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Abstract: The detection of manipulated videos represents a highly relevant problem in multimedia
forensics, which has been widely investigated in the last years. However, a common trait of published
studies is the fact that the forensic analysis is typically applied on data prior to their potential
dissemination over the web. This work addresses the challenging scenario where manipulated videos
are first shared through social media platforms and then are subject to the forensic analysis. In this
context, a large scale performance evaluation has been carried out involving general purpose deep
networks and state-of-the-art manipulated data, and studying different effects. Results confirm that a
performance drop is observed in every case when unseen shared data are tested by networks trained
on non-shared data; however, fine-tuning operations can mitigate this problem. Also, we show that
the output of differently trained networks can carry useful forensic information for the identification
of the specific technique used for visual manipulation, both for shared and non-shared data.

Keywords: deepfakes; video forensics; facial manipulations; social networks; deep learning

1. Introduction

Latest advancements in artificial photo-realistic generation enabled new outstanding
possibilities for media data manipulations. So-called deepfakes, i.e., credible digital media
depicting untruthful content, can be obtained either through the manipulation of pristine
material or generated from scratch thanks to automated algorithms based on Artificial
Intelligence (AI). The web abounds with tutorials and applications for the creation of
simple deepfakes products that can easily run on a commercial smartphone or PCs (such
as FakeApp, Impressions, Reface App, MyVoiceyourface, Snapchat Cameos, FaceSwap),
and more sophisticated creation techniques are developed at a fast pace.

These technologies poses significant threats to the reliability of visual information,
and can represent harmful tools to undermine the digital identity and reputation of
individuals. The many cases of abuses reported in the last months involving public
figures in politics and economics, confirm these concerns, and we can only expect this
phenomenon to increase in the upcoming years. As a response, the detection of the
employment of new efficient techniques for synthetic media generation has drawn many
research efforts in the last years [1]. An ever increasing number of tools and approaches
have been proposed in the last years, together with the development of benchmark
datasets (e.g., FaceForensics++ [2]) and world-wide open challenges (e.g., Facebook
Deepfake Detection Challenge).

While earlier approaches were focused on the detection of imperfections, artifacts,
distortions in the outcomes,the recent success of deep learning for visual analysis brought
researchers to employ also purely data-driven detection methodologies. Indeed, general
purpose neural networks have shown encouraging results in detecting video frames that
have been manipulated [2,3].

While several methodologies and datasets have been published during the last years,
one rather unexplored aspect is the generalization capability of those deep descriptors
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in situations where data are shared through social platforms [3,4]. This is a known and ever
emerging problem in multimedia forensics [5], given the pervasive role of popular social
media platforms in the dissemination and exchange of visual content on a daily basis.

In this regard, this work presents the results of an extensive detection analysis which
goes beyond controlled laboratory conditions, typically adopted in previous works [1],
and deals with a scenario where data are not only analyzed as direct outputs of manipu-
lation algorithms but also after upload/download operations through a popular sharing
service. As it has been observed in previous studies [6,7], the uploading/downloading
steps involved in the sharing process typically operate heavily on the data under investi-
gation, for instance through resizing and recompression to save memory and bandwidth.
Thus, while non-shared data better exhibit the inter-pixel statistics at the center of feature-
based extraction and analysis, such sharing operations impacts pixel distribution and
potentially compromise the detection capabilities of forensics detectors.

While the addressed scenario is of high practical relevance due to the massive daily
use of social media platforms for content dissemination, extensive experimental studies in
this context are hindered by the high workload required in the data collection phase. In fact,
the upload/download operations through different platforms can rarely be automated
efficiently and are typically performed in a semi-manual fashion.

We can then summarize the contributions of this work as follows:

• we created an enlarged data collection of shared manipulated videos that is available to
the scientific community (Data can be downloaded at: https://tinyurl.com/puusfcke,
accessed on 17 September 2021);

• we provide empirical evidences of generalization and transfer learning capabilities of
CNN-based detectors;

• we devise and evaluate a simple ensemble strategy to trace the specific manipulation
algorithm of data that are detected as fake.

The remainder of the paper is structured as follows: in Section 2, we provide an
overview of previous works addressing the discrimination between synthetic and real
faces, focusing in particular on manipulated video sequences. In Section 3, we presents our
experimental design and setting with the involved deep architectures, data and sharing
platforms. In Section 4, we describe the results emerging from our experimental campaign
on pre-social and post-social videos, also with respect to the ability of identifying the
manipulation technique and performing a video-based decision. Finally, in Section 5 we
draw some conclusive remarks.

