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Abstract: Hyperspectral imaging (HSI) technology has been used for various remote sensing
applications due to its excellent capability of monitoring regions-of-interest over a period of time.
However, the large data volume of four-dimensional multitemporal hyperspectral imagery demands
massive data compression techniques. While conventional 3D hyperspectral data compression
methods exploit only spatial and spectral correlations, we propose a simple yet effective predictive
lossless compression algorithm that can achieve significant gains on compression efficiency, by also
taking into account temporal correlations inherent in the multitemporal data. We present an
information theoretic analysis to estimate potential compression performance gain with varying
configurations of context vectors. Extensive simulation results demonstrate the effectiveness of the
proposed algorithm. We also provide in-depth discussions on how to construct the context vectors in
the prediction model for both multitemporal HSI and conventional 3D HSI data.

Keywords: lossless compression; multitemporal hyperspectral images; information theoretic analysis;
predictive coding

1. Introduction

Hyperspectral imaging (HSI) technologies have been widely used in many applications of remote
sensing (RS) owing to the high spatial and spectral resolutions of hyperspectral images [1]. In some
applications (e.g., hyperspectral imaging change detection [2-5]), we need to collect a sequence of
hyperspectral images over the same spatial area at different times. The set of hyperspectral images
collected over one location at varying time points is called multitemporal hyperspectral images [6,7].
From these multitemporal images, changes of observed locations over time can be detected and
analyzed. Figure 1 illustrates a typical multitemporal hyperspectral image dataset. Each stack
represents one 3D HSI. A sequence of 3D HSI stacks are captured by the HSI sensor over time.

Hyperspectral datasets tend to be of very large sizes. In the case of 4D multitemporal HSI
datasets, the accumulated data volume increases very rapidly (to the Gigabyte or even Terabyte
level), thereby making data acquisition, storage and transmission very challenging, especially when
network bandwidth is severely constrained. As the number of hyperspectral images grows, it is clear
that data compression techniques play a crucial role in the development of hyperspectral imaging
techniques [8,9]. Lossy compression can significantly improves the compression efficiency, albeit at
the cost of selective information loss. However, the fact that human visual systems are not sensitive
to certain types and levels of distortions caused by information loss makes lossy compression useful.
While lossy compression methods typically provide much larger data reduction than lossless methods,
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they might not be suitable for many accuracy-demanding hyperspectral imaging applications, where
the images are intended to be analyzed automatically by computers. Since lossless compression
methods can strictly guarantee no loss in the reconstructed data, lossless compression would be more
desirable in these applications.
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Figure 1. A multitemporal hyperspectral image dataset, where X and Y are the spatial directions, Z is
the spectral direction, and T is the temporal direction.

Many efforts have been made to develop efficient lossless compression algorithms for 3D HSI
data. LOCO-I[10] and 2D-CALIC [11] utilize spatial redundancy to reduce the entropy of prediction
residuals. To take advantage of strong spectral correlations in HSI data, 3D compression methods have
been proposed, which includes 3D-CALIC [12], M-CALIC [13], LUT [14] and its variants, SLSQ [15]
and CCAP [16]. Also, some transform-based methods, such as SPIHT [17], SPECK [18], etc., can be
easily extended to lossless compression even though they were designed for lossy compression.

Recently, clustering techniques have been introduced into 3D HSI data lossless compression and
produced state-of-the-art performance over publicly available datasets. In [19], B. Aiazzi et al. proposed
a predictive method leveraging crisp or fuzzy clustering to produce state-of-the-art results. Later,
authors in both [20,21] again utilized the K-means clustering algorithm to improve the compression
efficiency. Although these methods can yield higher compression, their computational costs are
significantly higher than regular linear predictive methods. Plus, it is very difficult to parallel the
process to leverage hardware acceleration if clustering technique is required as a preprocessing step
in those approaches. In addition to the goal of reducing the entropy of either prediction residuals
or transform coefficients, low computational complexity is another influential factor because many
sensing platforms have very limited computing resources. Therefore, a low-complexity method called
the “Fast Lossless” (FL) method, proposed by the NASA Jet Propulsion Lab (JPL) in [22], was selected
as the core predictor in the Consultative Committee for Space Data Systems (CCSDS) new standard for
multispectral and hyperspectral data compression [23], to provide efficient compression on 3D HSI
data. This low-complexity merit also enables efficient multitemporal HSI data compression.

