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Abstract: Previously, we presented two color mapping methods for the application of daytime
colors to fused nighttime (e.g., intensified and longwave infrared or thermal (LWIR)) imagery.
These mappings not only impart a natural daylight color appearance to multiband nighttime images
but also enhance their contrast and the visibility of otherwise obscured details. As a result, it has been
shown that these colorizing methods lead to an increased ease of interpretation, better discrimination
and identification of materials, faster reaction times and ultimately improved situational awareness.
A crucial step in the proposed coloring process is the choice of a suitable color mapping scheme.
When both daytime color images and multiband sensor images of the same scene are available,
the color mapping can be derived from matching image samples (i.e., by relating color values to
sensor output signal intensities in a sample-based approach). When no exact matching reference
images are available, the color transformation can be derived from the first-order statistical properties
of the reference image and the multiband sensor image. In the current study, we investigated new
color fusion schemes that combine the advantages of both methods (i.e., the efficiency and color
constancy of the sample-based method with the ability of the statistical method to use the image
of a different but somewhat similar scene as a reference image), using the correspondence between
multiband sensor values and daytime colors (sample-based method) in a smooth transformation
(statistical method). We designed and evaluated three new fusion schemes that focus on (i) a closer
match with the daytime luminances; (ii) an improved saliency of hot targets; and (iii) an improved
discriminability of materials. We performed both qualitative and quantitative analyses to assess the
weak and strong points of all methods.
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1. Introduction

The increasing availability and use of co-registered imagery from sensors with different spectral
sensitivities have spurred the development of image fusion techniques [1]. Effective combinations
of complementary and partially redundant multispectral imagery can visualize information that is
not directly evident from the individual sensor images. For instance, in nighttime (low-light) outdoor
surveillance applications, intensified visual (II) or near-infrared (NIR) imagery often provides a detailed
representation of the spatial layout of a scene, while targets of interest like persons or cars may be hard
to distinguish because of their low luminance contrast. While thermal infrared (IR) imagery typically
represents these targets with high contrast, their background (context) is often washed out due to
low thermal contrast. In this case, a fused image that clearly represents both the targets and their
background can significantly enhance the situational awareness of the user by showing the location of
targets relative to landmarks in their surroundings (i.e., by providing more information than either of
the input images alone). Additional benefits of image fusion are a wider spatial and temporal coverage,
decreased uncertainty, improved reliability, and increased system robustness.
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Fused imagery that is intended for human inspection should not only combine the information
from two or more sensors into a single composite image but should also present the fused imagery
in an intuitive format that maximizes recognition speed while minimizing cognitive workload.
Depending on the task of the observer, fused images should preferably use familiar representations
(e.g., natural colors) to facilitate scene or target recognition or should highlight details of interest
to speed up the search (e.g., by using color to make targets stand out from the clutter in a scene).
This consideration has led to the development of numerous fusion schemes that use color to achieve
these goals [2–5].

In principle, color imagery has several benefits over monochrome imagery for human inspection.
While the human eye can only distinguish about 100 shades of gray at any instant, it can discriminate
several thousand colors. By improving feature contrast and reducing visual clutter, color may help
the visual system to parse (complex) images both faster and more efficiently, achieving superior
segmentation into separate, identifiable objects, thereby aiding the semantic ‘tagging’ of visual
objects [6]. Color imagery may, therefore, yield a more complete and accurate mental representation of
the perceived scene, resulting in better situational awareness. Scene understanding and recognition,
reaction time, and object identification are indeed faster and more accurate with realistic and
diagnostically (and also—though to a lesser extent—non-diagnostically [7]) colored imagery than with
monochrome imagery [8–10].

Color also contributes to ultra-rapid scene categorization or gist perception [11–14] and drives
overt visual attention [15]. It appears that color facilitates the processing of color diagnostic objects
at the (higher) semantic level of visual processing [10], while it facilitates the processing of non-color
diagnostic objects at the (lower) level of structural description [16,17]. Moreover, observers can
selectively attend task-relevant color targets and to ignore non-targets with a task-irrelevant color [18–20].
Hence, simply mapping multiple spectral bands into a three-dimensional (false) color space may
already serve to increase the dynamic range of a sensor system [21]. Thus, it may provide immediate
benefits such as improved detection probability, reduced false alarm rates, reduced search times, and
increased capability to detect camouflaged targets and to discriminate targets from decoys [22,23].