2. Related Work

In this section, we recall the main approaches employed in the literature for the
detection of manipulated facial data. Due to the abundance of techniques proposed
in the recent years, we outline here a general categorization and group the different
approaches according to their main rationale, while referring the interested reader to [1]
for a detailed review.

2.1. Methods Based on Physical Inconsistencies

The first generation of deepfakes contents used to exhibit visible visual inconsistencies
in generating human faces and expressions. For this reason, the research was initially
directed at detecting, for instance, miss-matching eye blinking [8], as the manipulation
algorithms, being trained on images showing people with open eye, were unable to realis-
tically reproduce this phenomena. However, creation technologies have been constantly
improving and reducing those artefacts, as it is shown in [9].

The work proposed in [10] exploits the limitations of AI in producing faces at fixed
size, and adapted through affine transformation to different target poses, by training a
CNN on “good” and “bad” fake examples to recover the warping artifacts.

Similarly, the strategy proposed in [11] is focused on alignment errors of synthesized
faces in non-frontal head poses or critical situations such as rapid changes in illumination

https://tinyurl.com/puusfcke
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or distance from camera. Moreover, detection approaches operate on the basis of color
disparities [12] since fake media, being usually generated using only on RGB images,
exhibit substantial differences in other color spaces with respect to real contents that,
through acquisition process, are subjected to specific relation in their color components.

2.2. Methods Based on Handcrafted Descriptors

Earlier studies perform classification between real and manipulated content focusing
on statistical features related to specific traces of real data during acquisition process [13],
such as color filter array interpolation [14] and lens chromatic aberration [15].

A detection based on handcrafted feature starting from noise residual [16] from videos
in FaceForensics++ are used to train a SVM classifier with good performance, but only
without compression present. The process of residual-based forgery detection is also
implemented through CNN architecture in [17]. In this context, other approaches include
the analysis of the spatio-temporal texture [18–20] and of distributions of coefficients in
wavelet domain [21,22]. Moreover, differently from common approaches where the analysis
is usually performed in the image domain, [23] examined GAN-generated images in the
frequency domain demonstrating how artifacts can be recovered with this representation.

2.3. Methods Based on Biological Signals Extraction

Along with the idea to develop fake detection on the natural characteristics or be-
haviors of human beings, several works have been presented [24]. DeepRhythm [25]
classifies real or computer generated faces exploiting heart rate (HR) manifestations in
the periodic color skin variations caused by the flowing of blood. FakeCatcher [26] has
been designed building on photoplethysmography, the optical technique used to detect
volume variation of blood flowing, thanks to its robustness against dynamic changing of
the scene. The aim of DeepPhyON [27] is to adapt the features learned for HR estimation
with DeepPhys [28], a model designed to isolate the information of color changes caused by
fluctuations of oxygen level in blood from the one related to other factor like illumination
and noise conditions.

In this context, another promising stream of research analyzes the facial spatio-
temporal dynamics by tracking face landmarks over time and building soft biometrics
models of individuals [29,30].

2.4. Methods Based on Deep Descriptors

In light of the success of deep learning in many close fields, researchers have exten-
sively applied Convolutional Neural Networks (CNN) as manipulation detectors [31], due
to their ability to automatically learn the more relevant descriptors.

In [32], a CNN-based analysis is performed for the distinction between real and
computer-generated images by combining the contribution of small patches under the same
image. Inspired by the Inception architecture [33], mesoscopic features are employed in [34].
In general, the work in [2] shows that deeper general-purpose networks like Xception
largely outperform shallow ones such as [32,34,35], as well as re-adapted feature-based
methods originating from steganalysis [16]. One of the most recent studies [36] addresses
the problem of identifying and locating fake faces when more than one are present in the
same scene. After creating a new large scale dataset, the authors implemented the detection
based on CNNs to obtain an algorithm that could be more robust when varying the number
of targets in a video and that could automatically learn where the manipulation occured.

The majority of proposed studies are based on benchmark datasets, but rarely consider
the scenario where data undergo further post-processing after the manipulation process.
In particular, the impact of sharing operations on social networks, routinely performed to
acquired data, is largely unexplored and, to the best of our knowledge, the only contribution
in this regard can be found in [4]. However, such work operates on data where the
upload/download operation is only simulated through hard-coded compression and no
actual sharing through existing and active platforms is performed.
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3. Experimental Design and Settings

We now outline the design of our empirical analysis and describe the experimental
settings considered. The overall framework is depicted in Figure 1, where the pre-social and
post-social scenario are represented.