Multitemporal HSI data has an additional temporal dimension compared to 3D HSI data.
Therefore, we can take advantage of temporal correlations to improve the overall compression efficiency
of 4D HSI data. Nonetheless, there is very sparse work on lossless compression of multitemporal
HSI data in the literature. Mamun et al. proposed a 4D lossless compression algorithm in [24], albeit
lacking details on the prediction algorithms. In [25], a combination of Karhunen-Loéve Transform
(KLT), Discrete Wavelet Transform (DWT), and JPEG 2000 was applied to reduce the spectral and
temporal redundancy of 4D remote sensing image data. However, the method can only achieve lossy
compression. Additionally, Zhu et al. proposed another lossy compression approach for multitemporal
HSI data in [7], based on a combination of linear prediction and a spectral concatenation of images.
For the first time, we addressed lossless compression of multitemporal HSI data in [6], by introducing
a correntropy based Least Mean Square filter for the Fast Lossless (FL) predictor. While the benefit
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of exploiting temporal correlations in compression has been demonstrated by some papers such
as [26,27], in this work, we conduct an in-depth information-theoretic analysis on the amount of
compression achievable on multitemporal HSI data, by taking into account both the spectral and
temporal correlations. On the other hand, this additional temporal decorrelation definitely poses a
greater challenge to data processing speed especially for those powerful but computationally expensive
algorithms, e.g., [19-21]. Therefore, we propose a low-complexity linear prediction algorithm, which
extends the well-known FL method into a 4D version to achieve higher data compression, by better
adapting to the underlying statistics of multitemporal HSI data. Note that most existing 3D HSI
compression methods can be extended into 4D versions with proper modifications. However, this is
beyond the scope of this paper.

The remainder of this paper is organized as follows. First, in Section 2, we give an overview of
the multitemporal HSI datasets used in the study, which include three publicly available datasets,
as well as two multitemporal HSI datasets we generated by using hyperspectral cameras. In Section 3,
we present the information-theoretic analysis, followed by the introduction of a new algorithm for
multitemporal HSI data lossless compression in Section 4. Finally, we present simulation results in
Section 5 and make some concluding remarks in Section 6.

2. Datasets

Since there is little prior work on multi-temporal hyperspectral image compression, publicly
available multi-temporal HSI datasets are very rare. Currently, the time-lapse hyperspectral radiance
images of natural scenes [28] are the only available datasets to our best knowledge. Therefore,
we created another two datasets capturing two scenes of Alabama A&M University campus using
the portable Surface Optics Corporation (SOC) 700 hyperspectral camera [29] to enrich the relevant
resources and facilitate further research. Hence, we introduce both data sources especially our datasets
in detail before the actual analysis and algorithm development.

2.1. Time-Lapse Hyperspectral Imagery

Time-lapse hyperspectral imaging technology has been used for various remote sensing
applications due to its excellent capability of monitoring regions-of-interest over a period of time.
Time-lapse hyperspectral imagery is a sequence of 3D HSIs captured over the same scene but at
different time stamps (often at a fixed time interval). Therefore, time-lapse hyperspectral imagery can
be considered as a 4D dataset, whose size increases significantly with the total number of time stamps.

In [28], the authors made public several sequences of hyperspectral radiance images of scenes
undergoing natural illumination changes. In each scene, hyperspectral images were acquired at about
one-hour intervals. We randomly selected three 4D time-lapse HSI datasets, Levada, Gualtar and
Nogueiro. Basic information of these three datasets are listed in the Table 1. Detailed information
of these datasets can be found in [30]. Each single HSI has the same spatial size, 1024 x 1344,
with 33 spectral bands. Both Gualtar and Nogueiro have nine time stamps while Levada has seven.
Note that the original data for these datasets was linearly mapped into [0, 1] and stored using “double”
floating point format (64 bits) [28]. In order to evaluate the prediction-based lossless compression
performance of algorithms, we pre-process the datasets by re-mapping the data samples back to their
original precision of 12 bits. The resulting sizes of the datasets range from 454.78 MB (for seven frames)
to 584.71 MB (for nine frames).

