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Abstract: The Gaussian kernel, its partial derivatives and the Laplacian kernel, applied at different
image scales, play a very important role in image processing and in feature extraction from images.
Although they have been extensively studied in the case of images acquired by projective cameras,
this is not the case for cameras with fisheye lenses. This type of cameras is becoming very popular,
since it exhibits a Field of View of 180 degrees. The model of fisheye image formation differs
substantially from the simple projective transformation, causing straight lines to be imaged as curves.
Thus the traditional kernels used for processing images acquired by projective cameras, are not
optimal for fisheye images. This work uses the calibration of the acquiring fisheye camera to define a
geodesic metric for distance between pixels in fisheye images and subsequently redefines the Gaussian
kernel, its partial derivatives, as well as the Laplacian kernel. Finally, algorithms for applying in
the spatial domain these kernels, as well as the Harris corner detector, are proposed, using efficient
computational implementations. Comparative results are shown, in terms of correctness of image
processing, efficiency of application for multi scale processing, as well as salient point extraction.
Thus we conclude that the proposed algorithms allow the efficient application of standard processing
and analysis techniques of fisheye images, in the spatial domain, once the calibration of the specific
camera is available.

Keywords: Gaussian; Laplacian kernels; multi-resolution image processing; Harris corner detection;
spatial domain; fisheye image; camera calibration

1. Introduction

A number of types of very wide field cameras acquire images with 180◦ field of view (FoV).
These cameras use dioptric systems, spherical lens, often called fisheye, or a combination of
catadioptric (parabolic or spherical mirror) and dioptric (normal projection lens), often referred to as
omnidirectional. The model of formation of all these types of images differs significantly from the
traditional central projection model and introduces rapid deterioration of spatial resolution towards
the periphery of the FoV, as well as strong deformations that map straight lines as curves. The model of
image formation with 180◦ FoV can be treated in a unified mathematic way, utilizing a spherical optic
lens and central projection [1,2]. Thus we will use the terms interchangeably for the rest of the paper.

The use of very wide field cameras is becoming very wide in domains like security [3],
robotics [4,5], public and private area monitoring, since they allow constant imaging of all directions
with a single camera.

Spherical fisheye panoramas are used to emulate or to register a PTZ camera and to integrating
live webcam feeds within 2D and 3D GIS applications (such as Google Earth and Google Maps) [6,7].
Fisheye cameras with special processing operators are proposed for large space monitoring and crowd
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counting in [8]. In [9], a network of fisheye cameras is used to efficiently track persons in a space with
obstacles that hinder visibility. Traffic management at road intersection has been proposed in [10]
using network fisheye cameras. Pair of fisheye cameras has been used for pose estimation and motion
capture in [11], employing a number of 3D Gaussians to generate a probabilistic body model. Gaussian
kernels defined in 3D have also been used for scene modeling, in order to make discrete phenomena,
like occlusion, continuous and thus, more easily optimizable [12].

The very different model of image formation for fisheye images has invoked a number of attempts
to redefine image processing operators for this type of images. The basic morphology operators have
been redefined in [8], although the computational cost has not been discussed.

The well-known Scale-Invariant Feature Transform (SIFT) image descriptors that were introduced
in [13], are redefined for omnidirectional images in [14] in the frequency domain. Fisheye images are
defined over spherical coordinates (azimuth θ, elevation φ). Therefore, Spherical Fourier Transform
(SFT) is used, that decomposes the image as a weighted sum of spherical harmonic functions Ym

l (θ,ϕ)
of degree l and order m, with |m| ≤ l. In [15], the Gaussian kernel has been defined in the (θ, φ)
image domain using spherical harmonics of the 0th order. The work of [16] also employs the use of
SFT to detect points of interest using the well-known SIFT. In [17] differential operators defined on
Riemannian manifolds are used to compute scale space and perform smoothing in fisheye images.
That work was furthr improved in [18], where the already developed differential operator was extended
to perform SHIFT-like salient point detection in omnidirectional images.

Others have reported exploiting the image space, rather than the frequency domain, for specific
kernels. In [19], the authors also used a simplified version of SIFT feature extraction method
(e.g., no multiresolution was used) for robot navigation by fisheye camera, obtaining good results.
In [20], features are extracted from 360 FoV omnidirectional images in the spatial domain, but after
the image has been mapped to a hexagonal grid. In [21], 4-neighbours and 8-neighbours Laplacian
operators have been proposed for omnidirectional panoramic images. In [22], an approach for fisheye
image processing in the spatial domain is proposed, using geodesic distance between pixels.

The approach proposed in this work, is also based on the spatial image domain and utilizes the
geodesic distance between pixels. The main difference from [22] is that the proposed method uses
the geodesic distance metric between pixels to redefine the basic filter kernels, whereas in [22] the
image neighborhood is being resampled, while keeping the filter kernels unchanged. In order to
avoid computationally expensive image interpolation, [22] uses the nearest neighbor interpolation,
which although not a good performing technique, still produced better results than the classic image
processing operators. As it will be discussed later, there is no proposed efficient implementation
for the method in [22], since it requires the geodesic neighborhood definition for every pixel in each
new image, in contrast to the method proposed in this work that requires the construction of a small
Gaussian kernel, only once for a calibrated camera.

The rest of the paper is structured as following: In the methodology section, the geodesic distance
metric is defined using the calibration of the fisheye camera. The Gaussian kernel, its partial derivatives
and the Laplacian of Gaussian kernel is redefined, using the geodesic distance. All these kernels vary
with their spatial location in the image, therefor, their direct convolution with the image is inefficient.
Thus, an efficient computational implementation is proposed, which involves the initial pre-calculation
of a single Gaussian kernel with small standard deviation σ0 and the approximation of the Image
response of the Gaussian, its derivatives, as well as the Laplacian of Gaussian at larger values of σ.