In general, the color mapping should be adapted to the task at hand [24]. Although general design
rules can be applied to assure that the information available in the sensor image is optimally conveyed
to the observer [25], it is not trivial to derive a mapping from the various sensor bands to the three
independent color channels. In practice, many tasks may benefit from a representation that renders
fused imagery in realistic colors. Realistic colors facilitate object recognition by allowing access to
stored color knowledge [26]. Experimental evidence indicates that object recognition depends on stored
knowledge of the object’s chromatic characteristics [26]. In natural scene recognition, optimal reaction
times and accuracy are typically obtained for realistic (or diagnostically) colored images, followed by
their grayscale version, and lastly by their (nondiagnostically) false colored version [12–14].

When sensors operate outside the visible waveband, artificial color mappings inherently yield
false color images whose chromatic characteristics do not correspond in any intuitive or obvious
way to those of a scene viewed under realistic photopic illumination [27]. As a result, this type of
false-color imagery may disrupt the recognition process by denying access to stored knowledge. In that
case, observers need to rely on color contrast to segment a scene and recognize the objects therein.
This may lead to a performance that is even worse compared to single band imagery alone [28,29].
Experiments have indeed demonstrated that a false color rendering of fused nighttime imagery which
resembles realistic color imagery significantly improves observer performance and reaction times in
tasks that involve scene segmentation and classification [30–33], and the simulation of color depth
cues by varying saturation can restore depth perception [34], whereas color mappings that produce
counter-intuitive (unrealistically looking) results are detrimental to human performance [30,35,36].
One of the reasons often cited for inconsistent color mapping is a lack of physical color constancy [35].
Thus, the challenge is to give night vision imagery an intuitively meaningful (‘realistic’ or ‘natural’)
color appearance, which is also stable for camera motion and changes in scene composition and
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lighting conditions. A realistic and stable color representation serves to improve the viewer’s scene
comprehension and enhance object recognition and discrimination [37]. Several different techniques
have been proposed to render night-time imagery in color [38–43]. Simply mapping the signals from
different nighttime sensors (sensitive in different spectral wavebands) to the individual channels of
a standard RGB color display or to the individual components of a perceptually decorrelated color
space (sometimes preceded by a principal component transform or followed by a linear transformation
of the color pixels to enhance color contrast) usually results in imagery with an unrealistic color
appearance [36,43–46]. More intuitive color schemes may be obtained by opponent processing through
feedforward center-surround shunting neural networks similar to those found in vertebrate color
vision [47–55]. Although this approach produces fused nighttime images with appreciable color
contrast, the resulting color schemes remain rather arbitrary and are usually not strictly related to the
actual daytime color scheme of the scene that is registered.

We, therefore, introduced a method to give fused multiband nighttime imagery a realistic
color appearance by transferring the first order color statistics of color daylight images to the
nighttime imager [41]. This approach has recently received considerable attention [3,5,56–66], and has
successfully been applied to colorize fused intensified visual and thermal imagery [5,57,58,60,61,64],
FLIR imagery [67], SAR and FLIR imagery [38], remote sensing imagery [68], and polarization
imagery [63]. However, color transfer methods based on global or semi-local (regional) image statistics
typically do not achieve color constancy and are computationally expensive.

To alleviate these drawbacks, we recently introduced a look-up-table transform-based color
mapping to give fused multiband nighttime imagery a realistic color appearance [69–71]. The transform
can either be defined by applying a statistical transform to the color table of an indexed false color
night vision image, or by establishing a color mapping between a set of corresponding samples taken
from a daytime color reference image and a multi-band nighttime image. Once the mapping has been
defined, it can be implemented as a color look-up-table transform. As a result, the color transform is
extremely simple and fast and can easily be applied in real-time using standard hardware. Moreover,
it yields fused images with a realistic color appearance and provides object color constancy, since the
relation between sensor output and colors is fixed. The sample-based mapping is highly specific for
different types of materials in the scene and can therefore easily be adapted to the task at hand, such as
optimizing the visibility of camouflaged targets. In a recent study [72], we observed that multiband
nighttime imagery that has been recolored using this look-up-table based color transform conveys the
gist of a scene better (i.e., to a larger extent and more accurately) than each of the individual infrared
and intensified image channels. Moreover, we found that this recolored imagery conveys the gist
of a scene just as well as regular daylight color photographs. In addition, targets of interest such as
persons or vehicles were fixated faster [72].