Figure 2 shows the Levada, Noguerio and Gualtar sequences from top to bottom. Detailed
information about the Levada sequence can be found in [28]. Note that only 2D color-rendered RGB
(Red, Green and Blue) images are shown in Figure 2 instead of the actual HSI data for display purpose.
Since time-lapse HSIs are captured over the same scene at different time instants with gradually
changing natural illumination, we can see that images at different time instants are very similar in
Figure 2. These temporal correlations can be exploited to improve the overall compression efficiency.
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Table 1. Multitemporal hyperspectral image datasets.

Dataset Size The Number of Time Frames Precision (bits)
Levada 1024 x 1344 x 33 7 12
Gualtar 1024 x 1344 x 33 9 12
Noguerio 1024 x 1344 x 33 9 12
Scene-1 640 x 640 x 120 21 12
Scene-2 640 x 640 x 120 16 12

Figure 2. Some sample images at different time instants from the time-lapse hyperspectral image

datasets (from top to bottom: Levada, Nogueiro and Gualtar).

2.2. AAMU Datasets

Due to very few 4D HSI datasets available in the public domain, we created some new datasets
to increase the data diversity of our study. To this end, we used a SOC 700 hyperspectral camera
(manufactured by Surface Optics Corporstion, CA, USA) and produced 4D datasets for two scenes
on the campus of Alabama A&M University (AAMU). The SOC 700 camera can record and process
hyperspectral imagery at a rate of 15 megabytes of data every second (120-band elements per second
at 12-bit resolution, 640 pixels per row, 100 rows per second). The imaging system’s spectral response
covers the visible and near-infrared spectral range (from 0.43 to 0.9 microns), and can be used in
normal to low lighting conditions with variable exposure times and display gains. More detailed about
the SOC 700 system can be found at [29].

We placed the camera at two distinct locations of the AAMU campus and generated two datasets,
which we call Scene-1 and Scene-2. 3D HSI cubes in Scene-1 and Scene-2 are of the same size:
640 x 640 x 120 with 21 and 16 time frames, respectively. The overall dataset sizes of Scene-1 and
Scene-2 are roughly 1.70 GB and 850 MB, respectively. Compared to three time-lapse datasets discussed
earlier, these two AAMU datasets are much larger, making themselves more suitable for evaluating
compression efficiencies. In contrast to the time-lapse datasets, the images of the AAMU datasets
were acquired at time-varying rates of approximately one per five minutes or one per minute, thereby
introducing time-varying temporal correlations through the entire dataset. This special feature will
allow us to investigate the relationship between prediction accuracy and correlations at different levels.

Figure 3 shows the 2D color-rendered RGB images for a few time instants for the AAMU
multitemporal HSI datasets. While changing illumination conditions over time can be observed
in both datasets, temporal similarity in both pixel intensity and image structure is also obvious,
similar to the three time-lapse datasets shown in Figure 2. In order to quantify the potential gain on
compression achievable by exploiting the temporal correlations in 4D HSI datasets, we conducted an
information-theoretic analysis as detailed in the next section.
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Figure 3. Sample images at different time instants from the AAMU hyperspectral image datasets

(top: Scene-1, and bottom: Scene-2).

3. Problem Analysis

While the actual amount of compression achieved depends on the choice of specific compression
algorithms [31], information theoretic analysis can provide us an upper bound on the amount of
compression achievable. Here we focus on analyzing how temporal correlation can help improve the
compression of 4D hyperspectral image datasets, as opposed to the baseline 3D-compression case
where only spatial and spectral correlations are considered.