2. Materials and Methods

The methodology that is proposed in this work is tested with images acquired by a Mobotix Q24
fisheye camera, that is installed on the roof, imaging an indoor space. A typical frame of the camera is
shown in Figure 1, with pixilation of 480 × 640. The camera has been calibrated using [23]. The result
of the calibration is shown in Figure 2, where the azimuthal angle Θ and the elevation Φ is provided
for each pixel of the fisheye image.
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Figure 1. A typical image from a roof-based fisheye camera. 
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Figure 2. The resulting calibration of the fisheye camera, for each image pixel (a) the azimuthal angle 
θ and (b) the elevation angle φ is provided. 

2.1. Geodesic Distance Metric between Pixels of the Calibrated Fish-Eye Image 

The formation of omni-directional image using a spherical lens, as presented in detail in [23] can 
be summarized as following: the intersection of the line connecting the real world point with the 
center of the optical element is calculated with the optical element. This intersection is then projected 
centrally on the image sensor plane. It has been shown [1] that by choosing the center of projection, 
one can simulate the use of any quadratic shape mirror (spherical, ellipsoid, paraboloid and 
hyperboloid). This type of image formation induces non-linear transformation of distances between 
pixels. 

These concepts are visualized in Figure 3, where the semi-spherical optical element of unit radius 
and the image plane is displayed. The center of projection is placed at −f on the Y axis, with f set to 
0.2. The image plane is tessellated into 128 equidistant points to resemble the image pixels. 21 of these 
“pixels” are backprojected on the spherical optical element (both shown in different color). It is self-
evident that the back-projected points are no longer equidistant. 

Figure 1. A typical image from a roof-based fisheye camera.
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and (b) the elevation angle φ is provided.

2.1. Geodesic Distance Metric between Pixels of the Calibrated Fish-Eye Image

The formation of omni-directional image using a spherical lens, as presented in detail in [23] can
be summarized as following: the intersection of the line connecting the real world point with the center
of the optical element is calculated with the optical element. This intersection is then projected centrally
on the image sensor plane. It has been shown [1] that by choosing the center of projection, one can
simulate the use of any quadratic shape mirror (spherical, ellipsoid, paraboloid and hyperboloid).
This type of image formation induces non-linear transformation of distances between pixels.

These concepts are visualized in Figure 3, where the semi-spherical optical element of unit radius
and the image plane is displayed. The center of projection is placed at −f on the Y axis, with f set
to 0.2. The image plane is tessellated into 128 equidistant points to resemble the image pixels. 21 of
these “pixels” are backprojected on the spherical optical element (both shown in different color). It is
self-evident that the back-projected points are no longer equidistant.
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projection on the image plane. The difference between Euclidean distance between pixels on the 
image plane and geodesic distance (on the spherical lens) becomes apparent. 
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definition of a Gaussian within this window, using the Euclidean distance between pixels on the 
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is different from a Gaussian kernel, due to distance metric. In order to generate a Gaussian kernel 
defined on the image sensor, we have to modify the distance metric between pixels on the sensor, 
according to the geodesic distance of their back-projection on the circle. Figure 3 is a 2D abstraction 
of the real 3D camera setup. The asymmetry that is evident in the 21-point, black kernel, defined on 
the image plane is exaggerated since the image plane (image line in this 2D abstraction) was 
tessellated to only 128 pixels. Furthermore, in the case of a 2D kernel, asymmetry is present only 
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Figure 3. The basic concept of fisheye image formation, involving a (semi) spherical lens and central
projection on the image plane. The difference between Euclidean distance between pixels on the image
plane and geodesic distance (on the spherical lens) becomes apparent.

If a window of size (2w + 1, 1) is defined on the image plane (red dots in Figure 3, then the
definition of a Gaussian within this window, using the Euclidean distance between pixels on the image
plane is visualized as the black curve in Figure 3. If this Gaussian is back-projected on the spherical
optical element, the kernel depicted in black (at the periphery) is produced. As expected, it is different
from a Gaussian kernel, due to distance metric. In order to generate a Gaussian kernel defined on
the image sensor, we have to modify the distance metric between pixels on the sensor, according to
the geodesic distance of their back-projection on the circle. Figure 3 is a 2D abstraction of the real
3D camera setup. The asymmetry that is evident in the 21-point, black kernel, defined on the image
plane is exaggerated since the image plane (image line in this 2D abstraction) was tessellated to only
128 pixels. Furthermore, in the case of a 2D kernel, asymmetry is present only along one of its two axes,
as it will be further discussed below.

In [24] the use of the geodesic distance has been proposed for re-defining the Zernike moment
invariant for calibrated fish-eye images. The proposed approach requires the results of the calibration
of the fish-eye camera. Several approaches exist for fish-eye camera calibration, such as [1,25]. In this
work, we utilize the calibration of the specific fish-eye camera, proposed in [23]. The results of the
calibration nay be summarized in two look-up tables of size equal to an image frame, which hold the
direction of each image pixel (x, y) in real 3D world. The direction is defined by two angles, the azimuth
Θ(x, y) and the elevation Φ(x, y). During the calibration step, these two angles are pre-calculated for
all pixels of the video frame and are stored in two look-up tables Θ and Φ, as shown in Figure 2.

It is clear that the distance of two pixels is different when measured on the image sensor and on
the projection of the image points on the spherical optical element. Therefore, in order to produce
accurate results, image processing algorithms that use pixel distances have to be re-implemented for
fish-eye (omni-directional) images.

