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Abstract: Total variation (TV) is widely used in many image processing problems including the
regularization of optical flow estimation. In order to deal with non differentiability of the TV
regularization term, smooth approximations have been considered in the literature. In this paper,
we investigate the use of three known smooth TV approximations, namely: the Charbonnier, Huber
and Green functions. We establish the maximum theoretical error of these approximations and
discuss their performance evaluation when applied to the optical flow problem.
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1. Introduction

TV-based optical flow can be cast into the following form:

min
w

D(w) + α ‖∇w‖1 ,

where w ∈ RN is the optical flow, D : RN → R is a data energy function, ‖.‖1 is the l1 norm,
and α > 0 is a regularization parameter weighting the relative importance of data and smoothing terms.
Although the TV semi-norm has been useful for performing edge-preserving regularization [1–9],
it is known to be numerically difficult to handle. Despite its convexity, it is not linear, quadratic or
even everywhere-differentiable. Thus, the non-smoothness of this term prevents a straightforward
application of gradient based optimization methods.

To remedy the problem of non-differentiability of the l1 norm function x 7→ ‖x‖1, there are two
solutions. First, we can split x = y− z where yi = max{xi, 0} and zi = max{−xi, 0} for i = 1, . . . , N.
The l1 norm of x will be then equal to ∑N

i=1(yi + zi), which will remove non-differentiability at zero but
unfortunately the problem dimension will be doubled and the optimization will become constrained
since y and z should be positive. The second remedy, which we are investigating in this paper, is to
replace the l1 norm by a smooth approximation.

Any smooth TV regularization should address two issues: (1) It should remove the singularities
that are caused by the use of TV regularization; (2) It should maintain the preservation of motion
boundaries. Several smooth approximations of the l1 norm have been established in the literature for
the regularization of a wide variety of problems [10–17], as well as for the optical flow problem [2–5].

To our knowledge, there is no theory that establishes optimality of any of these approximations;
the best choice is application dependent. For instance, Nikolova and Ng [17] have considered different
smooth TV approximations in the context of restoration and reconstruction of images and signals
using half quadratic minimization. Our objective in this paper is to investigate the use of three known
smooth TV approximations, namely: the Charbonnier, Huber and Green functions for the case of
optical flow computation.
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The outline of this paper is as follows. Section 2 describes the variational formulation of the
optical flow problem. In particular, we present the TV regularization model for dense optical flow
estimation. In Section 3, we consider three smooth approximations of the TV regularization term
and discuss their maximum theoretical error of approximation. Section 4 concerns the performance
evaluation of the three approximations in terms of the quality of the estimated optical flow and the
speed of convergence by using the Middlebury datasets. Finally, we conclude our work in Section 5.

2. Variational Formulation

Let us consider a sequence of gray level images I(t, x, y), t ∈ [0, T], (x, y) ∈ Ω, where [0, T] is
the temporal domain and Ω denotes the image spatial domain. We will use both continuous and
disc in time at frame numbers tk = k∆t, k = 0, . . . , K and in space at pixel coordinates p = (m, n),
with m (respectively n) corresponds to the discrete column (respectively row) of the image, being the
coordinate origin located in the top-left corner of the image. With this notation, I[k, m, n] denotes a
discrete representation of I(t, x, y). We will also use both continuous and quantized image intensities
and the same symbol I will be used for both of them.

Assuming that the gray level of a point does not change over time we may write the constraint

I(t, x(t), y(t)) = I(0, x, y), (1)

where (x(t), y(t)) is the apparent trajectory of the point (x(0), y(0)) = (x, y). Taking the derivative
with respect to t and denoting (u(t, x, y), v(t, x, y)) = (x′(t), y′(t)), we obtain the linear optical
flow constraint

It + Ixu + Iyv = 0. (2)