In the first case, data are analyzed as direct outputs of the manipulation operations,
followed only by a high-quality compression. In the second case, data are uploaded and
downloaded through social networks.

PRE-SOCIALManipulation
algorithm

Pristine

DF

F2F

FS

FSH

NT

Upload to sharing platforms

Download from sharing platforms

FB videos YT videos

POST-SOCIAL

Figure 1. Experimental design of our comparative evaluation.

3.1. Initial Data Corpus

In order to carry out our quantitative experiments, we build on the state-of-the-art
dataset FaceForensics++ [2], created under the necessity of providing the community with
a large-scale video dataset for face manipulation analysis.

FaceForensics++ consists of 1000 original videos, each of them manipulated through
5 different manipulation techniques Deepfake (DF), Face2Face (F2F), FaceSwap (FS),
NeuralTextures (NT) and FaceShifter (FSH) techniques. All the videos depict one person,
typically in a central position within the frame. In terms of manipulation type, Face2Face
and NeuralTextures perform video re-enactment, thus the facial dynamics of a source
video is transferred into a target video. The Deepfake, FaceShifter and FaceSwap technique
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instead implement face substitution, thus superimposing the face taken from a source
video into the facial dynamics of a target video.

Also, different techniques present diversity in terms of tools they employ: Deep-
fakes, NeuralTextures, FaceShifter are based on pre-trained learning-based schemes, while
FaceSwap and Face2Face rely on computer graphics rule-based methodologies. FaceForen-
sics++ offers three different quality versions: raw (unprocessed video frames), high-quality
(HQ) with 23 factor compression and low-quality (LQ) 40-compressed. While raw video
frames are unlikely to be encountered, LQ videos are strongly degraded; thus, we focus
our analysis on HQ compressed videos as a tradeoff between visual quality and practi-
cal relevance.

The dataset comes with a predefined partition of the 1000 videos into training, valida-
tion and testing set (composed by 720, 140 and 140 videos, respectively), which we also
employed in our experiments.

3.2. Deep Architectures for Detection

For comparison purposes, we consider three different general purpose CNNs that
proved to be effective in the classification of real and manipulated contents:

• Xception (XC) [37] was born as “extreme” version of Inception architecture and it is
proved in [36,38,39] as proficient backbone architecture for forensic detectors (in [2] it
is reported as the most successful architecture on the FaceForensics++ dataset).

• InceptionV3 (INC) [40] is the result of improvements to the original Inception struc-
ture [33] and based on multiple filters of different sizes in the same module to enhance
scalability of descriptors. It has been used in image forensics for copy-move forgery
detection [41] and GAN-generated image detection [3].

• Densenet (DEN) [42] is designed on dense connections ensuring large diversity of
features with few parameters. It has found applications in image classification [43],
steganalysis [44], and the identification of GAN-generated images shared on social
networks [3].

All of them operate in a frame-wise fashion, thus the analysis is performed on single
frames without considering the temporal relation between them. In each training phase,
we reproduce the procedure adopted in [2]: starting from models pretrained on Imagenet,
the classification layer is separately pretrained for 3 epochs, and then the full network is
trained for 15 epochs and the model with best validation accuracy is chosen. Regarding
training hyperparameters, samples are grouped in batches of 32 and Adam optimizer is
applied with its default values and learning rate equal to 0.0002.

3.3. Data Creation

Both pristine and manipulated videos have been uploaded to and downloaded from
two popular platforms, YouTube (YT) and Facebook (FB). Such operations have been
performed in a semi-manual fashion for each video in the validation and testing set
and for each manipulated version, leading to a total number of shared videos equal to
(140 + 140)× 6× 2 = 3360.

In particular, on YouTube the procedure is managed through the YouTube Studio
interface where video playlists can be created with a maximum of 15 videos uploaded per
day. Successively, each sequence is downloaded individually from the playlist. For the case
of Facebook, since no constraints on the number of videos are in place, videos have been
published as private albums; the downloading operation is applied in batch through the
“Download album” functionality.