It is well known that the geodesic curve of a sphere is a great circle (a circle that lies on the sphere
and has the same center with the sphere). Thus, the distance between any two points on a sphere is
the length of the arc that is defined by the two points and belongs to a circle that passes through the
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two points and has the same centre with the sphere. The geodesic distance between pixels p0 = (x0, y0)

and p1 = (x1, y1) is defined in [22,24] and can be summarized as following:
Let P0 and P1 be the projections of the two pixels on the spherical optical element and v0, v1 be

the position vectors pointing to P0 and P1. The direction of the two pixels in real world is given by the
pre-calculated look-up tables:

(θ0,ϕ0) = (Θ(x0, y0), Φ(x0, y0))

(θ1,ϕ1) = (Θ(x1, y1), Φ(x1, y1))
(1)

Thus, the position vectors are calculated:

vi = (cos θi cosϕi, sin θi cosϕi, sinϕi), i = 0, 1 (2)

The distance r01 of points P0 and P1 on the unit sphere is easily calculated as the arc-length
between P0 and P1, assuming that cos−1 returns the result in radians:

r01 = d(v0, v1) = cos−1(v0 · v1) (3)

Figure 4 shows the geodesic distance component between successive pixels along lines (left) and
columns (right), defined more formally as:

Dx(x, y) = d((x + 1, y), (x, y))
Dy(x, y) = d((x, y + 1), (x, y))

(4)
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2.2. Filter Kernels for Fish-Eye Image Processing Based on the Geodesic Distance Metric between Image Pixels

The most versatile filter in image processing is the Gaussian. According to its definition for 2D
images, the Gaussian can be written as

g(x, y;σ) =
1

2πσ2 e−
r2

2σ2 (5)

with r2 = x2 + y2 being the distance of pixel (x, y) from the centre of the kernel. The discrete Gaussian
is defined (at least) in the following

(x, y) ∈ [−3dσe, 3dσe]× [−3dσe, 3dσe] (6)
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where dxe is the operator returning the closest integer larger than x, for x > 0. The standard deviation
σ is defined by the user in pixels, which equivalently defines the size of the kernel, according to
Equation (6).

The above “classical” definition of the Gaussian needs to be modified for calibrated fish-eye
images. Let us suppose that we require the linear convolution of the Gaussian kernel with a fish-eye
image, at pixel p0 = (x0, y0). Let Aσ denote the subimage centered at (x0, y0):

Aσ = [x0 − 3dσe, x0 + 3dσe]× [y0 − 3dσe, y0 + 3dσe] (7)

In the case of a calibrated fish-eye image, the definition of Equation (4) is modified as following:

• It is straightforward to use the geodesic distance metric between p0 and any pixel pi = (xi, yi) in
Aσ, thus ri = d(pi, p0)

• σ is initially defined by the user in pixels. However, since the geodesic distance between pixels is
used in Equation (1), the value of σ (in pixels) cannot be used. This becomes clear if one considers
that the Gaussian has to approach 0 within Aσ. Since Aσ was defined as a window centered
on the current pixel, spanning ±3 σ, we set σ equal to (1/3) of the maximum geodesic distance
between the central pixel p0 and any pixel in Aσ:

σ =
1
3

max({ri = d(pi, p0), pi ∈ Aσ}). (8)

• Then σ is replaced in Equation (5).

Thus, for a Gaussian centered at p0 = (x0, y0), the

g(x, y;σ) = g(p;σ) =
1

2πσ2 e−
d(p,p0)

2

2σ2 (9)

It becomes obvious that the Gaussian kernel now depends on its location on the fish-eye image.
In order to define the Gaussian kernel with a specific size for the whole fisheye image, the following
Algorithm 1 is used:

Algorithm 1. Initialization of the Gaussian kernel with small standard deviation.

The size of the window kernel (2 w + 1) × (2 w + 1) is defined.
The value of the standard deviation σ is calculated as following:

The window A0 is placed near the edge of the FoV, where pixel distances are smaller than other locations
with high elevation φ and σ0 is calculated according to Equation (8).

This value of σ0 is used for each location in the fisheye image.

Figure 5a shows the Gaussian kernel as defined in Equation (9) at different position on the fisheye
image. Radial lines emanating from the CoV (Center of View) have constant azimuthal θ and points
on the concentric circles centered on the CoV have constant elevation φ. The same kernels are shown
in (b), using color-scale. The CoV is marked on Figure 5b.
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Figure 5. The Gaussian defined in Equation (9) at different positions on the fisheye image, using the
geodetic distance is shown in (a) 3D and (b) as color-encoded image.

It is evident that the shape of the Gaussian kernel is a function of the kernel’s location on the
image. More specifically, the kernel at pixel (x, y) appears rotated by an angle equal to the azimuth
Θ(x, y) at this pixel. Furthermore, the Gaussian kernel exhibits asymmetry, as indicated in the 1D
abstraction of Figure 3. It is easy to confirm that consecutive pixels along the direction with constant
(iso-) elevation φ have constant geodesic distance. On the other hand, consecutive pixels along the
direction with constant (iso-) azimuth θ do not have constant geodesic distance. Thus, the geodetic
Gaussian kernel is expected to exhibit asymmetry along the axis with constant azimuth. An example
depicting this asymmetry is shown in Figure 6. The location that was selected is shown in (c) as a
green circle. The iso-azimuth and iso-elevation contours are superimposed in purple and green color
respectively. Figure 6a shows a 35 × 35 geodetic Gaussian kernel, generated by Equation (9) of the
proposed method. The orientation of the kernel with respect to the directions of constant azimuth and
elevation, is as described above. Figure 6b displays the asymmetry of the kernel. More specifically,
the profile of the kernel is plotted along the directions of constant azimuth θ and of constant elevation
φ. Both profiles are also plotted after being mirrored, in order to make the asymmetry apparent. It can
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be observed that the kernel is symmetric along the direction of constant φ and slightly asymmetric
along the direction of constant θ (the profile and its mirror do not match). Finally, the resampling
of the image to construct the geodetic neighborhood round the selected point, as described in [22],
Equation (16), is displayed in Figure 6d. These neighborhood pixels should be equidistant using
geodesic distant metric and they were selected using the nearest neighbor interpolation, as explained
in Section 3.3 of [22].
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Figure 6. (a): The shape of the geodetic Gaussian kernel, generated at the location of the frame indicated
by a green circle (c). Contours of iso-azimuth and iso-elevation are also superimposed. The shape
and symmetry of the kernel is demonstrated in (b), along the direction of constant (iso-) azimuth and
constant (iso-) elevation. Finally, image resampling to construct the geodetic neighborhood, according
to [22] is shown in (d).

