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Abstract: Diabetic foot ulcers are a major complication of diabetes and present a considerable burden
for both patients and health care providers. As healing often takes many months, a method of
determining which ulcers would be most likely to heal would be of great value in identifying
patients who require further intervention at an early stage. Hyperspectral imaging (HSI) is a tool
that has the potential to meet this clinical need. Due to the different absorption spectra of oxy-
and deoxyhemoglobin, in biomedical HSI the majority of research has utilized reflectance spectra to
estimate oxygen saturation (SpO2) values from peripheral tissue. In an earlier study, HSI of 43 patients
with diabetic foot ulcers at the time of presentation revealed that ulcer healing by 12 weeks could be
predicted by the assessment of SpO2 calculated from these images. Principal component analysis
(PCA) is an alternative approach to analyzing HSI data. Although frequently applied in other
fields, mapping of SpO2 is more common in biomedical HSI. It is therefore valuable to compare
the performance of PCA with SpO2 measurement in the prediction of wound healing. Data from
the same study group have now been used to examine the relationship between ulcer healing by
12 weeks when the results of the original HSI are analyzed using PCA. At the optimum thresholds,
the sensitivity of prediction of healing by 12 weeks using PCA (87.5%) was greater than that of SpO2

(50.0%), with both approaches showing equal specificity (88.2%). The positive predictive value of
PCA and oxygen saturation analysis was 0.91 and 0.86, respectively, and a comparison by receiver
operating characteristic curve analysis revealed an area under the curve of 0.88 for PCA compared
with 0.66 using SpO2 analysis. It is concluded that HSI may be a better predictor of healing when
analyzed by PCA than by SpO2.

Keywords: hyperspectral imaging; principal component analysis; oxygen saturation; wound healing;
diabetic foot ulcer

1. Introduction

Diabetic foot ulcers are thought to affect 15–25% of people with diabetes during their lifetime [1]
and are a major source of suffering and cost. The principal pathological conditions contributing to foot
ulceration are peripheral neuropathy, peripheral artery disease, pre-existing deformity, and trauma,

J. Imaging 2018, 4, 144; doi:10.3390/jimaging4120144 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0003-4559-0836
https://orcid.org/0000-0003-4069-3801
http://www.mdpi.com/2313-433X/4/12/144?type=check_update&version=1
http://dx.doi.org/10.3390/jimaging4120144
http://www.mdpi.com/journal/jimaging


J. Imaging 2018, 4, 144 2 of 11

but the contributions of each vary considerably. While some ulcers heal relatively quickly, others fail
to heal and deteriorate. An accurate prediction of those ulcers least likely to heal quickly can therefore
be useful, because it would enable consideration of more intensive intervention at an earlier stage and
thereby improve overall outcome.

Peripheral artery disease can both cause ulceration and delay its healing by reducing the delivery
of oxygen to peripheral tissues. While there are a number of approaches to assessing the extent of
disease in larger arteries (including pulse palpation, pressure measurements, and angiography),
none are routinely used to investigate associated dysfunction of smaller arteries, arterioles,
and capillaries. One option that has been explored is hyperspectral imaging (HSI).

HSI is a noninvasive technique by which images are formed at different wavelengths to produce a
hypercube (x, y, λ). Due to the different absorption spectra of oxy- and deoxyhemoglobin, in biomedical
HSI the majority of research has utilized the reflectance hypercube to estimate oxygen saturation (SpO2)
values from peripheral tissue [2–9].

Greenman and colleagues used HSI to investigate whether oxygen delivery and muscle
metabolism were factors in diabetic foot disease. That study included 108 individuals without
ulceration, comparing three groups: volunteers without diabetes, diabetic patients without neuropathy,
and patients with both diabetes and neuropathy [5]. SpO2 was reduced in people with diabetes,
and especially in those with neuropathy. Yudovsky et al. [6] also used HSI in the visible spectrum
(450–700 nm) to predict tissue breakdown. A two-layer (epidermis, dermis) skin model was used to fit
to the measured data and obtain an index of SpO2. The algorithm was able to predict tissue at risk of
ulceration with a sensitivity and specificity of 95% and 80% respectively, 58 days before breakdown is
visible to the naked eye [6].