Let X]t be a 4D hyperspectral image at the tth time instant and jth spectral band where X represents
a two-dimensional image with K distinct pixel values v; (i € {1, - - ,K}) within each band. Then the
entropy of this source can be obtained based on the probabilities p(v;) of these values by

H(X}) = ZP v;) - log, [p(v;)] - )

If we assume that there are no dependencies between pixels of X]t-, at least H (X]t) bits must be
spent on average for each pixel of this image. However, for typical 4D hyperspectral images, this
assumption does not hold given the existence of spatial, spectral and temporal correlations. The value
of a particular pixel might be similar to some other pixels from its spatial, spectral or temporal
neighborhoods (contexts). Considering these correlations can lead to reduced information (fewer bits
to code each pixel on average) than the entropy H (X]t) The conditional entropy of the image captures
the correlations as follows:

K
H(XG[C]) = = Y p(oi|C)) - log, [p(wilch]. @)
=1

where C; denoted as context, which represents a group of correlated pixels. In general, conditioning
reduces entropy, H (X]t|C]t) <H (X;)

The choice of context largely determines how much compression we can achieve by using
prediction-based lossless compression schemes. One should include highly-correlated pixels into the
context. Spectral and temporal correlations are typically much stronger than spatial correlations in
multitemporal hyperspectral images. For example, ref. [20] claims that explicit spatial de-correlation
is not always necessary to achieve good compression [31]. Ref. [31] shows that a linear prediction
scheme was adequate for spectral and/or temporal prediction because of high degree of correlations,
in contrast to non-linearity nature of spatial de-correlation. Therefore, we construct the context vector
C; using only pixels from previous bands at the same spatial location, as well as pixels from the
same spectral band at the same location but at previous time points. Specifically, we denote pixels
from previous N, bands at the same spatial location as X]t-_m,m € {1,2,..,N,} (yellow pixels in
Figure 1), and pixels from the same spectral band at the same location but from previous N; temporal
positions X;_”, n € {1,2,..., Nt }(green pixels in Figure 1), respectively. Then, the conditional entropy
in Equation (2) becomes
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M

HXX!, XET) = = Y p(ol XL, X0 log, [p(oi XE,, X)) ©)

=1

By using the relation between joint entropy and conditional entropy, we can further rewrite
Equation (3) as
H(X!X!,, X! = H(X, X!, X! — H(X, X!, @
which enables a simple algorithm for estimation of the conditional entropies. It suffices to estimate
the above two joint entropies by counting the occurrence frequency of each (N; + Nj, + 1)-tuple
in the set (X]t., th; - X]t-_”), and (N; + Np)-tuple in the set (X}L - X]t-_”), respectively. However, as
pointed out in [31], the entropy estimates become very inaccurate when two or more previous bands
are used for prediction in practice. The reason is that, as the entropy is conditioned upon multiple
bands, the set (X]t, X]Q -
extremely large, e.g., (212)Ni+Ne+1 for our datasets. As a consequence, a band might not contain
enough pixels to provide statistically meaningful estimates of the probabilities. Similar to the “data
source transform” trick proposed in [31], we consider each bit-plane of X! as one separate binary

source. Although binary sources greatly reduce the alphabet size, which makes it possible to obtain

X;_”) takes on values from the alphabet )((Nf+Nb+1) , whose size can become

accurate entropy estimates, results obtained for the binary source are not very representative of the
actual bit rates obtained by a practical coder since statistical dependencies between those bit-planes
cannot be neglected. However, using bit-plane sources would be useful for our study since our main
goal is to evaluate the relative instead of the absolute performance gain achievable by using different
contexts based on various combinations of spectral and temporal bands. Therefore, we will compute
the conditional entropy in Equation 3, for all the bit-planes separately, and then take their average to
be the overall performance gain for a specific prediction context. In this sense, we extend the algorithm
in [31] by incorporating previous temporal bands into the context vector, which allows us to estimate
also the temporal correlations.

We applied this estimation algorithm on five multitemporal HSI datasets to estimate the potential
compression performance of multitemporal hyperspectral image with a combination of various spectral
and temporal bands. H(p,q) is the entropy conditioned to p previous bands at the current time
point and g bands at current spectral band but from previous time points for prediction. Using the
binary-source based estimation method, we summed up the conditional entropies of all the bit-planes
(a total of 12 bit-planes for all our datasets) as the estimation of H(p, q) for each band of the dataset.
Then the averages of H(p, q) over all bands are reported in Figure 4 for all five datasets. Due to limited
space, we only show results for parameters p and q chosen between 0 and 5. More detailed results for
other datasets can be found in Tables A1-A5 in Appendix A.

