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Abstract: Deep Learning is developing interesting tools that are of great interest for inverse imaging
applications. In this work, we consider a medical imaging reconstruction task from subsampled
measurements, which is an active research field where Convolutional Neural Networks have already
revealed their great potential. However, the commonly used architectures are very deep and,
hence, prone to overfitting and unfeasible for clinical usages. Inspired by the ideas of the green AI
literature, we propose a shallow neural network to perform efficient Learned Post-Processing on
images roughly reconstructed by the filtered backprojection algorithm. The results show that the
proposed inexpensive network computes images of comparable (or even higher) quality in about
one-fourth of time and is more robust than the widely used and very deep ResUNet for tomographic
reconstructions from sparse-view protocols.

Keywords: green AI; sparse-views tomography; learned post-processing; CNN; UNet; tomographic re-
construction

1. Introduction

Convolutional Neural Networks (CNNs), with their remarkable capacity of learning
with multiple levels of abstraction, are giving new impetus to researchers working on
inverse problems, and the imaging sector is one of the most involved field [1]. In fact,
researchers have begun to tackle inverse imaging applications, such as denoising, deconvo-
lution, in-painting, superresolution, and medical image reconstruction, with CNNs, and
they all report significant improvements over state-of-the-art techniques, encompassing
sparsity-based models derived from compressed sensing approaches [2,3].

In this paper, we focus on the X-ray Computed Tomography (CT) image reconstruction
as a representative field of study of challenging inverse problem tasks for imaging. CT, in
fact, is one of the most exploited diagnostic modalities in medical imaging, but the high
radiation exposure per patient is unhealthy and may cause cancers. Hence, the definition and
implementation of new safer protocols has become an active and interesting area of research
in the inverse imaging community. In particular, the so-called Sparse-view CT (SpCT, or few-
view CT) technique is a recent and popular proposal that lowers the radiation dose by reducing
the number of X-ray projection views. In traditional CT (Figure 1a), about one thousand
projections are executed over the 360-degree trajectory, whereas in the SpCT protocols
(Figure 1b), the angular step between two adjacent scans is wider. Common sparse protocols
consider scanning angular interval of one degree approximately. Furthermore, due to
limitations of human anatomy or equipment manufactory, in special cases, the X-ray source
may walk only a semi-circular or C-shape path (as depicted in Figure 1c), and the SpCT
configuration is labeled as limited angle CT. Such low-dose tomographic approaches lead to
incomplete CT projection data, and such subsampled measurements usually produce severe
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streaking artefacts on the Filtered Back-Projection (FBP) reconstructions. To address this,
compressed sensing-based approaches have been investigated in the literature, minimizing
the Total Variation (TV) or other sparsity-promoting priors combined with data fidelity
terms [4–11]. Although the very accurate achievable results, the optimization approach has
not been widely adopted yet in clinical setting because of its high computational cost.

(a) Traditional CT (b) Sparse-view CT (c) Limited-angle CT

Figure 1. The three different CT geometric protocols. In the traditional setting (a), the X-ray source
and the detector walk a full circle trajectory with a very small angular step, which is enlarged in
sparse-view CT (b), whereas in limited-angle CT (c), the source-detector rotation is restricted to a
C-shape path.

As anticipated, the advent of deep learning is revolutionizing how researchers address
CT (and, in particular, SpCT) image reconstruction, and a number of works have already
been published trying to exploit the deep learning data-adaptivity for reaching high-
quality medical images [12,13]. To this aim, we now focus on the paradigm sometimes
referred to as Learned Post-Processing (LPP) or Deep Artifact Correction, which employs deep
neural networks to suppress artefacts on roughly reconstructed images. This framework
is graphically represented in Figure 2 for the specific context of SpCT, where the FBP
algorithm is typically used to transform the subsampled sinogram data into the 2D medical
image, and the LPP is performed at the end of whole reconstruction workflow to remove
streaking artefacts and noise.