The vector field w(t, x, y) := (u(t, x, y), v(t, x, y)) is called optical flow and It, ∇I = (Ix, Iy)

denote the temporal and spatial partial derivatives of I, which are computed using high-pass gradient
filters for discrete images. Clearly, the single constraint (2) is not sufficient to uniquely compute the
two components (u, v) of the optical flow (this is called the aperture problem) and only gives the
component of the flow normal to the image gradient, i.e., to the level lines of the image. As it is usual,
in order to recover a unique flow field, some prior knowledge about it should be added. For that,
we assume that the optical flow varies smoothly in space, or better, that is piecewise smooth in Ω.
This can be achieved by including a smoothness term of the form

R(w) :=
∫

Ω
G(∇I,∇w) dxdy, (3)

where G : R2 ×R4 → R is a suitable function.
Both data attachment (1) and regularization term (3) can be combined into a single

energy functional
E(w) = D(w) + αR(w), (4)

where the data functional D is either equal to the linear term∫
Ω
(It + uIx + vIy)2 dxdy (5)

or the nonlinear term ∫
Ω
(I(k + 1, x + u, y + v)− I(k, x, y))2 dxdy, (6)

and α > 0 is a regularization parameter.
When using the linear data term (5), the case G(∇I,∇w) = ‖∇w‖2 = ‖∇u‖2 + ‖∇v‖2

corresponds to the Horn-Schunck model [18] and the case G(∇I,∇u,∇v) = trace((∇w)T M(∇I)∇w),
where M(∇I) = 1

‖∇I‖2+δ

(
(∇I)⊥(∇I)⊥T + δ1d

)
and δ ≥ 0, corresponds to the Nagel-Enkelmann
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model [19]. On the other hand, the TV regularization [1] became the most used in image processing
because it allows for discontinuities preserving. In this case, for w ∈ L1(Ω), we have

R(w) = TV(w) := sup
Φ∈C∞

c (Ω,R4),‖Φ‖∞≤1

∫
Ω
< w, div Φ > dxdy,

where C∞
c (Ω,R4) is the space of infinitely differentiable vector-valued functions with compact support.

Note that when TV(w) < ∞, the distributional derivative dw of w is a vector-valued Radon measure
with total variation |dw|(Ω) = TV(w). When w ∈ W1,1(Ω,R2), the TV semi-norm reduces to the
L1-norm of the gradient

∫
Ω ‖∇w‖ dxdy so that

G(∇I,∇w) = ‖∇w‖,

where we can have either ‖∇w‖ =
√
‖∇u‖2 + ‖∇v‖2 or ‖∇w‖ = ‖∇u‖+ ‖∇v‖. We have chosen the

first one because the Euclidean norm is known to be rotationally invariant.
For a full account of regularization techniques for the optical flow problem and the associated

taxonomy, we refer to [20,21].
In this paper, we will consider a TV regularization model which is written in the discrete form

as follows:
R(w) := ∑

p∈Ω
∑

q∈Np

wp,q, (7)

where wp,q =
√
(uq − up)2 + (vq − vp)2 and Np is a set of neighbors of the pixel p. We will also

combine the TV regularization with the nonlinear data term (6) used with a robust function ψ in order
to remove outliers:

∑
p∈Ω

ψ (I[k + 1, p + w]− I[k, p]) . (8)

The robust function used in this paper is

ψ (s) =

{
s2/2 if |s| ≤ γ

γ2/2 otherwise,

where γ is a given threshold.

3. Smooth TV Regularization

In this section, we focus on approximating the non-smooth TV semi-norm (7) by a smooth function:

Rε(w) := ∑
p∈Ω

∑
q∈Np

φε

(
wp,q

)
, (9)

where φε : R → R+ is a smooth approximation of the absolute value function and ε > 0 is a small
parameter adjusting the accuracy of this approximation. In this paper, we will consider variants choices
of φε as illustrated in Table 1.

Notice that the regularization term in (9) with a function φε from Table 1 is a hybrid between the
TV regularization (7) and the standard quadratic regularization [18]. It takes the form of a quadratic or
nearly quadratic for small values of the optical flow gradient and becomes linear or sublinear for large
values of the optical flow gradient. In this way, this smooth regularization will retain the fast Laplacian
diffusion inside homogeneous motion regions and its effect is substantially reduced near motion
boundaries helping the preservation of these boundaries’ edges. We should also note that the smaller
the parameter ε is, the better the function φε approximates the absolute value function; and henceforth
the better the smooth regularization (9) approximates the TV regularization (7). In practice, a very
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small parameter ε might cause numerical instabilities but such a choice is not really needed as the
quadratic regularization is preferred inside homogeneous regions.