From Figure 4, we can observe that as either p or g increases, the general trend is that the
conditional entropy decreases; however, as p or g further increases (e.g, from 4 to 5), the reduction
of entropy becomes smaller than the case of either p or g going from 0 to 1. This means that
including a few previous bands either spectrally or temporally in the context can be very useful
to improving the performance of the prediction-based compression algorithms, but the return of
adding more bands from distant past will diminish as the correlations get weaker, let alone the
increased computational cost associated with involving excessive number of bands for prediction.
In addition, the conditional entropy tends to decrease faster with an increased p than with an increased
g. This is indicative of stronger spectral correlations than temporal correlations. For example, the
fourth image in the first row of Figure 3 represents a dramatic change of illumination conditions during
image capturing, thereby weakening the temporal correlations. However, there still exist significant
temporal correlations which, if exploited properly, can lead to improved compression by considering
only spectral correlations. To this end, we propose a compression algorithm, which exploits temporal
correlations in multitemporal HSI data to enhance the overall compression performance.
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Figure 4. Conditional entropies over five datasets for different P and Q combination.
4. Proposed Algorithm

Our lossless compression algorithm is based on predicting the pixels to be coded, by using a linear
combination of those pixels already coded (in a neighboring causal context). Prediction residuals are
obtained by subtracting the actual pixel values from their estimates. The residuals are then encoded
using entropy coders.

For multitemporal hyperspectral image, the estimate of a pixel value can be obtained by

ot T it
Ypqg = Wit¥pag- ®)

where J?]ptq represents an estimate of a pixel, x;’,tq, at spatial location (p, q), the jth band and the tth time

point, while w;; denotes the weights for linearly combining the pixel values yé,’,tq. These pixels are
drawn from a causal context of several previously coded bands either at the same time point or at
previous time points. More specifically, y],[,’,tl7 = {x;,}m't,x]r;;n} ,me{1,2,.., Ny}, ne{1,2,..,N}.
For accurate prediction, weights should be able to adapt to locally changing statistics of pixel
values in the multitemporal HSI data. For this sake, learning algorithms were introduced for lossless
compression of 3D HSI data [22,32]. Adaptive learning was also used in the so-called Fast Lossless
(FL) method. Due to its low-complexity and effectiveness, the FL. method has been selected as a new
compression standard for multispectral and hyperspectral data by CCSDS (Consultative Committee
for Space Data Systems) [23]. The core learning algorithm of the FL method is the sign algorithm,
which is a variant of least mean square (LMS). In prior work, we proposed another LMS variant, called
correntropy based LMS (CLMS) algorithm, which uses the Maximum Correntropy Criterion [6,8] for
lossless compression of 3D and multi-temporal HSI data. By replacing the cost function for LMS based
learning with correntropy [33], the CLMS method introduces a new term in the weight update function,
which allows the learning rate to change, in order to improve on the conventional LMS based method
with a constant learning rate. However, good performance of the CLMS method depends heavily on
proper tuning of the kernel variance, which is an optimization parameter used by the “kernel trick”
associated with the correntropy. To avoid the excessive need to tune the kernel variance for various
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types of images in the multitemporal HSI datasets, we adopted the sign algorithm used by the FL
predictor with an expanded context vector.

In order to exploit spatial correlations also found in hyperspectral datasets, we follow the simple
approach in [22], where local-mean-removed pixel values are used as input to our linear predictor.
Specifically, for an arbitrary pixel x{g’fq in a multi-temporal HSI, the spatial local mean is

Jt it jit jit
Wpg = [xp_l,q_1 X, g, t xp/q_l]/S. (6)
After mean subtraction, the causal context becomes
gt [ jemt _ j—mt _jt—n . jt—n
Upq = [xm HPpg Xpq —Hpg } ’ @)

where m € {1,2,..,N}, and n € {1,2,.., N¢}. To simplify the notation, we represent the spatial
location (p, q) with a single index, k, in that k = (p — 1) * Ny, 4 q, where Ny, refers to number of pixels
in each row within one band. In other words, we line up the pixels in a 1D vector, where the pixels
will be processed sequentially in the iterative optimization process of the sign algorithm. Now the
predicted value for an arbitrary pixel in each band of multi-temporal HSI dataset is given by

7= il ®
where w].Tt are the weights to be adapted sequentially for each band. If follows that the prediction
residual can be obtained as

LA S R jot T yit
e =x =X, =x/ — (yk +w; Uy ) )

We apply the sign algorithm to iteratively update the weights as

w;‘;rl = w}‘,t +p(k) -sign(e{(’t) -U;(’t, (10)
where p(k) is an adaptive learning rate proposed in [23] to achieve fast convergence to solutions close
to the global optimum. Our study found that using this adaptive learning rate can provide good
results on multitemporal datasets. Note that we need to reset the weights and learning rate for each
new band in the dataset to account for potentially varying statistics.