The degradation of the videos, once shared, is confirmed when observing the down-
scaling in resolution and the decrease in size of files. In terms of resolution, pre-social
videos undergo a reduction of an average factor of 0.8 on Facebook and 0.64 on YouTube.
Similarly, the file dimension is respectively impacted of 0.5 and 0.7 after the downloading.
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4. Experimental Analysis

We now report the main results of our evaluation campaign.
In our analysis, the three architectures are always trained individually to distin-

guish real from manipulated frames for each single technique of FaceForensics++. In
order to conduct extensive comparative tests, a set of baseline binary detectors have been
trained by employing the 3 different architectures and the 5 different manipulation tech-
niques. This leads to 15 baseline models indicated as XCm, INCm and DENm, where
m ∈ {DF, F2F, FS, FSH, NT}.

By following the same settings as in [2], the binary video classification is always
performed at frame level (unless otherwise stated) by extracting 10 frames from each video.
In doing so, a face detector is applied to identify the face area, which is then cropped
and fitted to the input size of the networks. Thus, according to the data splits provided,
for every detector we have 7200 training frames, 1400 validation frames and 1400 testing
frames for each class.

The remainder of the section is structured as follows:

• Detection Performance in the Pre-Social Scenario (Section 4.1)
videos are first analyzed in their pre-social version, showing consistent results with
what reported in [2];

• Generalization Performance in the Post-Social Scenario (Section 4.2)
the analysis is extended to shared data and the performance of deep networks is
evaluated in a standard and transfer learning mode;

• Identification of the Manipulation Technique (Section 4.3)
we evaluate the possibility of identifying the manipulation technique that has been
used to create the video by exploiting the different network outputs;

• Accuracy of Video-based Aggregated Decisions (Section 4.4)
the analysis of individual frame is combined to obtain a decision on the full video.

4.1. Detection Performance in the Pre-Social Scenario

The chart in Figure 2 reports the accuracy results for all the deep networks when
distinguishing pristine and manipulated video frames extracted from videos in the pre-
social scenario. Results are reported separately for each manipulation technique and show
in general good discrimination capabilities.

Among the considered nets, Xception (XC) always provides superior performance
against every manipulation, in line with what obtained in [2] when comparing Xception to
other forensic detectors. However, InceptionV3 (INC) and Densenet (DEN) also exhibit
rather high accuracy, with a maximum decrease with respect to Xception equal to 1.0% and
2.54%, respectively.

When observing the results across different manipulations, we can moreover observe
that the detection accuracy on data manipulated through NT is significantly lower (no
higher than 92.0%), while for all the other four techniques we achieve an accuracy above
96% in all cases.
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DF F2F FS FSH NT
XC INC DEN

Figure 2. Accuracy of different networks in the pre-social scenario.

4.2. Generalization Performance in the Post-Social Scenario

We now report the results of the post-social analysis, which include measuring differ-
ent effects, as described below.

First, we directly test the baseline models already trained in Section 4.1 on video
frames extracted from shared videos. This first allows us to measure what we indicate as
the misalignment loss, defined as the decrease in accuracy observed for the baseline models
when moving from tests on pre-social data to tests on post-social data.

Then, we evaluate the effectiveness of a simple transfer learning strategy via finetun-
ing. In particular, pretrained baseline models are further trained on a number of frames
extracted from shared videos. For this purpose, we used the videos in the validation
set (140 for each binary class). We applied this procedure for every baseline model and
both sharing platforms, leading to 30 so-called specialized models. Thus, each of them is
first trained on real and manipulated frames created to a specific manipulation and then
fine-tuned with real and manipulated frames of videos shared from a given platform. We
indicate as subscript the platform on which detectors are specialized, so that, for instance,
XCYT

m is the specialized model obtained by fine-tuning XCm with validation data shared
through YouTube.

By doing so, we can then evaluate two other effects, namely:

• the fine-tuning gain, defined as the increase in accuracy observed on post-social data
when specialized models are employed in place of baseline models;

• the forgetting loss, the decrease in accuracy observed on pre-social data when specialized
models are employed in place of baseline models. (The terms “loss” and “gain” are
used by definition to indicate a decrease and an increase in accuracy, respectively, due
to direction of the expected effect. They might however assume negative values, thus
indicating a reversed effect (e.g., a negative loss indicates an increase in accuracy)).

In fact, in addition to measuring the advantages of using specialized detectors on the
newly seen post-social data, it is also important to evaluate to which extent they remain
accurate on pre-social data, for which they had been originally trained.

In order to effectively visualize those observed effects, we report the results of the
different tests in a condensed format by adopting in the plots the following convention:

→ accuracy of baseline models on pre-social data
→ accuracy of baseline models on post-social data
→ accuracy of specialized models on post-social data
→ accuracy of specialized models on pre-social data

By doing so, in each case we can represent the results as depicted in Figure 3:
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Misalignment loss

Fine-tuning gain

Forgetting loss

Figure 3. Example of result visualization.