Table 1. Smooth approximations of the absolute value function and their derivatives. The graphs of
these approximations are plotted versus the absolute value function near zero for ε = 0.01.

Charbonnier Huber Green

φε(s) =
√

s2 + ε2 φε(s) =

{
s2

2ε if |s| ≤ ε

|s| − ε
2 if |s| > ε

φε(s) = ε log(2 cosh( s
ε ))

φ′ε(s) =
s√

s2 + ε2
φ′ε(s) =

{
s
ε if |s| ≤ ε
s
|s| if |s| > ε

φ′ε(s) = tanh( s
ε )

According to the discussion above, there are minimum conditions that should satisfy any
approximation φε (see [10]):

φ′ε(0) = 0, lim
s→0+

φ′ε(s)
s

= lim
s→0+

φ′′ε (s) = φ′′ε (0) > 0,

lim
s→∞

φ′ε(s)
s

= lim
s→∞

φ′′ε (s) = 0 and lim
s→∞

φ′′ε (s)
φ′ε(s)/s

= 0.
(10)

By simple calculus, it can be shown that the approximations we are considering in this paper,
which are given in Table 1, satisfy the conditions in (10). Notice also that all these approximations
are suitable for 1st order numerical convex optimization algorithms since they are all convex and
differentiable. However, for 2nd order numerical optimization algorithms, the Charbonnier and Green
functions are twice differentiable but the Huber function is not. In this case, the latter approximation
is normally replaced by a twice differentiable function called the pseudo Huber approximation

φε(s) = ε(
√

1 + s2

ε2 − 1) [12], which is the same as the Charbonnier function except for a vertical
translation by ε.

3.1. Charbonnier Approximation

The first approximation
φε(s) =

√
s2 + ε2 (11)

is referred to as the Charbonnier penalty function [11]. It was first used for optical flow in [5].
This function is clearly strictly convex and infinitely differentiable. Moreover, we can easily prove that
it approximates the absolute value function with an error at most equal to ε.

Lemma 1. For s ∈ R, 0 ≤ φε(s)− |s| ≤ ε, where φε is the Charbonnier function (11).

The Charbonnier TV regularization is therefore an approximation of the TV regularization of
order ε. Let |Ω| be the total number of image pixels and |N | be the fixed size of each neighborhood
Np which is used for the finite difference approximation of the optical flow gradient.

Proposition 1. 0 ≤ Rε(w)− R(w) ≤ ε|Ω||N |, where φε in Rε is the Charbonnier function (11).
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Proof. Using the previous lemma, we get

0 ≤ Rε(w)− R(w) = ∑
p∈Ω

∑
q∈Np

(
φε(wp,q)− φ(wp,q)

)
≤ ε|Ω||N |.

3.2. Huber Approximation

The Huber function

φε(s) =

{
s2

2ε if |s| ≤ ε

|s| − ε
2 if |s| > ε

(12)

was initially used by Huber (see [13]) as an M-estimator in the field of robust statistics. Its use for
optical flow computation was first discussed in [2]. Later, it was used as a smooth approximation of
the l1 norm as in [16]. The Huber function is clearly convex and continuously differentiable.

We want to relate the Huber regularization in (9) to the TV and quadratic regularization. First,
the following lemma shows that the Huber function approximates the absolute function with an error of
order ε

2 .

Lemma 2. For s ∈ R, |s| − ε

2
≤ φε(s) ≤ |s|, where φε is the Huber function (12).

Proof. Let s ∈ R. Suppose first that |s| ≤ ε. Hence

|s| − ε

2
≤ |s|

2
=

s2

2|s| ≤ φε(s) =
s2

2ε
≤ s2

2|s| ≤ |s|.

Now, if |s| > ε, then φε(s) = |s| −
ε

2
< |s|.

