tumor

Detection 2020

cropping,
resizing

using bicubic
interpolation

-
Deep features

from
pretrained

CNN

SVM Meningioma,
Glioma,
Pituitary

ACC 90.19%

1 Principal Component Analysis, 2 Particle Swarm Optimization, 3 Regularized Extreme Learning Machine.
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For instance, Badža and Barjaktarović [100] used publicly available contrast-enhanced
T1-weighted brain tumor MRI scans [138]. The dataset contains meningioma, glioma,
and pituitary brain tumor types scanned along with the three anatomical views, i.e.,
axial, sagittal, and coronal. The images were preprocessed using techniques, such as
normalization and resizing. In addition, images in the dataset are augmented with 90o

rotation and vertical flipping to increase the training dataset. Furthermore, they used
a custom-designed CNN model trained with Adam optimizer with a mini-batch size of
16 and tested with 10—fold cross-validation. The weights of the convolution layers are
initialized using a Glorot initializer. The model performance was measure using sensitivity,
specificity, accuracy, precision, recall, and F1-score. The sensitivity for meningioma, glioma,
and pituitary is 89.8%, 96.2%, and 98.4%, respectively. The specificity of the model for
meningioma, glioma, and pituitary is 90.2%, 95.5%, and 97.7%, respectively. Furthermore,
the models’ overall accuracy, average precision, average recall, and F1-score are 95.4%,
94.81%, 95.07%, and 94.94%, respectively. The summary of this and other literature is
presented on Table 7.

Table 7. Summary of deep learning based brain tumor classification techniques.

Paper Dataset Preprocessing Classifier
Model

Tumor
Types

Performance

[100] [138] normalization,
resizing,

augmentation

Custom CNN
model

Meningioma,
Glioma,
Pituitary

ACC 91.9%, precision 94.81%,
RE 95.07%, F1-score 94.94%,

SPE(GL) 96.2%, SPE(MG) 92%,
SPE(PT) 97.7%, SEN(GL) 96.2%,
SEN(MG) 89.8%, SEN(PT) 98.4%

[141] [78,142] Augmentation
using GAN

Multi-stream
2D-CNN

model

Glioma
subtypes:
Isocitrate

dehydrogenase 1
mutation (IDH1),
& IDH1 wild-type

mean ACC 88.82%
mean SEN 81.81%
mean SPE 92.17%

[143] [138,144] resizing
augmentation

Custom CNN
model

Meningioma,
Glioma &
Pituitary

and
Glioma

(grade:II-IV)

MG: PR 95.8%, SEN 95.5%, SPE 98.7%,
ACC 97.54%, GL: PR 97.2%, SEN 94.4%,
SPE 95.1%, ACC 95.81%, PT: PR 95.2%,

SEN 93.4%, SPE 97%, ACC 96.89%
Grade

II: PR 100%, SEN 100%, SPE 100%,
ACC 100%, III: PR 100%, SEN 95%,
SPE 100%, ACC 95%, IV:PR 96.3%,

PR 100%, SEN 95%, SPE 100%,
ACC 95%SEN 100%, SPE 98%, ACC 100%

[145] [138] - CNNBCN 1 Meningioma,
Glioma&
Pituitary

ACC 95.49%

[146] [138] -
BayesCap:
captures

prediction
uncertainity

Meningioma,
Glioma&
Pituitary

mean ACC 73.9% CI 2:(73.4%, 74.4%)
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Table 7. Cont.

Paper Dataset Preprocessing Classifier
Model

Tumor
Types

Performance

[147] [138] Image
rotation,
resizing

AutoML 3 Meningioma,
Glioma &
Pituitary

MG: PR 94.51%, SEN 87.76%, SPE 98.7%,
ACC 96.29%, F1-Score 91.01%,
MCC 4 88.77%, G-Mean 96.09%

GL: PR 96.97%, SEN 95.32%, SPE 96.88%,
ACC 96.08%, F1-Score 96.14%,
MCC 92.17%, G-Mean 96.09%

PT: PR 91.61%, SEN 99.24%, SPE 96.27%,
ACC 97.14%, F1-Score 95.27%,
MCC 93.38%, G-Mean 97.75%