Figures 4 and 5 report the results of such analysis for the different networks, manipu-
lation techniques and sharing platforms.

XCFB
m

INCFB
m

DENFB
m

Figure 4. Accuracy results in the post-social scenario on FB.
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XCYT
m

INCYT
m

DENYT
m

Figure 5. Accuracy results in the post-social results on YT.

We can then observe the different effects separately:

Misalignment loss

The extent of the loss varies across the manipulations considered, the employed
architecture and the sharing platform. In general, we can deduce that XC is on average
the most robust in detecting manipulated content in presence of strong degradation of
information, while Densenet seems to be relatively less susceptible against NT. By looking
at different manipulation techniques, the two platforms seem to have different impact: for
FB, FSH and NT are the ones resulting more challenging to detect, while for YT higher
misalignment losses are observed also on F2F and FS. In general, the loss is particularly
small for DF data.

Fine-tuning gain

When fine-tuning is applied to post-social data, the gain is always positive and
sometimes reaches 20%. Accuracy is brought above 90% in every case, except for NT data
for which the detection capabilities are strongly compromised in the post-social scenario.
The only exception is given by the DENYT

DF model, which slightly decreases the performance
of DENDF on post-social data. This confirms the peculiar behaviour of the DF manipulated
data with respect to the other techniques.

For the sake of completeness, we report in Tables 1 and 2 the full accuracy results
obtained through specialized models.
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Table 1. Accuracy of networks fine tuned on Facebook videos.

DF F2F FS FSH NT

XC 96.54 94.39 96.11 95.39 82.29
INC 95.36 93.00 95.11 95.29 79.82
DEN 93.79 92.04 94.50 95.36 77.82

Table 2. Accuracy of networks fine tuned on YouTube videos.

DF F2F FS FSH NT

XC 96.96 94.86 94.36 97.07 85.57
INC 95.57 93.32 93.64 95.39 83.36
DEN 93.38 93.12 92.07 96.50 83.46

Forgetting loss

By looking at the forgetting loss, we can notice that its behaviour varies consider-
ably among different manipulation techniques, showing essentially small performance
fluctuations on not-shared content when adopting baseline and specialized detectors for
the DF, F2F and FS techniques. For FSH and NT, the forgetting loss increases, mostly in
correspondence to higher values of the misalignment loss.

4.3. Identification of the Manipulation Technique

Although less investigated with respect to the distinction between real and manipu-
lated content, one interesting aspect in this experimental framework would be the ability to
blindly identify the manipulation technique used for altering the video. In fact, in a video
verification scenario, determining which algorithmic pipeline has been employed on data
that have been reported as manipulated could aid the process of tracing users or services
which provided the untruthful visual content [5].

Therefore, we address this problem and explore the possibility of exploiting for
this purpose the outputs of our different binary networks. In fact, predictions on single
frames made by the considered deep networks come in the form of a value in [0, 1] (the
softmax layer output), which is interpreted as the probability of the sample to belong to
the manipulated class and successively binarized. Thus, if is x a generic frame and F as a
generic model, we can indicate as F(x) ∈ [0, 1] the model output; when F(x) > 0.5, the x is
classified as manipulated.

In each configuration, both our baseline and specialized models are exposed during
training to manipulated data created with only a certain technique; we can then expect that
the network predictions will be higher when manipulated frames produced through this
specific technique are tested, with respect to other kinds of frames.

For a generic testing frame x and the tree architectures considered, we then define
the sets

XC(x) = {XCDF(x), XCF2F(x), XCFS(x), XCFSH(x), XCNT(x)} (1)

INC(x) = {INCDF(x), INCF2F(x), INCFS(x), INCFSH(x), INCNT(x)} (2)

DEN(x) = {DENDF(x), DENF2F(x), DENFS(x), DENFSH(x), DENNT(x)}. (3)

Analogous sets can be defined in the same way when specialized models are used by
simply adding the corresponding superscript.

Building on this rationale, one can conjecture that the maximum response observed
among the five different available deep detectors can act as an indicator of the manipulation
technique on a generic frame. Then, we blindly analyze each testing frame x and provide
three estimates of the manipulation technique as the ones corresponding to max XC(x),
max INC(x) and max DEN(x).
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We report in Figures 6–8 the confusion matrices obtained with such methodology for
the different architectures. In each case, we tested both the pre-social and the post-social
scenarios, the latter being addressed with specialized models.