This shows that the Huber TV regularization has a maximum theoretical error twice better than
that of the Charbonnier TV regularization.

Proposition 2. − ε

2
|Ω||N | ≤ Rε(w)− R(w) ≤ 0, where φε in Rε is the Huber function (12).

3.3. Green Approximation

The Green penalty function

φε(s) = ε log(2 cosh(
s
ε
)) (13)

was originally used in [14] for the maximum likelihood reconstruction from emission tomography
data as a convex extension of the Geman and McClure function [15]. This penalty function was
introduced for optical flow computation in [3,4]. Again, this function is strictly convex and infinitely
differentiable inheriting these properties from the log cosh function. Notice that we have translated
the original Green function by a factor ε log 2, which is the maximum approximation error as shown by
the following lemma.

Lemma 3. For s ∈ R, |φε(s)− |s|| ≤ ε log 2, where φε is the Green function (13).

Proof. Let s ∈ R. First, we have

φε(s) = ε log(es/ε + e−s/ε) = s + ε log(1 + e−2s/ε).
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Hence, for s > 0, we have ||s| − φε(s)| = ε log(1 + e−2s/ε). Now, if s < 0, then

||s| − φε(s)| = ε

∣∣∣∣2s
ε
+ log(1 + e−2s/ε)

∣∣∣∣ = ε log(1 + e2s/ε).

Therefore, whatever the sign of s, we get

||s| − φε(s)| = ε log(1 + e−2|s|/ε) ≤ ε log 2.

The Green TV regularization approximates the TV regularization with an order ε as well but the
maximum error is slightly greater than that of the Huber TV regularization.

Proposition 3. |Rε(w)− R(w)| ≤ ε|Ω||N | log 2, where φε in Rε is the Green function (13).

4. Experimental Results

We want to minimize the energy functional (4) where D is given by (8), R is given by (9) and
φε is one of the smooth approximations presented in the previous section. We choose to adopt the
discretize-optimize approach by applying a numerical optimization algorithm to this discrete version of
the optical flow minimization problem. The problem is of a large-scale type and therefore we solve it
using a multiresolution line search truncated Newton method as developed in [22,23]. The method first
builds a pyramid of images at different levels of resolution. It starts then at the coarsest level with a zero
flow field and applies a number of iterations of the line search truncated Newton (LSTN) algorithm.
Afterwards, the obtained coarse estimation is taken to the next fine level by bilinear interpolation.
This process is repeated until reaching the finest level where a good initial estimate of the optical flow
is obtained and henceforth refined by the LSTN algorithm until convergence is reached.

The parameter γ, present in the data term and which is shared by the three functionals, was
fixed to a value between ten and twenty depending on the nature of the image sequence. However,
in order to have a fair comparison, the parameters α and ε involved in the regularization term yielding a
different energy functional, are tuned for each functional to have the best results. From the experiments,
we have noticed that functionals with the Charbonnier and Huber approximations will share in general
the same set of optimal parameters. As expected the set of optimal parameters for the Green function
is different, especially for the value of ε since the log cosh function has a different transition level
between its quadratic and linear parts.

In Figure 1, we show the colored based representation of the ground truth and the best optical flow
estimates obtained using Charbonnier, Huber and Green smooth TV regularizations for the Middlebury
training benchmark [24] using the best parameters. Notice first how the motion boundaries are
preserved for all images in Figure 1. This is indeed a famous property of the TV regularization
that has been inherited by its three smooth approximations. In Figure 2, we present other tested
image sequences that have different types of movement. The first three images have a translation of
different sizes: half, one and ten for the spiral, peppers and band sequences, respectively. The baboon
sequence has a rotation movement and the Lena sequence has a homography mapping. These five
images are standard test images in image processing that have been used as the first frames and the
second frames have been generated by applying the movements described above. The Marble blocks
sequence, which has a zoom transformation, was obtained from the Image Sequence Server, Institut für
Algorithmen und Kognitive Systeme, (Group Prof. Dr. H.-H. Nagel), University of Karlsruhe, Germany
and was first used in [25]. Finally, the rotating sphere sequence was generated by the Computer Vision
Research Group at the University of Otago, New Zealandand the book sequence by the Computer
Laboratory at Cambridge University.
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Sequence Ground truth Charbonnier Huber Green

Figure 1. Optical flow estimates with best parameters using Charbonnier, Huber and Green TV
regularizations for the Middlebury images [24] ordered as in Table 2.