Figure 2. Graphical draft of the considered two-step workflow for tomographic reconstruction from
sparse-view data.

To the best of our knowledge, the first proposal of an LPP scheme for sparse-view
CT dates back to 2016 with the pioneering paper [14], where chest images were restored
by an end-to-end CNN that was pre-trained to learn the mapping between the FBP and
artefact-free images. Later, many works have comprised UNet [15] architectures to fully
take advantage of the down-sampling operations in the contracting path. In fact, since the
FBP reconstruction from subsampled measurements are characterised by streaking (and
hence global) artefacts, CNNs equipped with large receptive fields would better restore
images from SpCT [16–18]. In addition, residual learning strategies have been embedded
in the UNet architectures to preserve high texture details, which are important as well as
difficult to recover during the expansive path [3,19,20]. Interestingly, the studies by Han
et al. have already demonstrated the superiority of LPP strategies over some TV-based
iterative algorithms for sparse-view CT reconstructions [17,21].
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On the other hand, two main disadvantages of neural networks limit the effectiveness
of the LPP approach. On one side, as highlighted in [22,23], the robustness of neural
networks for medical applications is still a concern as they are vulnerable to unseen
patterns. For instance, whenever the network takes as input an out-of-domain image,
the noise- and artefact-free output may contain anatomical structures placed at wrong
positions or even fake organ-like structures in the background. On the other side, the very
deep structure of UNet requires a very expensive training in terms of time and consumed
energy. To handle this constraint, the common choice adopted in the aforementioned
papers consists of training the neural networks on small size bi-dimensional images: real
medical 2D and 3D images are often too large for the present training possibilities.

Intertwined to these drawbacks, the green AI (Artificial Intelligence) line of thought
is currently offering a new perspective and an interesting prospective that fit the inverse
medical imaging community [24–27]. In fact, managing and reducing the energy cost of in-
frastructure and keeping a balance between model accuracy and sustainable computational
costs, green AI is in line with medical requirements of real clinical settings.

Aim and Contribution of the Paper

The aim of this paper is to propose a “green” (but nonetheless accurate and reliable)
alternative to the widely used residual UNet scheme for the LPP reconstruction of CT
images. Such choice may have many positive sides. First, looking for solutions that save
time and energy is an essential prospective in our society. Secondly, lowering computational
times can also reduce the cost of the hardware necessary to train the algorithms, making
CT clinical exams and research more accessible. At last, due to the ongoing development
of 3D CT imaging and the clinical requirement of almost real-time reconstructions, the
forward pass in the LPP scheme must be as fast as possible.

In this scenario, the main contributions of this paper can be resumed as follows. On
one side, we propose to use a very light convolutional network to correct artefacts on CT
reconstructions from sparse views. The considered CNN allows for a very fast training,
which can be adapted to large 2D images and 3D volumes. In particular, different from the
UNet, the considered architecture is composed by only three inner layers and acts in single-
scale modality on the input image. Due to its extreme light structure, it is expected not to
overfit on the training set. On the other side, we validate the robustness and vulnerability
of the proposed learned post-processing not only on a test set but even on out-of-domain
cases, i.e., on images with slightly different patterns or statistics than the training samples.
Such analysis is unusual in the literature, although it is well-known that it is important
to investigate whether a neural network is vulnerable to perturbations on its input with
respect to the training images to assess the CNN stability or overfitting.

The paper is organized as follows. In Section 2, we describe the LPP workflow
for CT image reconstruction, and we illustrate the networks architecture; in Section 3,
the numerical experiments are presented and discussed, and finally, Section 4 reports
some conclusions.

2. Methods and Materials

In this section, we present and compare the two neural network architectures we
tested for artefact removal on tomographic image reconstructions from sparse views. The
first one is a residual UNet, labeled as ResUNet in the following. The second scheme is
a very simple CNN composed by three layers and working in Single-Scale on the input
image, and hence, it is denoted as 3L-SSNet.