In the current paper, we present and investigate various alterations on the existing color fusion
schemes. We will compare various methods and come up with fusion schemes that are suited for
different tasks: (i) target detection; (ii) discrimination of different materials; and (iii) easy, intuitive
interpretation (using natural daytime colors).

2. Overview of Color Fusion Methods

Broadly speaking, one can distinguish two types of color fusion:

1. Statistical methods, resulting in an image in which the statistical properties (e.g., average color,
width of the distribution) match that of a reference image;

2. Sample-based methods, in which the color transformation is derived from a training set of
samples for which the input and output (the reference values) are known.

Both of these types of methods have their advantages and disadvantages. One advantage of the
statistical methods is that they require no exact match of a multiband sample image to derive the
color transformation, and an image showing a scene with similar content suffices to derive the color
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transformation. The outcome is a smooth transformation that uses a large part of the color space, which
is advantageous for the discrimination of different materials, as it leads to a smooth transformation this
method may also generalize better to untrained scenes. The downside is that, since no correspondence
between individual samples is used (only statistical properties of the color distribution are used),
it results in somewhat less naturalistic colors.

On the other hand, the sample-based method derives the color transformation from the direct
correspondence between input sensor values and output daytime colors and therefore leads to colors
that match the daytime colors well. Hence, this method requires a multiband image and a perfectly
matching daytime image of the same scene. It can handle a highly nonlinear relationship between
input (sensor values) and output (daytime colors). This also means that the transformation is not as
smooth as that of the statistical method. Also, a limited part of the color range is used (available in
the training set). Therefore, the discrimination of materials is more difficult than with the statistical
method. We have seen [69] that it generalizes well to untrained scenes of a similar environment
and sensor settings. However, it remains to be seen how well it generalizes to different scenes and
sensor settings.

In this study we investigated new methods that combine the advantages of both types of methods.
We are looking for methods that lead to improvement on military relevant tasks: intuitive, natural
colors (for good situational awareness, easy and fast interpretation), good discriminability of materials,
good detectability of (hot) targets and a fusion scheme that generalizes well to untrained scenes.
Note that these properties may not necessarily be combined in a single fusion scheme. Depending on
the task at hand different fusion schemes can be optimal (and selected). Therefore, we have designed
three new methods based on the existing method, that focus on (i) naturalistic coloring; (ii) detection
of hot targets; (iii) discriminability of materials.

In this study we use the imagery obtained by the TRI-band color low-light observation
(TRICLOBS) prototype imaging system for a comparative evaluation of the different fusion
algorithms [73,74]. The TRICLOBS system provides co-axially registered visual, NIR (near infrared),
and LWIR (longwave infrared or thermal) imagery (for an example, see Figure 1). The visual and
NIR supply information about the context, while the LWIR is particularly suited for depicting (hot)
targets, and allows for looking through smoke. Images have been recorded with this system in various
environments. This makes it possible to investigate how well a fusion scheme derived from one image
(set) and reference (set) transfers to untrained images recorded in the same environment (and with the
same sensor settings) to an untrained, new scene recorded in the same environment or in a different
environment. The main training set consists of six images recorded in the MOUT (Military Operations
in Urban Terrain) village of Marnehuizen in the Netherlands [74].
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Figure 1. Example from the total training set of six images. (a) Visual sensor band; (b) near infra-red
(NIR) band; (c) longwave infrared or thermal (LWIR) (thermal) band; and (d) RGB-representation of
the multiband sensor image (in which the ‘hot = dark’ mode is used).
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3. Existing and New Color Fusion Methods

In this section, we give a short description of existing color fusion methods, and present our
proposals for improved color fusion mappings.