The partial derivatives of the Gaussian kernel are easily calculated analytically:

∂

∂x
g(x, y;σ) = gx = − x

σ2 g(x, y;σ) (10)

The x coordinate is calculated as the geodesic distance of (x, y) from (x0, y), namely
x = d((xi, yi), (x0, yi)). The same holds for the partial derivative with respect to y.

∂
∂x g(x, y;σ) = gx = − d((x,y),(x0,y))

σ2
1

2πσ2 e−
d(p,p0)

2

2σ2

∂
∂y g(x, y;σ) = gy = − d((x,y),(x,y0))

σ2
1

2πσ2 e−
d(p,p0)

2

2σ2

(11)
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Figure 7 shows the two partial derivatives Gaussian kernel, as defined in Equation (11) at different
position on the fisheye image. Radial lines emanating from the CoV have constant azimuthal θ. Points
on the concentric circles centered on the CoV have constant elevation φ.
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Similarly, the Laplacian of Gaussian for the calibrated fish-eye image is defined:

LoG(x, y;σ) =
d(p, p0)

2 − 2σ2

σ4 g(p;σ) =
d(p, p0)

2 − 2σ2

σ4
1

2πσ2 e−
d(p,p0)

2

2σ2 (12)

The LoG kernel is shown at different locations on the fisheye image in Figure 8. It can be easily
observed that the LoG defined using the geodetic distance between pixels depends on the location of
the pixel that it is applied to.
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2.3. An Efficient Computational Implementation of the Geodetically Corrected g, gx, gy and LoG Kernels for
Fisheye Images for Any Value of σ

The spatial dependence of the proposed geodetically corrected Gaussian kernel and its derivatives
imposes a very high computational load, since the kernel itself has to be recomputed at each image
pixel, prior to the actual convolution. In this section, an approach is presented that uses a small look-up
table of the Gaussian kernel for a small pre-selected value of σ.
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First we generate the Gaussian kernel for an image, using Equation (8), defined over a 5× 5 image
window. This is a demanding computation that only needs be performed once after the calibration of
the camera. The Gaussian kernel is stored for each pixel of the fisheye image. Thus a total memory for
a float array of NL × Nc × 25 is required.

The method proposed in this work for the implementation of 2D convolution using Gaussian
kernel with higher σ, is successive convolutions with a smaller, initially constructed Gaussian kernel.
It is well known that convolving two Gaussians with standard deviations σ1, σ2 results in another
Gaussian with σ2 = σ1

2 + σ2
2. This fact is tested numerically in the case of the definition in Equation (9).

More specifically, a point in the fisheye image is selected near the edge of the FoV where the deviation
from the simple projective image formation is more significant. The initial Gaussian kernel g0 is
constructed according to Equation (9) with a stencil of 13 × 13. The standard deviation σ0 of g0 is
calculated using Equation (8). A number of successive linear convolutions (*) is performed

g0 * g0 * g0 * . . . * g0 (13)

Thus, the result of the kth convolution should be a Gaussian with σ0·(k + 1)1/2.
Figure 9 shows the construction of a 33 × 33 stencil Gaussian kernel (b), at a position near the

edge of FoV (a), using successive convolutions of an initial smaller 11 × 11 kernel (centered at the
same pixel).

In order to facilitate visual comparison, the midline of each kernel is plotted as a curve in Figure 9d,
up to the first 8 successive convolutions (the first kernel is the taller, narrower curve). The geodesic
Gaussian that is generated using Equation (9) directly with the appropriate σ, is superimposed using
symbol “�”. It can be observed that the result of the 8 successive convolutions with the small initial σ0

is almost identical to the result of a single convolution with the much larger and computationally very
demanding kernel. The asymmetry of the Gaussian kernel is shown in Figure 9c using the midline
profile and the mid-column profile of the kernel, which in this specific location of the image, coincide
with the direction of constant (iso-) azimuth and constant (iso-) elevation. The same two profiles are
also plotted after reflection with respect to the middle point of the profiles. It can be observed that the
mid-column profile is symmetric (the reflected profile matches the original profile), while the midline
profile shows asymmetry (the profile and its reflection does not match). These findings are expected,
according to the discussion in the previous subsection (Figure 6).
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Figure 9. (a) construction of a 33 × 33 stencil Gaussian kernel at a position near the edge of FoV (b),
using successive convolutions of an initial smaller 11× 11 kernel (at the same pixel). (b): the constructed
kernel and (c) its line profiles along the iso-azimuth (midline) and iso-elevation (mid-column) direction,
(d): The midline of the intermediately generated kernels up to the 8th iteration are shown with dots.
The midline of the directly constructed kernel is shown with “�”. The result of successive convolutions
of the initial Gaussian kernel.

Thus, the proposed, efficient algorithm to calculate the convolution of a calibrated fisheye image I
* g(x, y; σ) with a Gaussian with large values of standard deviation σ, using geodetic pixel distance,
is as following Algorithm 2.