A formula to derive an indication of SpO2 from HSI was also used by Khaodhiar et al. [7] to
estimate oxyhemoglobin and deoxyhemoglobin of 10 patients with type 1 diabetes with foot ulcers,
13 without ulcers, and 14 subjects without diabetes. A spectrum for each pixel was compared with
standard tissue to determine measures of oxyhemoglobin and deoxyhemoglobin. Using this approach,
the sensitivity and specificity of HSI in predicting ulcer healing were 93% and 86%, while the positive
and negative predictive values for ulceration were calculated as 93% and 86%. Nouvong et al. [8]
used a similar approach to estimate relative values of tissue oxyhemoglobin and deoxyhemoglobin in
66 people with diabetic foot ulcers and reported that the sensitivity of HSI to predict healing within
6 months was 80% and the specificity was 74%. As discussed in our previous work [9], both of these
papers had weaknesses, which helps to explain the differences between results of [7–9]. The first
study [7] was very small and acknowledged to be simply a pilot, and both studies based their analysis
on outcome per ulcer rather than outcome per person. The population included in the second study [8]
was also highly selected, with a mean age of participants of just over 50 years, much younger than a
representative population with diabetic foot ulcers.

Principal component analysis (PCA) is an alternative approach to analyzing HSI data. Although
frequently applied in other fields, such as remote sensing and the food industry, mapping of SpO2 is
more common in biomedical HSI. It is therefore valuable to compare the performance of PCA with
SpO2 measurement in the prediction of wound healing. PCA is a process that converts a number of
possibly correlated variables into a set of linearly uncorrelated variables called principal components.
PCA has been demonstrated to be an effective and efficient preprocessing method, as retaining only the
first few principal components significantly reduces data [10]. In the food industry, PCA and HSI have
been applied to tea classification [11], detection of bruise damage on mushrooms [12], and estimation
of the quality of pork [13]. Some examples of the application of PCA in in vivo biomedical HSI are
provided in useful reviews [14–16], with a focus on laparoscopic imaging [11,12]. PCA has also been
used as a dimension-reduction algorithm for wavelet-based segmentation of hyperspectral colon tissue
imagery [17]. For tissue measurement, the contiguous bands of a hypercube are highly correlated,
as they are dominated by the oxy- and deoxyhemoglobin spectra. This has the benefit of being a
data-reduction method for the hypercubes obtained from the tissues of feet affected by ulcers.
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This study performed a novel investigation by comparing the performance of PCA with more
widely used SpO2 measurements in predicting whether a wound will heal within 12 weeks of
presentation. More accurate prediction of wound healing will support earlier intervention and
better treatment.

2. Method

2.1. Experimental Setup

The HSI setup is shown in Figure 1. Illumination of the foot was via 16 × 1 W white light-emitting
diodes (LEDs) (LXHL-MWEC, LumiledsTM Lighting, San Jose, CA, USA) with 8 units placed on either
side of the camera. Light scattered from the foot was passed through an aperture, which controlled
the amount of collected light and was focused onto a detector by a C-mount lens (f = 15 mm,
f# = 2.2; Schneider).
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Figure 1. Hyperspectral imaging setup for imaging the foot (foot-to-lens distance typically 25–30 cm).

The HSI camera is a “push-broom” type that images a line from the scene onto a diffraction grating,
which splits the light into a range of colors across the photosensor array. The camera comprises
a Peltier cooled charge-coupled device (CCD) (Sensicam QE, PCO imaging, Cooke Corporation,
Auburn Hills, MI, USA) coupled to an imaging spectrograph (ImSpector V10E, Specim Ltd., Oulu,
Finland), which contains an input slit and a prism–grating–prism system. The input slit defines the
field of view for the spatial scan, while the prism–grating–prism diffracts the light from the aperture
into its spectrum. Scanning the line allows a 3D data cube that is transmitted to a PC via a peripheral
component interface (PCI) for storage and future analysis. For the measurements taken in this study,
each 3D data cube contained 2D spatial images (120 × 170 pixels) over a wavelength range from 430 nm
to 750 nm (272 values). The sweep of the system moves from heel to toe and takes ~30 s to obtain
an image, with an exposure time of 100 ms per row. Calibration images of white (99% reflectance
Spectralon; Labsphere, Inc., North Sutton, NH, USA) and black (lens cap on camera) targets are
recorded to take into account the effects of the nonuniform spectrum of the light source and dark noise,
respectively. In order to reduce noise but not lose significant features in the reflected light spectra,
a 9 point moving average filter is applied to the spectra.