[148] [138] - Iception-V3
DensNet201

Meningioma,
Glioma&
Pituitary

Iception-V3: ACC 99.34%
DensNet201: ACC 99.51%

[149] [138] augmentation,
contrast-

stretching

AlexNet,
GoogleNet &

VGG16 5

Meningioma,
Glioma&
Pituitary

AlexNet: ACC 95.46%
GoogleNet: ACC 98.04%

VGG16 98.69%

[150] [138] - ConvCaps Meningioma,
Glioma&
Pituitary

ACC 93.5%

[151] [138] flipping,
patching

CapsulNet Meningioma,
Glioma&
Pituitary

MG: PR 85%, RE 94%,
F1-Score 94, %GL: PR 85%,

RE 94%, F1-Score 94%,
PT: PR 85%, RE 94%,

F1-Score 94%

[152] [138] - G-ResNet Meningioma,
Glioma&
Pituitary

ACC 95%

[153] [138] - DDIRNet 6 Meningioma,
Glioma&
Pituitary

ACC 99.69%, PR 99.6%,
RE 99.4%, F1-score 99.4%

[103] [138] - Multiscale
CNN

Meningioma,
Glioma&
Pituitary

ACC 97.3%

[154] [155] DWT DNN Meningioma,
Glioma&
Pituitary

ACC 96.15%, PR 94.12%,
AUC 98.75%,F1-score 96.97%,

RE 100%

[156] [138] - Custom CNN
model

Meningioma,
Glioma&
Pituitary

ACC 84.19%

[157] BraTS
2018

& 2019

- Pre-trained
DenseNet201

HGG 7 & LGG 8 HGG: ACC 99.8%,
LGG: ACC 99.3%
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Table 7. Cont.

Paper Dataset Preprocessing Classifier
Model

Tumor
Types

Performance

[158] [138],
[144,159]

- Custom CNN
model

Class 1:
Normal,

Metastatic,
Meningioma,

Glioma&
Pitiutary
Class 2:

Grade II,
III & IV

Class 1: ACC 92.66%
Class 2: ACC 98.14%

[160] BraTS
2019

- Custom CNN
model

Astrocytoma,
Glioblastoma,

Oligodendrogloma,

Class 1: ACC 92.66%
Class 2: ACC 98.14%

[94] TCIA
cropping,
padding,
resizing,

normalization

VGG16 Grade II & III ACC 89%, SEN 87%, SPE 92%

1 Convolutional Neural Network based on Complex Networks, 2 Confidence Interval, 3 Automated Machine Learning, 4 Matthew’s
Correlation Coefficient, 5 Visual Geometry Group, 6 Deep Dense Inception Residual Network, 7 High Grade Glioma, 8 Low Grade Glioma.

7. Discussion

This paper presented a thorough survey of techniques used in brain tumor segmenta-
tion and classification. The survey encompasses several traditional machine learning and
deep learning-based methods with their quantitative performance. The conventional image
segmentation techniques, that is, region growing and unsupervised machine learning used
in brain tumor segmentation are presented in Table 3. The region growing with all other
conventional image processing segmentation techniques is the earliest approach applied
in brain tumor segmentation [161]. It is mainly affected by noises, poor image quality,
and initial seed point. To overcome these challenges, an automatic seed point selection
by optimization techniques and artificial intelligence-based seed point selection has been
proposed [162]. In addition, it has a limitation in segmenting tumors that appear scattered
across the brain. In the second generation segmentation techniques which are based on
shallow unsupervised machine learning, such as fuzzy c-means and k-means grouping
of pixels into more than one class has been achieved. However, these methods are also
highly sensitive to noise. Therefore, through incorporating additional information and
adaptively selecting the centroid, the segmentation performance of medical images can be
improved [6]. In addition, the inherent ambiguous boundaries between normal tissues and
brain tumors pose a significant challenge for conventional and clustering segmentation
techniques. Therefore, to address this challenge, pixel-level classification-based segmenta-
tion techniques using traditional supervised machine learning have been proposed [70].
These methods are often accompanied by feature engineering, where the tumor descriptive
pieces of information are extracted to train the model. Furthermore, the supervised machine
learning segmentation output is further improved through post-processing [71,76].

Nowadays, conventional image processing and shallow machine learning-based brain
tumor segmentation techniques are becoming obsolete due to the advent of deep learning-
based techniques. The deep learning-based approach performs an end-to-end tumor
segmentation by passing an MRI image through the pipeline of its building blocks. These
models often extract tumor descriptive information automatically and avoid the need for
handcrafted features. However, the need for a large dataset to train the models and the
difficulty in interpreting the models hinders their usage in medical fields [163]. In terms of
segmentation performance, it is evident from Tables 4 and 5 that the deep learning-based
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and supervised shallow machine learning-based with post-processing has comparable
performances. Asummary of the number of brain tumor segmentation techniques surveyed
in this is given on Figure 1.

C
us

to
m

C
N

N
an

d
it

s
va

ri
an

ts

U
-N

et
an

d
it

s
va

ri
an

ts

P-
N

et

D
N

N

R
es

N
et

R
eg

io
n

G
ro

w
in

g

SV
M

R
an

do
m

Fo
re

st

A
N

N

2

4

6

8

6

7

2 2 2

8

4

5

1

N
um

be
r

of
lit

er
at

ur
e

Figure 1. Number of brain tumor segmentation methods.