As already mentioned, each proposed CNN is applied on the FBP reconstructed image
to correct its artefacts (Figure 2). Formally, if we denote the artefact-corrupted image
achieved by the FBP as y and the network output as x̄, the Learned Post-Processing task
can be formulated as:

x̄ = Fθ(y) (1)
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where Fθ describes the neural network action on the input image y for the final restored
image x̄.

2.1. The ResUNet Architecture

State-of-art results in the image processing field have demonstrated that the popular
UNet architecture by [15] operates efficiently whenever the input image shows global
artefacts. As a matter of fact, it is known [28] that the pooling/unpooling strategy does
permit to enlarge the receptive field of convolutional filters in such a way that it becomes
possible to capture global information about the image in the lowest inner layers, whereas
in the higher part, only the local information are processed. As a consequence, the UNet
structure has been elected as the standard architecture even for sparse-view tomographic
imaging tasks, where the streaking artefacts are visible on the whole image. In fact, the
UNet scheme has been already successfully applied, working on the image or on a wavelet-
based image transformation [29–31].

As observed in the theoretical work [21] by Han et al., in the case of sparse-view CT
with FBP reconstruction, it can be proven that the residual manifold containing the artefacts
is easier to learn than the true image manifold. In other words, it could be more effective to
learn the residual map

MR : y 7−→ y + x̄ (2)

than the correction map
MC : y 7−→ x̄ (3)

for artefact suppression tasks. Hence, the image restoration model in Equation (1) turns
into the following one:

x̄ = y + Rθ(y) (4)

which implies that the residual neural network Rθ(·) must learn the artefacts manifold
from y. Furthermore, residual deep networks have been already applied in the LPP step
to remove artefacts from low-dose or sparse-view FBP reconstructions [17,18,32]. In this
work, inspired by the network proposed in [33], we consider the residual-learning UNet
architecture (labeled as ResUNet in the following) represented in Figure 3. In more detail,
the ResUNet is a fully convolutional neural network with a symmetric encoder-decoder
structure and pooling/unpooling operators to enlarge its receptive field. The pooling
operations in the encoder naturally divide the network into distinct levels of resolution,
which we will refer to as l, l = 0, . . . , L, where L + 1 is the total number of levels in the
network. At each level, a fixed number nl of convolutional filters is applied, each one
with the same number of channels cl , which is constant along the level. Given a baseline
number of convolutional channels c0 (that corresponds to the number of channels in the
first level), we will compute cl for the next levels with the recursive formula cl+1 = 2cl ,
l = 0, . . . , L− 1. In our specific implementation, we decided to fix L = 4, n0 = · · · = n3 = 3
and c0 = 64. As already said, the decoder is symmetric to the encoder, with upsampling
layers instead of the pooling ones. Moreover, to maintain high-frequency information,
skip connections are added between the last layer at each level of the encoder and the first
layer at the correspondent level in the decoder. To lower the number of parameters with
respect to the original architecture [33], we implement the skip connections as additions
instead of the largely used concatenations.A residual connection is added between the
input layer and the output layer too, following the implementation described in [3]. Each
convolutional layer is composed by a Conv2D + BatchNormalization + ReLU structure,
as it is common in the literature, except for the last layer, where we used a tanh activation
function (as it is necessary to learn a residual map).

As intuitable, the ResUNet must learn a high number of parameters during its training.
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Figure 3. On the right: graphical representation of the ResUNet architecture; On the left: details on the maximum receptive
fields for each of the five levels of the network encoder (RF percentage respect to the input 512 × 512 image and size of RF).

2.2. The 3L-SSNet Architecture

Inspired by green AI ideas, we now consider a very simple architecture to learn
the post-processing tasks. It is a three-layered fully Convolutional Neural Network with
constant channel number equal to 128 and a filter size of dimension {9, 5, 3}. Each layer
is the common Conv2D + BatchNormalization + ReLU block. A draft of the structure
of the proposed network, denoted as 3L-SSNet in the following, is reported in Figure 4.
As visible, the network does not contain pooling/unpooling steps; hence, it works in
single-scale mode.