Algorithm 2. The proposed algorithm for calculating the response of a geodetically defined Gaussian kernel
on a calibrated fisheye image, for large values of σ.

k = 0
Initialize g0 = g(x, y; σ0)
while σ0

√
k + 1 < σg

k = k + 1
I = I * g0

end
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2.3.1. Approximating the Normalized Geodetic LoG Using DoG

The use of Difference of Gaussians (DoG) to approximate a Laplacian of Gaussian is well known
in the literature [13], although the relation between the standard deviation of the two Gaussians and
the Laplacian is seldom discussed in detail. Many approaches use the concept of octaves, namely
define a number of convolution operations (typically 5) in order to double the value of σ and then
resample the image to reduce the number of lines and column by two. The difference of the results
of successive convolutions (DoG) approximates the convolution of the original image with the LoG.
This multi-resolution approach is not directly applicable in the case of fisheye image processing,
where generation of Gaussian kernels with different σ is computationally expensive. Thus the following
approach is proposed, which consists of constructing a single geodetically corrected Gaussian kernel
with small standard deviation σ0 (whose values depend on its spatial location on the image) and
perform successive convolutions with this kernel. At the kth iteration, the standard deviation of the
equivalent Gaussian kernel will be equal to

σ = σ0
√

k + 1. (14)

The iterations are stopped when the equivalent σ becomes greater than or equal to the required
standard deviation. Differences of successive convolutions are assigned to IL variable, since they
approximate the response of the original image with the LoG. The factor ak than normalizes the
response of LoG with respect to σ is discussed. The steps of the Algorithm 3 for approximating the
normalized LoG with DoG for a calibrated fisheye image are given below. A schematic diagram of the
proposed algorithm is shown in Figure 10.

Algorithm 3. Approximating normalized LoG with DoG in the case of fisheye image.

k = 0
Initialize g0 = g(x, y; σ0), as in Equation (9)
while σ0

√
k + 1 < σg

k = k + 1
I1 = I * g0
IL = (I1 − I)ak
I = I1

end

Since LoG is used in the concept of different image scales, the response of the LoG needs to be
normalized with respect to scale σ. It is well known that σ2·LoG is scale-normalized:

σ2
2∑

x
|LoG(x;σ2)| = ∑

x
σ2

1|LoG(x;σ1)|,σ2 > σ1 (15)

It is easy to confirm that the partial derivative of a Gaussian with respect to σ is

∂g(x;σ)
∂σ

= σ · LoG

If the derivative is approximated using finite differences, then

∂g(x;σ)
∂σ

=
g(x;σ+ δσ)− g(x;σ)

δσ
≈ σ · LoG ⇒ DoG = δσ · σ · LoG (16)

Thus the normalization factor in this case is

ak =
σ

δσ
(17)
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During the kth iteration δσ is equal to σ0
√

k + 1− σ0
√

k. Substituting δσ in (16) we obtain:

ak =

√
k + 1√

k + 1−
√

k
(18)
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Figure 10. Schematic representation of the image response of the Gaussian kernel and the LoG,
approximated as DoG, for increasingly values of σ.

2.3.2. Approximation of First Order Partial Derivatives of the Geodesic Gaussian

First order partial derivatives of the Gaussian kernel are fundamental for image processing and
feature extraction. Although these kernels are separable and therefore efficiently computed under their
classic definition Equation (10), the geodesic definition of Equation (11) imposes high computational
complexity, especially for large values of σ. The proposed method for approximating geodetically
corrected gx, gy with large values of σ is the following. According to their classic definition, since the
Gaussian is a slow varying function, its derivative gx may be approximated as finite differences. In the
case of geodetically defined Gaussian, neighboring pixels have variable distance according to its
locations, given in Dx, Dy defined in Equation (4). More formally:

gx(x, y) = 1
Dx(x,y) [1,−1] ∗ g(x, y)

gy(x, y) = 1
Dy(x,y) [1,−1]T ∗ g(x, y)

(19)

2.3.3. Detecting Corner Pixels in Fisheye Image

Corner pixels are salient image pixels that play important role in many image analysis tasks [26,27].
The Harris corner detector is a well-established detector that utilizes the local image structure by
calculating the 2nd order moment matrix at each image pixel:

M = w(x, y)

(
I2
x Ix Iy

Ix Iy I2
y

)
=

 ∑
x,y∈w

I2
x ∑

x,y∈w
Ix Iy

∑
x,y∈w

Ix Iy ∑
x,y∈w

I2
y

 (20)
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where Ix, Iy are the image partial derivatives and w(x, y) is a user defined window. The image
derivatives Ix, Iy can be approximated using derivative of the Gaussian kernel with appropriate
standard deviation σD. The summations over the window w are implemented as convolution with a
Gaussian with standard deviation σI > σD/0.7 [26].

M = (σD)
2g(σI) ∗

[
(Ix)

2 Ix Iy

Ix Iy
(

Iy
)2

]
(21)

Corner response is calculated using the standard metric: det(M)-λ·trace(M)2, where λ a constant
parameter with value in (0.04, 0.06).

Direct application of the geodetically corrected derivative of the Gaussian, as defined in
Equation (11) is not computationally efficient for arbitrary values of σ. The approximation of
Equation (19) is used instead. Thus, the Algorithm 4 that we propose for estimation of matrix M in the
case of a calibrated fisheye image is described as following:

Algorithm 4. The approximation of the Harris matrix M of Equation (21).