For a certain position in the image plane (x, y) at a wavelength λ, the calibrated attenuation value
is calculated as:

A(x, y, λ) = − log
Isample(x, y, λ)− Idark(x, y, λ)
Iwhite(x, y, λ)− Idark(x, y, λ)

(1)

where Isample is the intensity measured from the raw image, and Iwhite and Idark are the intensities of
the white and dark references, respectively.
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2.2. Clinical Protocol

The data used to compare prediction of wound healing via SpO2 and PCA were obtained in a
clinical study described previously [9]. The published study received research ethics approval and all
participants provided written informed consent. Recruitment was of a consecutive cohort, and the only
major prespecified exclusions were those with a unilateral major amputation and those who withheld
or were unable to give informed consent [9]. There was therefore no control of gender balance, as one
would expect a predominance of male patients in all studies of foot ulcers. There was also no control
of diabetes type, as this is not a recognized significant factor associated with the outcome of diabetic
foot ulcers.

Participants attending an imaging session were required to avoid drinking tea or coffee and
smoking tobacco for at least 2 hours prior to the visit, as these stimulants could lead to a change in
blood flow. Capillary glucose was determined on arrival, and patients who were hypoglycemic were
excluded from the study. All the studies were undertaken in a temperature-controlled clinic room at
22 ◦C and the test time was between 09:00 and 12:00. Prior to any assessments, participants lay on an
examination couch for at least 15 minutes after removing their shoes and socks. Intensity hypercubes
of the ulcer site were obtained for each participant, and the data were processed using SpO2 algorithms
and PCA, as described in Sections 2.3 and 2.4, respectively.

2.3. SpO2 Data Processing

Oxygen saturation is defined as:

SpO2 =
HbO2

HbO2 + Hb
× 100% (2)

where HbO2 is the concentration of oxyhemoglobin (mole L−1) and Hb is the concentration of
deoxyhemoglobin (mole L−1).

Due to the different absorption spectra of the dominant absorbers, oxy- and deoxyhemoglobin, it is
possible to extract information about the oxygen saturation of tissues based on optical measurements
such as HSI.

The absorption coefficient (µa(λ)) and attenuation (A(λ)) can be expressed as [18]:

µa(λ) = α(λ)[HbO2] + β(λ)[Hb] (3)

A(λ) = (α(λ)[HbO2] + β(λ)[Hb])d (4)

where α(λ) is the specific absorption of oxyhemoglobin (cm−1 mole−1 L), β(λ) is the specific absorption
of deoxyhemoglobin (cm−1 mole−1 L), and d is the path length of the light (cm).

If µa(λ) is known at 2 wavelengths, then it is straightforward to calculate SpO2 from Equations (3)
and (2), as α(λ) and β(λ) are known from literature values. A challenge is to relate measurements
of A(λ) and µa(λ). In the absence of light scattering, the path length is the geometric path length
through the sample and the relationship is the Lambert–Beer law. In practice, the relationship between
attenuation and absorption is nonlinear due to light scattering. An approximation is therefore needed
to relate A(λ) and µa(λ) in the presence of light scattering. The most commonly applied is the modified
Lambert–Beer law [19,20]:

A(λ) = µa(λ)d + G (5)

where an offset G is used to take into account attenuation due to scattering. Alternative relationships
include a parabolic model [21]:

A(λ) = −a(µa(λ)d)
2 + bµa(λ)d + G (6)
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where a and b are fitting parameters, as well as a power law model derived from photon diffusion
theory [22]:

A(λ) = aµ
1
2
a (λ) + G (7)

Here, a model is applied based on the power law approximation [18]:

A(λ) = aµb
a(λ) + G (8)

where a and b are fitting parameters. It should be noted that when b = 1, this equation is same as
the modified Lambert–Beer Law (Equation (5)) and when b = 0.5 the equation becomes the power
law model described in Equation (7). Using Equation (8) to fit to the measured data and applying
Equations (3) and (2) enabled images of oxygen saturation to be obtained. The fit is performed with a
nonlinear search algorithm that uses the simplex search method [18,23]. This is a direct search method
that does not use numerical or analytic gradients. For n unknown parameters of the fitting equation,
the simplex in n-dimensional space is characterized by the n + 1 distinct vectors that are its vertices.
At each step of the search, a new point in or near the current simplex is generated. The function’s
value at the new point is compared with its values at the vertices of the simplex, and usually one of the
vertices is replaced by the new point, giving a new simplex. This step is repeated until the diameter of
the simplex is less than the specified tolerance. The fitting algorithm and model have been previously
validated using Monte Carlo data that simulate light propagation in tissue [18]. In the presence of
noise, this method was found to be robust and was subsequently applied to tissue measurement.