Figure 4. On the left: graphical representation of the 3L-SSNet architecture; on the right: details on
the receptive fields for each of the three layers of the network (RF percentage respect to the input
512 × 512 image and size of RF). The name of the three layers follows the notation in [34].

The 3L-SSNet architecture has been previously applied to post-process FBP recon-
structions from low-dose CT in [34]. We remark that the geometry used by the authors in
their experiments is very different from the one tackled in our study; hence, the network
must learn different correction tasks in these works.

2.3. Receptive Field

The portion of the input image y that is captured by each filter at a certain depth in the
network is named the receptive field. Formally, the receptive field of a CNN at a fixed layer t
is defined as the portion of the input image y that produces a certain pixel of the feature
map at the t-th layer [35,36]. Since we are interested in comparing our neural network
architectures in terms of their receptive field, we need to derive a formula to compute it for
a given network.
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For each layer t, let kt and st be its kernel dimension and the stride, respectively.
Moreover, let rt be the receptive field; the receptive field of the input layer is r0 = 1. The
value of rt can be computed with the recursive formula [35]:

rt = rt−1 + At (5)

where At is the non-overlapping area between subsequent filter applications. Note that At
can be simply computed as

At = (kt − 1)
t

∏
i=1

si (6)

which implies that the receptive field at each t-th layer is:{
r0 = 1
rt = rt−1 + (kt − 1)∏t

i=1 si
(7)

Equation (7) shows that the receptive field scales linearly with the depth of the network
if the kernel dimension is fixed, while it is exponentially related with the strides. For this
reason, reducing the image dimension with pooling operators while processing the image
exponentially enlarges the receptive field of the convolutions.

As reported in Figure 3, ResUNet has the maximum receptive field of 172 × 172
pixels, corresponding to the 11.28% of the input image. On the contrary, the 3L-SSNet
is significantly smaller since its receptive field is at most 15× 15 pixels in its last layer
(Figure 4).

2.4. Training of the Networks

To train the networks, we have used numerical simulations generated from full-
sampling CT images provided by the AAPM Low Dose CT Grand Challenge [37]. The
downloaded images are 512 × 512 pixels and are chest reconstructions from full-dose
acquisition data; thus, we used them as ground truth images after scaling them in the
interval [0, 1]. We used ten patients (3306 images) for the training phase and one patient
(357 images) for testing. As visible from Figure 5 where a slice of the test patient is reported
in its ground-truth (GT) original version, the considered samples are not noise- nor artefact-
free at all. We remark that this feature may lead to some little corruptions on the CNN
restored images.

(a) (b) (c)

Figure 5. Ground truth image (a) and the two considered zooms-in (b,c), which are depicted by the
red squares on the full image (a).

Given the training set D = {(yi, xGT
i }i=1,...,ND , where yi are the input samples to the

network, and xGT
i are the correct labels, we train the parameters θ such that if x̄i = Fθ(yi)

is the restored image given yi, we have

θ∗ = arg min
θ

1
N

N

∑
i=1

`(x̄i, xGT
i ). (8)
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In our implementation, `(x̄i, xGT
i ) = ||x̄i − xGT

i ||
2
2. In ResUNet, training is performed

by running Stochastic Gradient Descent (SGD) for 50 epochs with a batch size equal to 8
and Nesterov Acceleration with momentum equal to 0.99. The step size for SGD decreases
with polynomial decay, going from 10−2 to 10−5 during training. To increase the stability
over the first iterations, we clipped the gradient to 5.

In 3L-CNN, the training parameters are exactly the same as for ResUNet, except for
the fact that we ran Adam instead of SGD, as we noticed that in that situation, SGD got
stuck in a local minimum after a bunch of iterations. The training was performed on two
Nvidia GeForce RTX 2080Ti (NVIDIA, Santa Clara, CA, USA).