After prediction, all the residuals are mapped to non-negative values [23] and then coded into
bitstream losslessly by using the Golomb-Rice Codes (GRC) [34]. Although GRC is selected as the
entropy coder because of its computational efficiency [35], we observed that using arithmetic coding
can offer slightly lower bitrates, albeit at a much higher computational cost. Pseudo Algorithm 1 of
this 4D extension of Fast-Lossless is given to better show its structure and workflow.

Algorithm 1 Fast-Lossless-4D Predictor

Input:
1) 4D HSI data X.
2) T (Total # of time frames of X).
3) B (Total # of spectral bands for each time frame of X)
4) P (# of previous spectral bands).
5) Q (# of bands from previous time frames).
6) u (learning rate).
fort=1:T do
forb=1:Bdo
Local mean subtracted data U using Equations (6) and (7).
initialize: w;; = 0.
for each pixel in this band in raster scan order do
Output residual e/ using Equation (9).
Updating w; ; using Equation (10).
end for
end for
end for
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5. Simulation Results

We tested the proposed algorithm on all five multitemporal HSI datasets (Levada, Gualtar,
Nogueiro, AAMU scene_1 and AAMU scene_2). To show the performance of our algorithm, we
present the bitrates after compression in Figure 5 (Detailed results can be found in Tables A6-A10).
Similar to the conditional entropy estimation results in Section 3, the bitrates were obtained by using
various combinations of p (spectral) and q (temporal) number of bands for causal contexts.

We can see that for the case of p = 0 and g = 0, where we simply use mean subtraction (for spatial
decorrelation) without spectral and temporal decorrelation, we can already achieve significant amount
of compression on the input data by lowering the original bitrate from 12 bits/pixel to about 6 bits / pixel.
If we consider either spectral or temporal correlations, or both, we can achieve additional compression
gains on multitemporal HSI data. For example, the bit rate can be reduced by approximately 1 bit/pixel
or 0.2 bit/pixel by including in the prediction context one more previous band spectrally or temporally.
Generally, the bitrates decrease with more bands being included in the context, which agrees well with
the results on condition entropy estimation in Section 3. Furthermore, if we fix the p value and increase
the g value, and vice versa, we can achieve better compression. However, the return on including
more bands will diminish gradually as p and g further increase. In some cases, we can even have less
compression if the context includes some remote bands that might be weakly correlated with the pixels
to be predicted. For example, in Table A7, when p = 5 and g = 4, the corresponding bit rate is 4.4953,
which is 0.0026 higher than 4.4927 (when p = 5 and q = 3). Similar examples can be found in Table A9
(when p = 5 and q = 4) and in Table A10 (when p = 5 and g = 1). Including weakly correlated or
totally uncorrelated pixels might lower the quality of the context, leading to degraded compression
performance. In this same spirit, we can see that spectral decorrelation turns out to be more effective
in reducing the bitrates than temporal decorrelation. This means that spectral correlations are stronger
than temporal correlations in the datasets we tested. The reason can be that each hyperspectral image
cube in these multitemporal HSI datasets was captured at time intervals of at least a few minutes,
during which significant change of pixel values (e.g, caused by illumination condition changes) might
have taken place. If the image capturing time interval is reduced, then we expect the stronger temporal
correlations.

On the other hand, prediction using only one previous spectral band, and/or the same spectral
band but from previous time instance can offer a low-complexity compressor with sufficiently good
compression performance. The bitrate results show the wide range of tradeoffs for us to explore in
order to balance compression performance with computational complexity.