Apply Algorithm 2 to calculate I * g
Apply Equation (19) to calculateIx, Iy

Apply Algorithm 2 to (Ix
2), (Iv

2), IxIy with only one iteration to calculate the convolution with the geodetic
Gaussian g0.
Construct the symmetric matrix M for each pixel

3. Results

The results of Algorithm 2 for an image of the calibrated fisheye camera are shown in Figure 11 for
iteration k = 1 (first row), k = 10, k = 20, k = 30 and k = 40 (last row). The left column shows the result of
Algorithm 2 (using the geodetically defined Gaussian kernel), the middle column the response of the
classic Gaussian kernel and the right column the absolute difference, scaled for visualization purposes.
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Results of the response of the geodesic gx kernel, as approximated using Algorithm 2 and Equation
(18), for iteration k = 1 and k = 20 are shown in Figure 12 (left column). In the right column the
magnitude of the image gradient is shown, using the responses of the two partial derivatives of
the geodetic Gaussian kernel. It is evident that for small value of σ = σ0, fine details appear in the
magnitude of the gradient, whereas, in the case of k = 20 (thus σ = σ0

√
21), only thick lines appear in

the magnitude of the gradient image.
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Figure 12. (a) The resulting Ix using the proposed algorithm for different scales (k = 1 and k = 20 in
Equation (19)); (b) the magnitude of the image gradient at the same scales.

The results of the maximum response of the normalized geodetically corrected LoG, approximated
by DoG (Algorithm 3) are shown in Figure 13. The initial Gaussian kernel g0 was defined over a
7 × 7 window and 40 iterations were executed. Yellow indicates pixels that exhibited maximum DoG
response within the first 4 iterations, whereas magenta indicates pixels with maximum DoG response
between 5 and 10 iterations. In (a) the whole fisheye frame is displayed, whereas in (b) details are
shown for a zoomed portion of the image.

A comparison between the classic LoG response and the response of the geodetically defined
LoG, approximated by the DoG, (after normalization in both cases) is given in Figure 14a. The curves
have been produced for the pixel shown in the image portion of Figure 14b.
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Figure 14. (a) The response of the normalized DoG for the pixel shown in (b). The small differences
between the two curves are evident.

The response of Harris corner detection is shown in Figure 15 for the whole frame. Yellow dots
indicate corners detected by the proposed geodetic Harris detector, whereas magenta squares depict
corner pixels detected by the classic Harris detector and blue crosses are corners detected by the method
described in [22]. All detectors were applied for a number of different image scales. Common image
scale is determined by the size of the kernels. In the results presented in this section, the initial small
geodetic Gaussian is set to a size of 5 × 5 pixels. The size of the equivalent kernel after the subsequent
convolutions is shown in Tables 1 and 2. The classic Harris-based corner detection is applied using
this size for the integration Gaussian kernel (which is slightly larger than the differentiating Gaussian).
The geodetic neighborhood method [22] is parameterized by the kernel’s field of view, measured
in radians or degrees and the number of pixels of the kernel’s stencil. After visually studying the
image resampling that is required by this method (an example is shown in Figure 6d) the selected
parameterization was as following: a field of view (FoV) of 1 degree was used for 5 × 5 and 9 × 9
and an FoV of 2 degrees for the larger kernels. The numerical assessment of the methods is two-fold.
First the 250 strongest corner responses are considered and the number of correctly identified corners
in the chessboard are enumerated. The chessboard contains 80 corners. The results are presented
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in Table 1. The zoomed chessboard areas are shown in Figure 15 for the first four kernel sizes of
Table 1. Secondly, the number of wrong corner responses is measured by visual inspection for all
three methods, for four (4) different kernel sizes (equivalently, image scales). The results are measured
considering the 250, as well as the 500 strongest corner responses from each method. The results are
presented in Table 2.
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Table 1. Quantitative evaluation, in terms of corner detection, of the proposed geodetic kernel definition,
the geodetic neighborhood definition in [22] and classic Harris-based corner detection. The number
of correctly detected corners in the chessboard (80 corners in total) by each method, considering the
250 strongest responses are shown.

Kernel Size Classic Harris Proposed Geodetic Kernels Geodetic Neighborhood [22]

5 × 5 76 80 80
9 × 9 80 80 80

13 × 13 75 80 80
17 × 17 53 80 80
21 × 21 48 80 80
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Table 2. False corner detection of the proposed geodetic kernel definition, the geodetic neighborhood
definition in [22] and classic Harris-based corner detection. The number of wrongly detected corners
by each method, considering the 250 and 500 strongest responses are shown.

Kernel Size

250 Strongest Corner Responses 500 Strongest Corner Responses

Classic
Harris

Proposed
Geodetic Kernels

Geodetic
Neighborhood [22]

Classic
Harris

Proposed
Geodetic Kernels

Geodetic
Neighborhood [22]

5 × 5 9 2 21 11 4 68
9 × 9 10 1 31 35 5 72

13 × 13 12 2 17 42 7 69
17 × 17 19 4 28 70 8 72
21 × 21 28 8 27 68 12 65

Two different parts of the fisheye frame are zoomed in Figure 16. Visual inspection of the results
suggests that the proposed geodetic Harris detector has fewer false corners than the classic one.
Figure 17 shows a few sporadic false corners detected by the classic Harris method, probably due to
the texture of the floor. The method of [22] exhibits false detections mainly on image edges.
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The presented results can be summarized as following. The proposed definition and
implementation of image processing geodetic kernels exhibited very good corner detection over
a number of different kernel sizes: it managed to detect all corners in the chessboard area for kernel
size ranging between 5 × 5 to 21 × 21 pixels. The same holds for the method of geodetic image
neighborhood resampling [22]. On the other hand, the classic Harris-based corner detection does not
perform well on the fisheye images when the size of the kernels (image space) increases. Concerning
false corner detection, the proposed algorithm achieved very low rate for the 5 different kernel sizes
that it was tested. On the contrary, the classic Harris-based detector exhibited increased false detection
rate as the kernel size increases, whereas the method of [22] exhibited high false detection rate for
almost all tested kernel sizes.