2.5. Network Comparison

To complete the comparison between the considered ResUNet and 3L-SSNet, we
report in Table 1 further useful details. Focusing on the number of parameters and the
seconds for training of each structure, we observe that 3L-SSNet has only 85,000 parameters,
and it requires less than one minute to complete an epoch (corresponding to a quarter
of the ResUNet time). The Green AI FLOPs index reflects the faster performance of the
3L-SSNet even in the forward execution to process new images in real-time. The higher
computational advantage of the 3L-SSNet network is clearly visible.

Table 1. A comparison of the cost of the considered networks. The training time is expressed in
sec/epoch in the third column.

Parameters FLOPs Training Time

ResUNet 34.5× 106 406× 109 209
3L-SSNet 85× 103 44× 109 53

3. Experimental Results and Discussion

In this section, we report and discuss the representative experiments performed to
test the effectiveness of the considered networks.

We developed our workflow in Python, and the code is available at https://github.
com/loibo/3LSSNet.

To build the training and testing data sets, we computed the synthetic projection
data using the ASTRA toolbox [38], providing routines for the forward 2D projections
of the ground truth images. To simulate the sparse-view geometry, we considered two
different protocols: a full angular acquisition with 1-degree spaced projections (denoted as
full-range in the following) and a reduced scanning trajectory limited to 180 degrees with
180 projections (denoted as half-range in the following). We added to the sinograms white
Gaussian noise with 10−2 noise level, and finally, we computed the FBP reconstruction by
ASTRA routine.

3.1. Metrics for Image Quality Assessment

To evaluate the quality of reconstructed images quantitatively, we consider the fol-
lowing widely used metrics. Given a reconstructed image x of n pixels, we compute its
relative error (RE)

RE =
‖x− xGT‖2

2
‖xGT‖2

2
(9)

and the Peak Signal-to-Noise Ratio (PSNR) index

PSNR = 20 log10

(
n ·max(xGT)

‖x− xGT‖2

)
. (10)

https://github.com/loibo/3LSSNet
https://github.com/loibo/3LSSNet
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To better evaluate the visual appearance of an image, we also compute the well-known
Structural Similarity (SSIM) index [39], measuring the perceptual difference between two
similar images, and the Feature Similarity (FSIM) index [40], which should better interpret
the low-level features, conveying the most crucial information according to the human
visual system. We remark that xGT has values in [0, 1], whereas each output image x is
visualized in its proper interval [xmin, xmax].

3.2. Results on the Test Set

In this paragraph, we discuss the results obtained on the test set. We analyse, in
particular, the reconstructions of the slice in Figure 5a, considering the projections acquired
with both the full-range and half-range geometries described above. We compare the results
computed by the FBP algorithm and the LPP images with ResUNet and 3L-SSNet networks.

In Tables 2 and 3, we report the average values of the considered metrics in the full-
range and half-range cases, respectively. We first remark the very poor values achieved
by the FBP, which are motivated by its difficulty in recovering the actual intensities of the
ground truth images. Nevertheless, both the LPP images enhance such quality indices
significantly. The 3L-SSNet performs better with full-range geometry, whereas for half-
range, the ResUNet is outperforming.

Table 2. The average of the full-reference metrics on the test set in the case of full-range geometry.

RE PSNR SSIM FSIM

FBP 0.9966 86.42 (33.89) 0.2924 0.5456
ResUNet 0.0942 106.99 (41.95) 0.9262 0.9709
3L-SSNet 0.0840 107.92 (42.32) 0.9480 0.9627

Table 3. The average of the full-reference metrics on the test set in the case of half-range geometry.