We also compared the proposed algorithm (based on Fast-Lossless algorithm) with our previous
work (based on correntropy LMS learning) in [6], namely CLMS, which seems to be the only existing
work on lossless compression of multitemporal HSI data. For fair comparison, we use the same
parameter setting in [6]. Although it would be straightforward to show the bitrates for both algorithms
in multiple tables, we choose to visualize bitrates changes as number of previous bands or number of
previous time frames increases for both algorithms. To reduce the complexity of this visualization,
we only present P = 3 case since it is the default setting in the FL. method. Figure 6 shows the bitrate
changes for the five datasets. Note that when Q = 0, our method is essentially equivalent to 3D FL
method. Therefore, we use green dashed line to mark FL method performance in Figure 6. While blue,
green and red curves represent CLMS, FL method and ours respectively, it is clear that our methods
produce the lowest bitrates consistently. Although bitrates of our method was only slightly lower than
applying FL method directly to each one of time framed HS], it outperformed CLMS method by a
significant margin. The improvements on time-lapse datasets are more significant than on AAMU
datasets in general. Consistent with results shown previously, we have higher compression gains in
the spectral dimension than the temporal dimension. However, the results show that our algorithm
can take advantage of the temporal correlations available to bring additional improvements on the
overall compression performance.
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We have proposed a new predictive lossless compression algorithm for multitemporal time-lapse
hyperspectral image data using a low-complexity sign algorithm with an expanded prediction context.
Simulation results have demonstrated the outstanding capability of this algorithm to compress
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multitemporal HSI data through spectral and temporal decorrelation. The actual compression results
are congruent with the information theoretic analysis and estimation based on conditional entropy.
We show that increasing the number of previous bands for prediction can yield better compression
performance, by exploiting the spectral and temporal correlations in the datasets.

As future work, we intend to study how to adaptively select bands to build an optimal context
vector for prediction. Also, we will investigate how to fully integrate the proposed algorithm
and the analytic framework to achieve real-time compression on streaming hyperspectral data.
Furthermore, the proposed algorithm can be extended to lossless compression of regions-of-interest
in hyperspectral images, which can offer much higher compression than compressing the entire
hyperspectral image dataset.
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Appendix A. Condition Entropy Estimation Empirical Experimental Results

Table Al. Conditional entropies H(p,q) (bits/pixels), computed for various values of p and g,
over “Levada”.

=0 g=1 q=2 q=3 g=4 ¢g=5
10.2558  9.5120 9.3905 9.3022 9.2279 9.1827
8.7675 8.4673 83744 8.3141 82663 8.2366
8.5951 8.3063 82192 8.1633 8.1179 8.0895
8.4613  8.1782 8.0949 8.0410 7.9979 7.9719
8.3440 8.0707 79908 7.9394 7.8984 7.8742
8.2414 79733 7.8977 7.8497 7.8113 7.7888

Gk W, o

Table A2. Conditional entropies H(p,q) (bits/pixels), computed for various values of p and g,
over “Gualtar”.

q=20 q=1 q=2 q=3 q=14 q=>5
10.8137  10.6057 10.4057 10.3266 10.2818 10.2387
9.0550  8.9657 89007  8.8638  8.8393  8.8176
8.8388  8.7553  8.6971  8.6623  8.6374  8.6155
87107  8.6283 85715 85362 85100  8.4870
8.6375 85534 84964 84592 84310  8.4064
8.5837 84956 84371 83975 83670  8.3406

Gk WONRFR,O|IT

Table A3. Conditional entropies H(p,q) (bits/pixels), computed for various values of p and g,
over “Nogueiro”.

g=0 qg=1 g=2 gq=3 qg=4 4g=5

9.7167 93381 9.2314 9.1641 9.1023 9.0740
82400 81105 8.0619 8.0304 8.0064 7.9918
8.1165 79890 7.9395 79080 7.8841 7.8695
8.0343 79097 7.8603 7.8292 7.8054 7.7904
79722 7.8497 7.8005 7.7695 7.7453 7.7299
79200 7.7979 7.7492 77180 7.6936 7.6775

Gk wNN~R,rOoOIT
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Table A4. Conditional entropies H(p,q) (bits/pixels), computed for various values of p and g,

over “Scene-1".