3.1. Existing Color Fusion Methods

3.1.1. Statistics Based Method

Toet [41] presented a statistical color fusion method (or SCF) in which the first order statistics of
the color distribution of the transformed multiband sensor image (Figure 1d) is matched to that of
a daytime reference color image (Figure 2a). In the proposed scheme the false color (source) multiband
image representation and the daytime color reference (target) image are first transformed to the
perceptually decorrelated quasi-uniform CIELAB (L*a*b*) color space. Next, the mean (–) and standard
deviation (σ) of each of the color channels (L*, a*, b*) of the multiband source image are set to the
corresponding values of the daytime color reference image as follows:

L∗ ′s =
σL∗

t
σL∗

s
(L∗s − L∗s ) + L∗t

a∗ ′s =
σa∗

t
σa∗

s
(a∗s − a∗s ) + a∗t

b∗ ′s =
σb∗

t
σb∗

s
(b∗s − b

∗
s ) + b

∗
t

(1)

Finally, the colors are transformed back to RGB for display (e.g., Figure 3a).
Another example of a statistical method is described by Pitié et al. [75]. Their method allows one

to match the complete 3D distribution by performing histogram equalization in three dimensions.
However, we found that various artifacts result when this algorithm is applied to convert the input
sensor values (RGB) into the output RGB values of the daytime reference images (e.g., Figure 3b).
It has to be noted that Pitié et al. [75] designed their algorithm to account for (small) color changes in
daytime photographs, and therefore it may not apply to an application in which the initial image is
formed by sensor values outside the visible range.

3.1.2. Sample Based Method

Hogervorst and Toet [70] have shown that a color mapping similar to Toet’s statistical method [41]
can also be implemented as a color-lookup table transformation (see also [4]). This makes the
color transform computationally cheap and fast and thereby suitable for real-time implementation.
In addition, by using a fixed lookup-table based mapping, object colors remain stable even when the
image content (and thereby the distributions of colors) changes (e.g., when processing video sequences
or when the multiband sensor suite pans over a scene).

In the default (so-called color-the-night or CTN) sample-based color fusion scheme [70] the color
mapping is derived from the combination of a multiband sensor image and a corresponding daytime
reference image. Each pair of corresponding pixels in both images is used as a training sample.
Therefore, the multiband sensor image and its daytime color reference image need to be perfectly
matched (i.e., they need to represent the same scene and need to have the same pixel dimensions).
An optimized color transformation between the input (multiband sensor values) and the output
(the corresponding daytime color) can then be derived in a training phase that consists of the following
steps (see Figure 4):

1. The individual bands of the multiband sensor images and the daytime color reference image are
spatially aligned.

2. The different sensor bands are fed into the R, G, B, channels (e.g., Figure 1d) to create an initial
false-color fused representation of the multiband sensor image. In principle, it is not important
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which band feeds into which channel. This is merely a first presentation of the image and has
no influence on the final outcome (the color fused multiband sensor image). To create an initial
representation that is closest to the natural daytime image we adopted the ‘black-is-hot’ setting
of the LWIR sensor.

3. The false-color fused image is transformed to an indexed image with a corresponding CLUT1

(color lookup table) that has a limited number of entries N. This comes down to a cluster
analysis in 3-D sensor space, with a predefined number of clusters (e.g., the standard k-means
clustering techniques may be used for implementation, thus generalizing to N-band multiband
sensor imagery).

4. A new CLUT2 is computed as follows. For a given index d in CLUT1 all pixels in the false-color
fused image with index d are identified. Then, the median RGB color value is computed over
the corresponding set of pixels in the daytime color reference image, and is assigned to index d.
Repeating this step for each index in CLUT1 results in a new CLUT2 in which each entry represents
the daytime color equivalent of the corresponding false color entry in CLUT1. Thus, when
I = { 1, . . . , N } represents the set of indices used in the indexed image representation, and d ∈ I
represents a given index in I, then the support Ωd of d in the source (false-colored) image S is
given by

Ωd = {{i, j} | Index (Si,j) = d } (2)

and the new RGB color value S ′i,j for index d is computed as the median color value over the
same support Ωd in the daytime color reference image R as follows:

S ′i,j = Median
{ {

Ri,j } | {i, j} ∈ Ωd} (3)

5. The color fused image is created by swapping the CLUT1 of the indexed sensor image to the new
daytime reference CLUT2. The result from this step may suffer from ‘solarizing effects’ when
small changes in the input (i.e., the sensor values) lead to a large jump in the output luminance.
This is undesirable, unnatural and leads to clutter (see Figure 2b).