RE PSNR SSIM FSIM

FBP 0.9932 86.45 (33.90) 0.2962 0.6819
ResUNet 0.1016 106.38 (41.71) 0.9324 0.9478
3L-SSNet 0.1309 104.34 (40.91) 0.9021 0.9474

In Figure 6 (full-range geometry) and Figure 7 (half-range geometry), we focus our visual
inspection on the reconstructions of the slice in Figure 5a. From the crops of Figure 6, we
observe that the images learned by the two networks look similar. The streaking artefacts
of the FBP reconstruction (Figure 6d) are not completely removed in either Figure 6e,f. The
area shown in Figure 6g is mainly corrupted by noise, which is cleaned well, especially in
the reconstruction with ResUNet (Figure 6h).

In Figure 7, we depict the reconstructions obtained with the half-range geometry.
In this case, the 3L-SSNet network produces more accurate images. In Figure 7f, the
streaking artefacts are less visible than in Figure 7e. Moreover, the low contrast objects
(pointed by the arrows) are more clearly distinguishable and have sharper contours in
Figure 7i than in Figure 7h.

3.3. Tests on Out-Of-Domain Data

It is well known that one critical drawback of neural networks is their performance
on unseen data; hence, we now test the considered networks on out-of-domain data. We
apply the algorithms to two different projection sets: the first one is from the patient test
data with increased noise with respect to the training set (Section 3.3.1); the second one is
obtained from a digital image of the XCAT phantom [41], used elsewhere in the literature
to test neural networks on X-ray images [42] (Section 3.3.2). In this case, the test problem
has been built as for the training set.
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(a)
RE = 0.9966

SSIM = 0.2526

(b)
RE = 0.0821

SSIM = 0.9328

(c)
RE = 0.0728

SSIM = 0.9506

(d) (e) (f)

(g) (h) (i)

Figure 6. Full-range geometry reconstructions. The results obtained with FPB (left column), ResUNet
(central column) and 3l-SSNet (right column). Below each image, the values of its RE and SSIM metrics.

3.3.1. Test on Unseen Noise

We analyse the results of the algorithms on the test simulations, obtained by adding
Gaussian noise with level 2× 10−2 to the projections of the ground truth images.

In Table 4, we report the the metrics computed on our reference slice for both the
geometries. We observe that with full-range geometry the 3L-SSNet performs better,
whereas the ResUNet shows superior values in the half-range case.

However, even in this case, the visual inspection is not fully consistent with the metrics
since the reconstruction obtained by 3L-SSNet with half-range geometry shows the highest
quality. In Figure 8 (half-range geometry), the image in Figure 8b learned by 3L-SSNet is less
noisy than the crop in Figure 8a from ResUNet; in the second zoom, the low contrast objects
pointed by the arrow are far more contrasted in the 3L-SSNet reconstruction in Figure 8c
than in the ResUNet (Figure 8d). Moreover, a noisy pattern is still visible inside the dark
background of the lungs in Figure 8c, reflecting the difficulty of the residual network in
handling unseen noise.
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(a)
RE = 0.9932

SSIM = 0.2567

(b)
RE = 0.0843

SSIM = 0.9390

(c)
RE = 0.1025

SSIM = 0.9071

(d) (e) (f)

(g) (h) (i)

Figure 7. Half-range geometry reconstructions. The results obtained with FPB (left column), ResUNet
(central column) and 3L-SSNet (right column). Below each image, the values of its RE and SSIM metrics.

Table 4. Full-reference metrics on the test image with unseen noise in full-range and half-range cases.

FBP ResUNet 3L-SSNet

RE SSIM RE SSIM RE SSIM

Full-range 0.9966 0.2526 0.0966 0.9172 0.0896 0.9295
Half-range 0.9932 0.2567 0.0986 0.9212 0.1162 0.8866

(a) (b) (c) (d)

Figure 8. Crops of the reconstructions of the test patient with unseen noise and half-range geometry.
ResUNet in (a,c), 3L-SSNet in (b,d).
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3.3.2. Test on Unseen Image

At last, we analyse the LPP reconstructions of the XCAT digital image, which does
not belong to the AAPM Low Dose CT Grand Challenge data set. The ground truth image
is displayed in Figure 9a, together with two zooms-in in Figure 9e,i. We observe that it has
different features with respect to training images since it is completely noise-free and is
constituted by flat regions containing small sharp objects of interest.