Similar to [9], tissue oxygenation was assessed by HSI at a site measuring 1 cm2 in an area of
intact skin adjacent (typically 1–5 mm) to the edge of the ulcer and unaffected by callus.

2.4. Principal Component Analysis

The method applied in the wound study follows a similar approach to that described in the
literature for applications in the food industry [11–13]. A cropped region of interest of 50 × 50 pixels
was selected, as this was found to be sufficient to extract the wound and surrounding tissue for all the
images obtained. Where background pixels remained in the image (e.g., when a wound was close to or
on a toe), these were removed by thresholding, as the attenuation of the background was lower than
that of tissue.

The process of converting the three-dimensional data cube into images of each of the principal
components is shown in Figure 2. The data cube is first unfolded into a two-dimensional matrix,
where each column represents all pixels contained in one spectral band of the original image cube and
each row represents each pixel’s spectrum (Figure 2). Mathematically this is expressed as [24]:

Ai = [A(λi)1, A(λi)2, . . . , A(λi)N ]
T
i (9)

where N is the total number of pixels in the image, A(λi) is the attenuation at each pixel, i represents
the wavelength bin number of the spectrum, and T denotes the transpose.

To calculate the principal components, it is necessary to calculate the eigenvectors and eigenvalues
of the 2D matrix (Figure 2c). The mean vector is given by:

m =
1
N

N

∑
i=1

Ai (10)

The covariance matrix of Ai is expressed as:

Cov(A) =
1
N

N

∑
i=1

(Ai − m)(Ai − m)T (11)
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PCA is dependent on the eigenvalue decomposition of the covariance matrix, and Cov(x) can be
denoted in another form as:

Cov(A) = UDUT (12)
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D = diag (P1, P2, . . . , PN) (13)

U = (u1, u2, . . . uN) (14)

where D is the diagonal matrix, P is the eigenvalues of the covariance matrix, and U is the orthonormal
matrix that contains the eigenvectors of the covariance matrix.

Multiplying the 2-D matrix Ai by the eigenvector matrix provides a score matrix vi (Figure 2d),
which can then be refolded to form a data cube that represents images of principal components.

vi = UT Ai (i = 1, 2, . . . , M) (15)

Arranging these images according to the magnitude of the eigenvector (P1 � P2 � . . . � PN)
enables data reduction, as usually only information is contained in the first few principal components.
In this case, the oxy- and deoxyhemoglobin spectra are correlated and only the first two principal
components (PC1 and PC2) are used for image classification.

In order to compare the classification performance of using SpO2 values or PCA, receiver operating
characteristic (ROC) curves are used to express the performance of a binary classifier system due to
a varying discrimination threshold. An ROC curve is obtained by plotting true positive rate (TPR)
against false positive rate (FPR). TPR is the fraction of true positives out of the total actual positives.
FPR is the fraction of false positives out of the total actual negatives.

3. Results

A total of 43 volunteers participated in the clinical study, as previously reported [9]. There were
12 women and 31 men; mean age was 62.7 years. Six of the 43 patients had type 1 diabetes and 37 had
type 2 diabetes; 9 were smokers and 39 patients were judged to have neuropathy. Median (range)
ankle brachial pressure index (ABPI) was 1.06 (0.15–1.63). Median (range) estimated duration of ulcers
prior to assessment was 4.97 (1–26) weeks. 24 healed by 12 weeks and a further 7 healed between 12
and 24 weeks. Ten ulcers did not heal within 24 weeks of follow-up.

3.1. Oxygen Saturation Analysis

As previously reported [9], the SpO2 results from baseline were significantly different between
ulcers that did and did not heal within 12 weeks, but not between those that did and did not by
24 weeks. Figure 3 shows measured SpO2 at a point adjacent to the wound site against healing time
(healed by 12 weeks represented by blue diamonds, unhealed at 12 weeks represented by red triangles).
The dashed line shows the optimum threshold using Youden’s index [25] obtained from the ROC
curve shown in the next section. An R2 value of 0.4 was obtained when applying a linear fit to the data
obtained for healing within the first 12 weeks.

For the SpO2 classifier with the threshold set to 59.5%, the black dashed line (shown in Figure 3)
can be used as the decision line where patients with SpO2 values adjacent to the wound site lower than
the threshold are classified as healing by 12 weeks. Only two of the unhealed ulcers were grouped
incorrectly. The TPR was 50.0% (12 of 24) and the FPR was 11.8% (2 of 17). When using SpO2 values to
predict the healing of diabetic ulcers in 12 weeks, the sensitivity was 50% (12 of 24), the specificity was
88.2% (15 of 17), and the positive predictive value was 85.7% (12 of 14).
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Figure 3. Relationship between time to healing (days) and oxygen saturation in a region adjacent to
the wound. In order to plot unhealed ulcers, their healing days were set at 200 (higher than all the
healing days of the healed ulcers). The dashed line represents the optimum threshold calculated from
Youden’s index.