Tables 2 and 3 present the performance comparison of the three approximations in terms of the
quality of the optical flow estimation measured by the average angular error (AAE) and the average
endpoint error (AEE). In Table 4, we give also the interpolation error measured by the displaced frame
difference (DFD), which corresponds to the data term in the energy functional (4). Then in Table 5,
we provide a comparison with respect to the speed of convergence given by the number of gradient
evaluations (Ng).
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Half pixel One pixel Ten pixels Rotation

Homography Zoom Sphere Book

Figure 2. Other image sequences that are used in the comparison tables.

Table 2. Average Angular Error (AAE) using Charbonnier, Huber and Green TV regularizations for the
Middlebury datasets (top) and the image sequences given in Figure 2 in the same order (bottom).

Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

Charbonnier 2.561 2.736 6.857 3.335 6.629 6.657 7.209 8.085
Huber 2.562 2.716 6.819 3.364 6.632 6.579 7.288 8.083
Green 2.539 2.899 7.333 3.179 6.979 6.490 8.433 8.400

1/2 Pixel 1 Pixel 10 Pixels Rotation Homography Zoom Sphere Book

Charbonnier 2.412 0.307 0.009 0.794 2.724 6.981 3.525 0.773
Huber 2.382 0.308 0.006 0.767 2.668 6.901 3.588 0.715
Green 6.519 0.299 0.200 1.779 2.872 7.480 3.830 1.531

Table 3. Average Endpoint Error (AEE) using Charbonnier, Huber and Green TV regularizations for the
Middlebury datasets (top) and the image sequences given in Figure 2 in the same order (bottom).

Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

Charbonnier 0.139 0.183 0.774 0.371 0.201 0.818 1.015 0.557
Huber 0.140 0.180 0.780 0.378 0.201 0.799 1.009 0.551
Green 0.139 0.200 0.794 0.344 0.209 0.816 1.016 0.673

1/2 Pixel 1 Pixel 10 Pixels Rotation Homography Zoom Sphere Book

Charbonnier 0.051 0.010 0.017 0.025 0.081 0.221 0.107 2.946
Huber 0.050 0.010 0.011 0.025 0.078 0.218 0.111 2.952
Green 0.139 0.009 0.037 0.050 0.081 0.236 0.114 3.145
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Table 4. Displaced Frame Difference (DFD) using Charbonnier, Huber and Green TV regularizations for
the Middlebury datasets (top) and the image sequences given in Figure 2 in the same order (bottom).

Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

Charbonnier 0.470 1.350 1.686 1.163 0.564 0.398 0.471 0.762
Huber 0.471 1.365 1.834 1.210 0.566 0.383 0.463 0.769
Green 0.454 0.997 1.651 0.942 0.393 0.384 0.421 0.976

1/2 Pixel 1 Pixel 10 Pixels Rotation Homography Zoom Sphere Book

Charbonnier 0.305 0.015 0.000 0.986 0.409 1.000 0.065 1.080
Huber 0.315 0.020 0.000 0.986 0.416 0.995 0.069 1.001
Green 0.065 0.006 0.000 0.804 0.319 0.799 0.023 1.053

Table 5. Number of gradient evaluations (Ng) using Charbonnier, Huber and Green TV regularizations
for the Middlebury datasets (top) and the image sequences given in Figure 2 in the same order (bottom).

Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

Charbonnier 359 364 531 417 592 555 1138 638
Huber 328 332 487 396 581 500 1015 613
Green 296 582 610 534 508 526 779 976

1/2 Pixel 1 Pixel 10 Pixels Rotation Homography Zoom Sphere Book

Charbonnier 685 331 525 231 445 188 150 420
Huber 619 502 592 259 378 192 155 503
Green 525 459 532 319 695 283 312 507

First, we remark that the Charbonnier and Huber approximations lead to similar results with a
slight preference for the latter. Globally, these two approximations perform better than the Green
TV regularization in terms of both the average angular error and the average endpoint error of the
estimated optical flow solution, and the speed of convergence as shown in Table 6. On a total of sixteen
image sequences, Huber method has performed better half of the time in terms of AEE with an average
of 3.836 per image sequence. It has also 9 times a better AEE with an average of 0.468. The method
needs an average of 466 gradient evaluations to reach the estimated solution. This is slightly better than
Charbonnier method, which has averages of 3.849, 0.469 and 473 for AAE, AEE and Ng, respectively.
Nevertheless, the Green approximation has the best performance with respect to the interpolation
error. The method has performed better on thirteen image sequences out of sixteen with an average
DFD of 0.580 per sequence; while Charbonnier and Huber approximations have an average DFD of
0.670 and 0.678, respectively. On the other hand, Green method has better AAE and three different
sequences, better AEE for two sequences, and better Ng for four sequences.

Table 6. Overall performance of Charbonnier, Huber and Green TV regularizations for the sixteen
tested images.

AAE AEE DFD Ng

Charbonnier 61.594 7.516 10.724 7569
Huber 61.378 7.493 10.863 7452
Green 70.762 8.002 9.287 8443

We have noticed also that the Green method is very sensitive to the parameter ε, which is
due to the sensitivity of the hyperbolic function cosh to roundoff errors. The Charbonnier and
Huber approximations suffer less from this problem. This might explain their wide use as smooth
TV approximations in image processing. In Figure 3, we show the dependence of the estimated
solution on the parameter ε for these two approximations using the Yosemite sequence, which was
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created by Lynn Quam at SRI and first used for optical flow in [26]. The dependence is shown in terms
of AAE, AEE and Ng. For the Yosemite sequence with clouds, we can see that both the Charbonnier
and Huber TV approximations give similar results for values of ε between 10−6 and 0.1. For ε < 10−5,
Charbonnier approximation is slightly better than Huber approximation but the latter is performing
better for values of ε around 10−4. Otherwise, the two approximations are performing almost the same
except for large values of ε near 0.1 where Charbonnier gives slightly better AEE but Huber has better
AAE. In Figure 4 and Table 7, the results are shown using the best parameters.
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Figure 3. Sensitivity of Charbonnier and Huber TV regularizations for the Yosemite sequence with clouds
(top) and without clouds (bottom) with respect to the choice of ε. On the left, we show the quality of
the estimated optical flow in terms of AAE and AEE . On the right, we compare the number of gradient
evaluations. α = 35 and γ = 10. The x-axis is log scaled.

Yosemite Ground truth Charbonnier Huber

Figure 4. Optical flow estimates with best parameters using Charbonnier and Huber TV regularizations
for the Yosemite sequence.
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Table 7. Average Angular Error (AAE), Average Endpoint Error (AEE) and number of gradient
evaluations (Ng) using best parameters for Charbonnier and Huber TV regularizations on the Yosemite
sequence with clouds (Yosemitec) and without clouds (Yosemite).

Yosemitec Yosemite

Charbonnier Huber Charbonnier Huber

AAE 4.773 4.794 2.286 2.338
EPE 0.280 0.288 0.113 0.114
DFD 1.433 1.440 0.936 0.937
Ng 619 489 532 418

5. Conclusions

We have investigated the use of three smooth approximations of the TV regularization in the
context of the optical flow problem. We have used the same non linear data optical flow term and the
same multilevel truncated Newton algorithm for the three approximations. On sixteen tested image
sequences, the Huber function has confirmed its best theoretical approximation with an overall better
performance in terms of both the quality of the estimated optical flow and the speed of convergence.
Although the Charbonnier function has the worst theoretical approximation, it has performed almost
the same as the Huber function and better than the Green function. On the other hand, in terms of
the interpolation error, the Green function appears to be the best method. It has performed better on
thirteen images out of sixteen.
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