We do not report the images obtained in the full-range case, where the 3L-SSNet
metrics (RE = 0.0506, SSIM = 0.9213) outperform the ResUNet (RE = 0.0567, SSIM = 0.8503),
even if the final images have been restored well visually and look very similar. We focus our
analysis on the half-range case, whose results are depicted in Figure 9 and are much more
significant. In the first crop (Figure 9e–h), it is evident that the noise is better suppressed
by the 3L-SSNet, which gives images with more uniform areas (hence, more similar to the
GT one). Concerning the second zoom-in (Figure 9i–l), the artefact (pointed by the arrow
in Figure 9k), which was surprisingly introduced in the ResUNet reconstruction, catches
our attention. The darker contour following the border of the chest is not present in the
Ground Truth or the FBP reconstruction.

(a) (b)
RE = 0.9932

SSIM = 0.4886

(c)
RE = 0.1468

SSIM = 0.7195

(d)
RE = 0.1514

SSIM = 0.6947

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9. XCAT phantom test image with half-range geometry. From the left to right: (first column):
Ground Truth image (a) and the considered zooms-in (e,i). Reconstructions from half-range geometry
with FBP (second column), ResUNet (third column) and 3L-SSNet (fourth column).

3.4. Discussion

Our numerical results demonstrate the potential of both the ResUNet and the 3L-
SSNet in correcting the FBP reconstructions, which are affected by severe corrupting effects
and lack of contrast. In particular, the two networks provide comparable results in terms
of metrics and image quality when applied on test data coherent to the training samples.
The comparison between Tables 2 and 3 highlights the ResUNet superiority in the case
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of half-range geometry, where less projections are available, but the visual inspection of
Figures 6 and 7 reveals very similar reconstructions in all the shown images and zooms.

The artefact correction by ResUNet becomes less effective than 3L-SSNet when pro-
cessing out-of-domain data, i.e., when the input images are characterized by features
different from those learned from the training samples, such as the image dealt with in
Section 3.3. It reflects the trend of very deep neural networks to overfit on the learned
image patterns.

In general, even if the receptive field of the 3L-SSNet is extremely smaller than the
ResUNet one, its 15 × 15 RF area is big enough to discern the SpCT artefacts (due to
the FBP reconstruction) from the specific patterns of the ground truth images. We think
that this could explain why the 3L-SSNet post-processing has comparable effects to the
ResUNet ones.

4. Conclusions

In this paper, we propose 3L-SSNet, a non-intensive computation neural network for
a Learned Post-Processing reconstruction algorithm in CT. The proposal fits with the Green
AI research, studying computationally cheap algorithms to save energy and be inclusive.
Moreover, in the tomographic setting, reducing time as much as possible is important to
make the algorithms usable in clinics.

The results obtained by 3L-SSNet on in-domain images (i.e., test images coherent to
the ones used for the network training) are comparable to the output of ResUNet, a widely
used very deep architecture, in terms of metrics and visual inspection.

We also tested both networks on out-of-domain images (i.e., CT images not belong-
ing to the training nor test set), and we surprisingly got reconstructions from 3L-SSNet
sometimes more accurate than the ones by ResUNet. The deep ResUNet, besides requir-
ing computational time four times greater than 3L-SSNet, does not handle the unseen
features efficiently.

Motivated by these very good results, we intend to test other Green networks for
possibly reducing CT artefacts in different reconstruction frameworks. Moreover, a 3L-
SSNet shallow-like network can be tested for artefact correction in other inverse problems
in imaging, such as deblurring or super resolution.
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