3.2. Principal Component Analysis

PC1 and PCs greater than 2 did not provide any indication of wound healing, so it was not
possible to identify a threshold for classification of wound healing in these cases. There was, however,
clustering of data corresponding to healing within 12 weeks in the second principal component (PC2)
scores and thresholds could be selected. Figure 4 shows PC2 against time to healing for all patients
(healed by 12 weeks represented by blue diamonds, unhealed at 12 weeks represented by red triangles).
Using Youden’s index sets the upper and lower PC2 thresholds to +0.62 and −0.62. In this case,
the TPR was 87.5% and the FPR was 11.8%. The sensitivity was 87.5% (21 of 24), the specificity was
88.2% (15 of 17), and the positive predictive value was 91.3% (21 of 23).
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In order to further compare the performance of SpO2 and PC2 classifiers, the ROC curve in
Figure 5 shows the PCA classifier (blue line) much closer to the ideal right-angled case than the SpO2

classifier (red line). A common method to compare classifiers in a single scalar value is to calculate the
area under the ROC curve (AUC) [26]. The AUC under the PCA classifier is 0.88, which is 33% more
than the AUC for the SpO2 classifier (0.66).J. Imaging 2018, 4, x FOR PEER REVIEW  9 of 11 
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Figure 5. Receiver operating characteristic (ROC) analysis: red line indicates classification based on
SpO2 values adjacent to the wound site and blue line represents classification based on the absolute
value of the PC2 score. Black dashed line is the worst case.

4. Discussion and Conclusions

Hyperspectral imaging is a tool that has the potential to predict healing of diabetic foot ulcers.
Such a tool would be highly beneficial, as foot ulcers represent a major complication of diabetes and
are a considerable burden for both patients and health care providers. Healing often takes many
months and accurate prediction of those ulcers least likely to heal quickly can therefore be useful,
because it would enable more intensive intervention at an earlier stage, which could improve overall
outcome. Due to the different absorption spectra of oxy- and deoxyhemoglobin, biomedical HSI
has previously predicted wound healing based on SpO2 values. Principal component analysis is an
alternative approach that has not been investigated in the prediction of wound healing. It is therefore
of value to investigate whether PCA improves the prediction of wound healing and to compare this
with the performance of SpO2 mapping.

Hyperspectral images from a previous study of 43 patients with wounds were analyzed by using
both SpO2 values and PCA, and the principal finding was that classification of time to healing by
12 weeks based on PCA (sensitivity = 87.5%, specificity = 88.2%) outperformed that using SpO2

(sensitivity = 50%, specificity = 88.2%). Comparison by receiver operating characteristic (ROC) analysis
revealed an area under the curve of 0.88 for PCA, compared with 0.66 using oxygen saturation analysis.
Thus, PCA based on the second principal component appeared superior to analysis using SpO2 values
in predicting healing of wounds by 12 weeks based on hyperspectral images taken at baseline.

Although one cannot uniquely map a physical property onto a principal component, it is
interesting to consider how physical properties influence PCs. The absorption spectra over the range
of interest (430–750 nm) are dominated by oxy- and deoxyhemoglobin. These have broadly similar
features, i.e., high absorption in the blue/green region, reducing into the red/near-infrared range.
We believe that these features are captured by PC1. Differences in the oxy- and deoxyhemoglobin
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spectra are then characterized by PC2, which provides discrimination of wound healing with superior
performance to that achieved by more widely applied SpO2 measurement approaches. Due to the
dominance of oxy- and deoxyhemoglobin, PCs greater than 2 provide no discriminatory value.

The classification performance obtained in this study is slightly better than that of our earlier
publication [9] and is comparable to that obtained by another [7], which reported estimates of sensitivity
and specificity of 93% and 86%, respectively, in a rather smaller group of patients. SpO2 values may still
be useful in cases where a hyperspectral camera is not available (as, for example, when making single
point measurements using a lower-cost spectrometer-based method or when making measurements
with a wound dressing with a fiber optic probe placed adjacent to the wound site). Furthermore, the
previous demonstration that SpO2 values on the top of the foot are well correlated with those on the
underside means that precisely locating the fiber optic probe may not be necessary.
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