The main algorithms described in this work have been executed on a laptop with Intel core i7-7700
HQ, 16 GB, with Windows 10, using the Matlab programming environment. The algorithms were
applied to 480 × 640 fisheye images. The recorded times of various steps of the methods are shown
in Table 3. It has to be mentioned again that the slowest part of the proposed algorithm, the initial
calculation of the geodetic Gaussian kernel g0 with small σ0 (first entry in Table 3) is executed only
once, after the calibration of the camera and it can be subsequently used for any image acquired by the
specific camera. As it can be observed in Table 3, Algorithm 1 is the computationally intensive part
of the proposed method. Execution times using the classic kernels are also provided for comparison.
The geodetic approach for fisheye image processing using geodetic neighborhood [22] has also been
timed. The slowest part of the method is the image resampling, which was timed for the following
parameterization: FoV of 1 degree, kernel size of 5 × 5. Increasing the FoV and consequently the
kernel size imposes a significant overhead to the algorithm [22]. Furthermore, this operation has to be
performed for every acquired image.

Table 3. Execution times for the proposed method, corner detection in [22] and classic corner detection.

Method Calculation Execution Time (Second)

Proposed Geodetic kernels geodetic Gaussian g0 (Algorithm 1) 5.5
Geodetic neighborhood [22] Image resampling, 5 × 5, FoV 1◦ 150
Proposed Geodetic kernels Gaussian response (Algorithm 2) 0.15

Geodetic neighborhood [22] Gaussian response 0.017
Classic Harris Gaussian response 0.017

Proposed Geodetic kernels Harris Matrix M 0.5
Classic Harris Harris Matrix M 0.5

Geodetic neighborhood [22] Harris Matrix M 0.5

4. Discussion

In this work, the most important image processing kernels, namely, the Gaussian, its partial
derivatives with respect to x and y and the Laplacian of Gaussian (LoG) have been redefined for a
calibrated fisheye camera, using the geodesic distance between pixels, of the fisheye image. For each
kernel, a computationally efficient algorithm that calculates/approximates the response with a fisheye
image acquired by a calibrated camera, based on successive convolutions with a small pre-initialized
geodetic Gaussian, has been presented. The Harris corner detection has also been implemented for a
calibrated fisheye camera, using the image responses with the redefined geodetic kernels. The results
show that the proposed definitions and the computational implementations are efficient and present
subtle differences from the applications of the classic image processing kernels. Corner detection in
calibrated fisheye images appears more robust when using the proposed operators. More specifically,
both the proposed method of geodetic definition of image processing kernels and the method of
geodetic image neighborhood resampling achieved very high corner detection for all tested kernel
sizes. The performance of the classic Harris-based corner detector, deteriorates as the kernel size
increases. The number of falsely indicated corners is much lower for the proposed method, consistently
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for all tested kernel sizes. The geodetic neighborhood method [22] is producing a large number of
false corner detections over all tested kernel sizes, whereas the classic corner detector exhibited false
detection rate that deteriorates as the kernel size increases.

The execution time of the proposed method was slower than the corresponding time using
the classic kernels, but not prohibitive for practical use. The most demanding step was the initial
calculation of the initial geodetic Gaussian g0 with small σ0, which needs only be performed once,
after camera calibration. The approximation of the Gaussian response which was averaged to 0.017 s
per iteration for a 480 × 640 image. Possible parallel of this step may achieve important acceleration.
Further work is needed to expand these results into more image analysis/feature extraction methods
from fisheye images.

Funding: This research received no external funding

Conflicts of Interest: The author declares no conflict of interest.

References

1. Geyer, C.; Daniilidis, K. Catadioptric projective geometry. Int. J. Comput. Vis. 2001, 45, 223–243. [CrossRef]
2. Bermudez-Cameo, J.; Lopez-Nicolas, G.; Guerrero, J.J. Automatic line extraction in uncalibrated

omnidirectional cameras with revolution symmetry. Int. J. Comput. Vis. 2015, 114, 16–37. [CrossRef]
3. Ahmed, M.S.; Gao, Z. Ultra-wide fast fisheye for security and monitoring applications. In Proceedings

of the International Symposium on Optoelectronic Technology and Application 2014: Advanced Display
Technology; and Nonimaging Optics: Efficient Design for Illumination and Solar Concentration, Beijing,
China, 13–15 May 2014.

4. Caruso, D.; Engel, J.; Cremers, D. Large-scale direct slam for omnidirectional cameras. In Proceedings of the
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany,
28 September–2 October 2015; pp. 141–148.

5. Choi, Y.W.; Kwon, K.K.; Lee, S.I.; Choi, J.W.; Lee, S.G. Multi-robot Mapping Using Omnidirectional-Vision
SLAM Based on Fisheye Images. ETRI J. 2014, 36, 913–923. [CrossRef]

6. Abrams, A.D.; Pless, R.B. Webcams in context: Web interfaces to create live 3D environments. In Proceedings
of the 18th ACM International Conference on Multimedia, Toronto, ON, Canada, 26–30 October 2010;
pp. 331–340.

7. Sankaranarayanan, K.; Davis, J.W. A fast linear registration framework for multi-camera GIS coordination.
In Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance,
Santa Fe, NM, USA, 1–3 September 2008.

8. Hu, X.; Zheng, H.; Chen, Y.; Chen, L. Dense crowd counting based on perspective weight model using a
fisheye camera. Optik-Int. J. Light Electron Opt. 2015, 126, 123–130. [CrossRef]

9. Vandewiele, F.; Motamed, C.; Yahiaoui, T. Visibility management for object tracking in the context of a
fisheye camera network. In Proceedings of the 2012 Sixth International Conference on Distributed Smart
Cameras (ICDSC), Hong Kong, China, 30 October–2 November 2012; pp. 1–6.