6. To eliminate these undesirable effects, a final step was included in which the luminance channel
is adapted such that it varies monotonously with increasing input values. The luminance of
the entry is thereto made proportional to the Euclidean distance in RGB space of the initial
representation (the sensor values; see Figure 2c).
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3.2. New Color Fusion Methods

3.2.1. Luminance-From-Fit

In the original CTN scheme, the luminance of the fused image was regularized using only on the
input sensor values (see step 6, Section 3.1.2, and Figure 4). This regularization step was introduced
to remove unwanted solarizing effects and to assure that the output luminance is a smooth function
of the input sensor values. To make the appearance of the fused result more similar to the daytime
reference image we derived a smooth luminance-from-fit (LFF) transformation between the input
colors and the output luminance of the training samples. This step was implemented in the original
CTN scheme as a transformation between two color lookup tables (the general processing scheme is
shown Figure 5). Therefore, we converted the RGB data of the reference (daytime) image to HSV (hue,
saturation, value) and derived a smooth transformation between input RGB colors and output value
using a pseudo-inverse transform:

V = V0 + M · x (4)

where x’ = (r, g, b). We tried fitting higher polynomial functions as well as a simple linear relationship
and found that the latter gave the best results (as judged by eye). The results of the LFF color fusion
scheme derived from the standard training set and applied to this same set are depicted in Figure 6c.
This figure shows that the LFF results show more resemblance with the daytime reference image
(Figure 3a) than the result of the CTN method (Figure 6b). This is most apparent for the vegetation,
which is darker in the LFF result than in the CTN fusion result, in line with the daytime luminance.
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3.2.2. Salient-Hot-Targets

For situations in which it is especially important to detect hot targets, we derived a color
scheme intended to make hot elements more salient while showing the environment in natural
colors. This result was obtained by mixing the result from the CTN method (see Figure 7a) with the
result from a two-band color transform (Figure 7b) using a weighted sum of the resulting CLUTs in
which the weights depend on the temperature to the power 6 (see Figure 8 for the processing scheme
of this transformation). This salient-hot-target (SHT) mapping results in colors that are the same as the
CTN scheme except for hot elements, which are depicted in the color of the two-band system. We chose
a mix with a color scheme that depends on the visible and NIR sensor values using the colors depicted
in the inset of Figure 7b, with visible sensor values increasing from left to right, and NIR sensor values
increasing from top to bottom. An alternative would be to depict hot elements in a color that does not
depend on the sensor values of the visible and NIR bands. However, the proposed scheme also allows
for discrimination between hot elements that differ in the values of the two other sensor bands.
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3.2.3. Rigid 3D-Fit

In our quest for a smooth color transformation we first tried to fit an affine (linear) transformation
to convert the input RGB triples x into output RGB triples y:

y = M · x + t (5)

where M is a linear transformation and t is a translation vector. However, although this resulted
in a smooth transformation, it also gave images a rather grayish appearance (see Figure 9a).
By introducing higher-order terms, the result was smoother (see Figure 9b) and approached the
CTN result, but the range of colors that was used remained limited. This problem may be due to the
fact that the range of colors in the training set (the reference daytime images) is also limited. As a result,
only a limited part of the color space is used, which hinders the discrimination of different materials
(and is undesirable). This problem may be solved by using a larger variety of training sets.

To prevent the transformation from leading to a collapse of the color space, we propose to use
a 3D rigid transformation. We have fitted a rigid 3D transformation describing the mapping from the
input values corresponding to the entries of the initial CLUT1 to the values held in the output CLUT2

(see step 4 in Section 3.1.2), by finding the rigid transformation (with rotation R and translation t) that
best describes the relationship (with ζ a deviation term that is minimized) using the method described
by Arun et al. [76]:

CLUT2 = t + R · CLUT1 + ζ (6)

Next, the fitted values of the new CLUT3 were obtained by applying the rigid transformation to
the input CLUT1:

CLUT3 = t + R · CLUT1 (7)