Aside from segmentation of brain tumor region from head MRI scan, classification
of tumor into their respective histological type has great importance in diagnosis and
treatment planning which actually requires biopsy procedure in today’s medical prac-
tice [158]. Several methods which encompass shallow machine learning and deep learning
have been proposed for brain tumor classification. The conventional shallow machine
learning algorithms often consist of preprocessing, ROI detection, and feature extraction.
However, due to the inherent noise sensitivity of MRI image acquisition, variations in the
shape, size, location, and contrast of tumor tissue cells, extracting descriptive information
is a challenging task. Therefore, nowadays, deep learning techniques are becoming the
state-of-the-art approach to classify different types of brain tumors, such as astrocytoma,
glioma, meningioma, and pituitary. Several brain tumor classifications have been discussed
in this survey, and a summary of the number of brain tumor classification techniques
surveyed in this paper are given on Figure 2.

Several brain tumor datasets that are collected by researchers datasets and those
that are available on repositories were used in the training and testing of brain tumor
classification models. The publicly available dataset provided by J. Cheng et al. [138],
which contains meningioma, glioma, and pituitary tumor in T1-WC MRI-images is one
of the most commonly used datasets in the training and testing classifier models. Using
this dataset, Gumaei, A. et al. [125] has achieved a classification accuracy of 94.23% using
a regularized extreme learning machine, while the Kokkalla, S. et al. [153] have reported
a classification accuracy of 99.69% using custom modified deep-dense inception residual
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network (DDIRNet). These results indicate that the deep learning-based model outweighs
the shallow machine learning-based techniques for this particular dataset.
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Figure 2. Number of brain tumor classification methods.

Challenges in Automatic Brain Tumor Segmentation and Classification

The development of autonomous brain tumor segmentation and classification models
using MRI images is still a challenging task. The challenges are due to several constraints
including the effect of different types of noises embedded in the brain MRI images [116–118],
motion and metal artifacts during image acquisition [164], low-resolution MRI images [165],
and lack of deep learning models interpretability and transparency [166,167].

One of the most common challenges in machine learning-based brain tumor segmen-
tation and classification is the noisiness of an MRI image. Therefore, noise estimation
and denoising MRI images is a crucial pre-processing task for improving the accuracy of
brain tumor segmentation and classification models. Therefore, several techniques have
been proposed for denoising MRI images, such as modified iterative grouping median
filter [118], Wiener filter and wavelet transform [168], non-local means [169], and deep
learning-based approaches [170,171]. However, a robust denoising technique for MRI
images is still challenging and the pursuit to obtain an efficient denoising technique has
been an active research area [170]. Similarly, motion, metal, and other artifacts are also a
source of challenge to the robustness of machine learning-based brain tumor segmentation
and classification. Recently, deep learning-based solutions for minimizing the effects of
these artifacts have been proposed [164,172]. MRI provides a high fidelity brain scan
image compared to other imaging techniques. However, post-acquisition image process-
ing techniques, including deep learning-based methods have been used to increase the
resolution of MR images so that the efficiency of autonomous brain tumor segmentation
and classification models improved[165,173]. The other major challenge is the lack of deep
models’ interpretability, and often they are perceived as black-box. As a result, attaining
any evidence regarding the process they perform is difficult. However, the transparency
and interpretability of deep learning techniques are crucial for the complete integration
into medical diagnosis [166].
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8. Conclusions

Automating the brain tumor segmentation and classification task has tremendous ben-
efits in improving the diagnosis, treatment planning, and follow-up of patients. Through
applying various techniques, including conventional image processing, shallow machine
learning, and deep learning techniques, undeniable progress have been achieved in au-
tomating brain tumor segmentation and classification tasks. However, building a fully
autonomous system that can be used on clinical floors is still a challenging task.

Compared to region-growing and shallow machine learning algorithms, automating
the brain tumor segmentation and classification using deep learning techniques have huge
benefits. This is mainly due to the powerful feature learning ability of deep learning tech-
niques. In addition, as can be shown in Figures 1 and 2, deep learning-based brain tumor
segmentation and classification techniques are becoming the most active research area. In
this paper, a comprehensive survey on region growing, shallow machine learning, and
deep learning-based brain tumor segmentation and classification methods are presented.
These methods are structurally categorized and summarized to give an insight to the
reader of the dataset used, pre-processing, feature extraction, segmentation, classification,
post-processing, and the reported model performances in the literature. Furthermore, the
pros and cons of the methods and the model evaluation metrics have been discussed.
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