10. Wang, W.; Gee, T.; Price, J.; Qi, H. Real time multi-vehicle tracking and counting at intersections from a
fisheye camera. In Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision
(WACV), Waikoloa, HI, USA, 5–9 January 2015; pp. 17–24.

11. Rhodin, H.; Richardt, C.; Casas, D.; Insafutdinov, E.; Shafiei, M.; Seidel, H.P.; Theobalt, C. Egocap: Egocentric
marker-less motion capture with two fisheye cameras. ACM Trans. Graph. 2016, 35, 162. [CrossRef]

12. Rhodin, H.; Robertini, N.; Richardt, C.; Seidel, H.P.; Theobalt, C. A versatile scene model with differentiable
visibility applied to generative Pose Estimation. In Proceedings of the 2015 International Conference on
Computer Vision (ICCV 2015), Tampa, FL, USA, 5–8 December 2015.

13. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2,
pp. 1150–1157.

14. Hansen, P.; Corke, P.; Boles, W.; Daniilidis, K. Scale Invariant Feature Matching with Wide Angle Images.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA,
USA, 29 October–2 November 2007; pp. 1689–1694.

http://dx.doi.org/10.1023/A:1013610201135
http://dx.doi.org/10.1007/s11263-014-0792-7
http://dx.doi.org/10.4218/etrij.14.0114.0584
http://dx.doi.org/10.1016/j.ijleo.2014.08.132
http://dx.doi.org/10.1145/2980179.2980235


J. Imaging 2018, 4, 73 21 of 21

15. Bulow, T. Spherical diffusion for 3D surface smoothing. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26,
1650–1654. [CrossRef] [PubMed]

16. Cruz-Mota, J.; Bogdanova, I.; Paquier, B.; Bierlaire, M.; Thiran, J.P. Scale invariant feature transform on the
sphere: Theory and applications. Int. J. Comput. Vis. 2012, 98, 217–241. [CrossRef]

17. Puig, L.; Guerrero, J.J. Scale space for central catadioptric systems: Towards a generic camera feature extractor.
In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain,
6–13 November 2011; pp. 1599–1606.

18. Puig, L.; Guerrero, J.J.; Daniilidis, K. Scale space for camera invariant features. IEEE Trans. Pattern Anal.
Mach. Intell. 2014, 36, 1832–1846. [CrossRef] [PubMed]

19. Andreasson, H.; Treptow, A.; Duckett, T. Localization for mobile robots using panoramic vision, local features
and particle filter. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 18–22 April 2005; pp. 3348–3353.

20. Zhao, Q.; Feng, W.; Wan, L.; Zhang, J. SPHORB: A fast and robust binary feature on the sphere. Int. J.
Comput. Vis. 2015, 113, 143–159. [CrossRef]

21. Hara, K.; Inoue, K.; Urahama, K. Gradient operators for feature extraction from omnidirectional panoramic
images. Pattern Recognit. Lett. 2015, 54, 89–96. [CrossRef]

22. Demonceaux, C.; Vasseur, P.; Fougerolle, Y. Central catadioptric image processing with geodesic metric.
Image Vis. Comput. 2011, 29, 840–849. [CrossRef]

23. Delibasis, K.K.; Plagianakos, V.P.; Maglogiannis, I. Refinement of human silhouette segmentation in
omni-directional indoor videos. Comput. Vis. Image Underst. 2014, 128, 65–83. [CrossRef]

24. Delibasis, K.K.; Georgakopoulos, S.V.; Kottari, K.; Plagianakos, V.P.; Maglogiannis, I. Geodesically-corrected
Zernike descriptors for pose recognition in omni-directional images. Integr. Comput.-Aided Eng. 2016, 23,
185–199. [CrossRef]

25. Puig, L.; Bermúdez, J.; Sturm, P.; Guerrero, J.J. Calibration of omnidirectional cameras in practice:
A comparison of methods. Comput. Vis. Image Underst. 2012, 116, 120–137. [CrossRef]

26. Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference,
Manchester, UK, 31 August–2 September 1988; Volume 15, pp. 10–5244.

27. Mokhtarian, F.; Mohanna, F. Performance evaluation of corner detectors using consistency and accuracy
measures. Comput. Vis. Image Underst. 2006, 102, 81–94. [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2004.129
http://www.ncbi.nlm.nih.gov/pubmed/15573826
http://dx.doi.org/10.1007/s11263-011-0505-4
http://dx.doi.org/10.1109/TPAMI.2014.2306421
http://www.ncbi.nlm.nih.gov/pubmed/26352235
http://dx.doi.org/10.1007/s11263-014-0787-4
http://dx.doi.org/10.1016/j.patrec.2014.12.010
http://dx.doi.org/10.1016/j.imavis.2011.09.007
http://dx.doi.org/10.1016/j.cviu.2014.06.011
http://dx.doi.org/10.3233/ICA-160511
http://dx.doi.org/10.1016/j.cviu.2011.08.003
http://dx.doi.org/10.1016/j.cviu.2005.11.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Geodesic Distance Metric between Pixels of the Calibrated Fish-Eye Image 
	Filter Kernels for Fish-Eye Image Processing Based on the Geodesic Distance Metric between Image Pixels 
	An Efficient Computational Implementation of the Geodetically Corrected g, gx, gy and LoG Kernels for Fisheye Images for Any Value of  
	Approximating the Normalized Geodetic LoG Using DoG 
	Approximation of First Order Partial Derivatives of the Geodesic Gaussian 
	Detecting Corner Pixels in Fisheye Image 


	Results 
	Discussion 
	References