XC XCFB XCYT

Figure 6. Confusion matrices obtained from XC(x) in the pre-social and post-social scenarios.

INC INCFB INCYT

Figure 7. Confusion matrices obtained from INC(x) in the pre-social and post-social scenarios.

DEN DENFB DENYT

Figure 8. Confusion matrices obtained from DEN(x) in the pre-social and post-social scenarios.

We observe a clear diagonal in each case, with comparable performance when com-
paring the pre- and post-social scenarios, thus demonstrating that the network outputs
indeed carry useful forensic information for this task. When observing the behaviour of
specific manipulation techniques, we notice that Deepfakes (DF) and NeuralTextures (NT)
consistently present a higher error.
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4.4. Accuracy of Video-Based Aggregated Decisions

While the analyzed models perform a forensic analysis on individual frames (by
extracting 10 frames per video), in practical situations those predictions are typically
combined in order to take a decision on the entire multimedia object, i.e., the full video.

Thus, we here evaluate the ability of frame-wise decisions (based on deep network
predictions) to support a video-wise decision. In particular, instead of selecting a limited
number of frames per video, we now analyze all of them through the nets.

For each full video, we compute all the binary responses of individual frames and the
ratio of frames that are classified as manipulated.

Such ratio value can be thresholded in order to take a decision on each video, so that a
Receiver Operating Curve can be produced for a varying threshold t ∈ [0, 1]. When t = 0.5,
the decision rule corresponds to a majority voting criterion over multiple frames. False
and true positive rate are here computed on the total number of test videos.

For the sake of brevity, we limit this analysis to FSH and NT analyzed through special-
ized models in the post-social scenario. The resulting ROCs are reported in Figures 9 and 10.
We can notice that Area Under the Curve (AUC) values are rather high in all cases, thus
showing that lower accuracy values on individual frames can indeed be mitigated by the
aggregation of multiple ones.

In general, the discrimination capability seems however to decrease when videos are
shared through YT. This holds for both the selected manipulations.

NT through FB NT through YT

Figure 9. ROC curves of the video-based decision through specialized models on NT videos shared on Facebook (left) and
YouTube (right).

FSH through FB FSH through YT

Figure 10. ROC curves of the video-based decision through specialized models on FSH videos shared on Facebook (left)
and YouTube (right).
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5. Conclusions

In this work we have addressed the challenging scenario where forensics analysis is
applied to manipulated videos shared through social media platforms.

Indeed, we have presented an extensive evaluation going beyond controlled laboratory
conditions and analyzing detection performance both in what we have called pre-social
and post-social scenarios, involving several general purpose deep networks, state-of-the-art
manipulated data and two popular sharing platforms (Facebook and YouTube).

We have shown generalization and transfer learning capabilities of CNN-based de-
tectors measuring misalignment loss, fine-tuning gain and forgetting loss for all different
types of data and architecture. Moreover, we have presented an ensemble strategy to
identify the specific manipulation algorithm of data that are detected as fake. Finally we
have analyzed detection performance when moving from single frame prediction to full
video sequence decision, where predictions on every frame are aggregated and the decision
between real and fake is given by the percentage of fake frames identified.

All such results show promising directions for an effective forensic analysis in real-
world scenarios where deceptive media are shared after manipulation. In particular, simple
transfer learning via fine-tuning seems a viable strategy for re-gaining accuracy when
the testing data deviates from the training one due to the sharing operation. In this
regard, alternative and possibly more efficient data augmentation techniques could be
explored that simulate the various resizing and recompression pipelines of social networks,
which are however not fully known. In this framework, issues can be however foreseen
due to the purely data-driven nature of this methodology. In fact, in our tests a limited
number of platforms were selected and analyzed separately, always assuming some kind of
knowledge on this regard. Dealing with a higher number of platforms in the training phase,
as well as in blind scenarios where unseen platforms are involved in the testing phase
represent open problems for future investigations. Related to this, provenance studies
could also be performed with the goal of identifying the sharing pipeline of the analyzed
content and thus facilitate the forensic analysis. Moreover, a possible way to overcome
the need for extensive training data in the data-driven techniques would be to employ
methods based on physiological cues or physical inconsistencies, whose robustness to
sharing processes should be assessed. Finally, one open point which would deserve further
investigation is the relation between the specific manipulation technique with respect to
the detector performance.
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