=0

=1

q=2

q=3

q=4

q=>5

Gk W= oW

8.7785
7.1538
7.0491
6.9839
6.9190
6.8533

7.8624
6.9037
6.8166
6.7599
6.7052
6.6513

7.7055
6.8398
6.7555
6.7003
6.6475
6.5956

7.6271
6.8070
6.7233
6.6683
6.6160
6.5646

7.5834
6.7836
6.6999
6.6448
6.5923
6.5402

7.5548
6.7671
6.6829
6.6272
6.5736
6.5193

Table A5. Conditional entropies H(p,q) (bits/pixels), computed for various values of p and g,

over “Scene-2".

q=0

q=1

q=2

9=3

q=4

9=>5

Gk WONRFR,OoO|IT

8.1367
6.9248
6.7897
6.7126
6.6461
6.5892

7.5082
6.7109
6.6004
6.5362
6.4810
6.4334

7.3654
6.6466
6.5421
6.4812
6.4289
6.3836

7.3194
6.6202
6.5169
6.4568
6.4052
6.3601

7.2787
6.5955
6.4945
6.4354
6.3843
6.3390

7.2397
6.5719
6.4731
6.4148
6.3637
6.3173

Table A6. Bit rates (bits/pixels), obtained for various values of p and g, on “Levada”.

q=0

q=1

q=2

q=3

q=1

q=>5

Gk WONRFR,OoO|IT

5.7538
4.3876
4.3029
4.2813
4.2704
4.2631

5.5248
4.3674
4.2878
4.2679
4.2578
4.2508

5.4193
4.3422
4.2660
4.2471
4.2377
4.2312

5.3400
4.3313
4.2570
4.2389
4.2298
4.2235

5.2689
4.3122
4.2395
42218
42131
4.2070

51784
4.2987
4.2293
42125
4.2043
4.1985

Table A7. Bit rates (bits/pixels) obtained for various values of p and ¢, on “Gualtar”.

4

q=0

q=1

q=2

q=3

q=1

q=>5

0
1
2
3
4
5

6.0941
4.7064
4.5655
4.5214
4.5057
4.5004

5.9463
4.6928
4.5577
4.5155
4.5006
4.4960

5.7547
4.6802
4.5518
4.5117
4.4977
4.4936

5.7057
4.6754
4.5495
4.5102
4.4966
4.4927

5.6541
4.6732
4.5505
4.5121
4.4990
4.4953

5.6218
4.6695
4.5487
4.5113
4.4984
4.4948

Table A8. Bit rates (bits/pixels), obtained for various values of p and g, on “Nogueiro”.

4

q=0

=1

q=2

q=3

q=4

q=>5

Gk W= O

5.6329
4.3070
4.2013
4.1701
4.1586
4.1525

5.3524
4.2769
4.1800
4.1515
4.1413
4.1363

5.2312
4.2545
4.1631
4.1364
4.1272
4.1228

5.1521
4.2407
4.1520
4.1260
4.1171
4.1131

5.0874
42324
4.1463
4.1212
4.1127
4.1088

4.9953
4.2186
4.1355
4.1112
4.1031
4.0994
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Table A9. Bit rates (bits/pixels), obtained for various values of p and g4, on “AAMU Scene-1".

gq=0 qg=1 g=2 gqg=3 qg=4 4g=5

6.1097 6.0844 6.0691 6.0478 6.0322 6.0156
5.0580 5.0557 5.0534 5.0518 5.0492 5.0491
49186 49181 49168 49133 49126 49122
4.8727 4.8717 4.8711 4.8701 4.8695 4.8694
4.8555 4.8537 4.8517 4.8507 4.8502 4.8501
4.8491 4.8495 4.8506 4.8538 4.8556 4.8556

Gk WNRFR,OoO|IT

Table A10. Bit rates (bits/pixels), obtained for various values of p and g, on “AAMU Scene-2".

q=0 g=1 g=2 g=3 g=4 ¢g=5

53202 52791 52429 52363 5.2045 5.1977
48675 4.8597 4.8569 4.8554 4.8475 4.8461
47615 47599 4.7586 4.7572 4.7569 4.7569
47167 47156 4.7148 4.7140 4.7138 4.7137
4.6953 4.6939 4.6928 4.6920 4.6919 4.6920
4.6842 4.6862 4.6936 4.6940 4.6925 4.6925

Gk WONRFR,OoO|IT
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