As in the LFF method, this step was implemented in the original CTN scheme as a transformation
between two color lookup tables (the general processing scheme is shown in Figure 5). Figure 9c shows
an example in which the rigid-3D-fit (R3DF) transformation has been applied. Figure 10b shows the
results obtained by applying the fitted 3-D transformation derived from the standard training set to
the test set, which are the same in this case. The result shows some resemblance with the result of
the statistical method (Figure 10a). However, R3DF results in a broader range of colors, and therefore
a better discriminability of different materials. The colors look somewhat less natural than those
resulting from the CTN method (Figure 6b). An advantage of the R3DF method over the SCF statistical
method is that the color transformation is derived from a direct correspondence between the multiband
sensor values and the output colors of individual samples (pixels), and therefore does not depend on
the distribution of colors depicted in the training scene.
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4. Qualitative Comparison of Color Fusion Methods

First, we performed a qualitative comparison between the different color fusion schemes. In our
evaluation we included the CTN method (Figure 6b), the SCF method (Figure 10a), and the three
newly proposed schemes: (1) the LFF method (see Figure 6c); (2) the SHT method (Figure 6d); and
(3) the R3DF method (Figure 10b). We also included the result of the CTN method using only two
input bands: the visible and the NIR band (CTN2: for the processing scheme see Figure 11). This last
condition was added to investigate whether the colors derived from this two-band system transfer
better to untrained scenes than when the LWIR band is used as well. The idea behind this is that
only bands close to the visible range can be expected to show some correlation with the visible
daytime colors. However, the LWIR values are probably relatively independent of the daytime color
and therefore may not help in inferring the daytime color (and may even lead to unnatural colors).
Next, we present some examples of the various images that were evaluated.
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statistical method. However, the colors are more outspoken, due to the fact that the range of colors is 
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Figure 11. Processing scheme of the CTN2 sample-based color fusion method.

Figures 6 and 7 show the results of the various color methods that were derived from the standard
training set (of six images) and were applied to multiband images of the same scenes (except for the
two-band system). In line with our expectations, the LFF method (Figure 6c) leads to results that are
more similar to the daytime reference image (Figure 6a), with for instance vegetation shown in dark
green instead of in light green in the CTN scheme (Figure 6b). As intended, the SHT method (Figure 6d)
leads to hot elements (the engine of the vehicle) depicted in bright blue, which makes them more salient
and thus easier to detect. The elements are shown in blue because the sensor values in the visible
and NIR bands are close to zero in this case. The result of the R3DF method are shown in Figure 10b.
As mentioned before, in this case, the results show some resemblance with the statistical method.
However, the colors are more outspoken, due to the fact that the range of colors is not reduced in the
transformation. Therefore, the discriminability of materials is quite good. The downside is that the
colors are somewhat less natural than the CTN result (Figure 6b), although they are still quite intuitive.
Figure 12 shows an example in which the color transformations derived from the standard training
set were applied to a new (untrained) scene taken in the same environment. As expected, the CTN
scheme transfers well to the untrained scene. Again, the LFF result matches the daytime reference
slightly better than the CTN scheme, and the R3DF result shows somewhat less natural colors, but still
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yields good discriminability of the different materials in the scene. Surprisingly, the two-band system
(Figure 12e) does not lead to more naturalistic colors than the three-band (CTN) method (Figure 12a).
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Figure 13 shows yet another example of applying the methods to an image that was taken in the
same environment but not used in the training set. In this case, the light level was lower than the levels
that occur in the training set, which also led to differences in the sensor settings. No daytime reference
is available in this case. Most of the color fusion methods lead to colors that are less outspoken.
Again, the colors in the R3DF result are the most vibrant and lead to the best discriminability of
materials. Figure 14 shows an example in which the SHT method leads to a yellow hot target, due to
the fact that the sensor values in the visible and NIR bands are both high (see the inset Figure 7b for the
color scheme that was used). In this case this leads to lower target saliency, since the local background
is white. This indicates that this method is not yet optimal for all situations.

Figure 15 shows an example in which the color transformations were applied to an image recorded
in a totally different environment (and with different sensor settings). Again, the CTN method transfers
quite well to this new environment, while the two-band method performs less well. Finally, Figure 16
shows the results of applying the different color mapping schemes to a multiband image recorded
in the standard environment, after they were trained on scenes representing a different environment
(see Figure 16d). In this case, the resulting color appearance is not so natural as when the mapping
schemes were trained in the same environment (see e.g., Figure 7a,c). Also here, the R3DF method
(Figure 16g) appears to transfer well to this untrained situation (environment and sensor settings).
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method; (d) daytime reference image; (e) CTN2 method; (f) SCF method; (g) R3DF method.
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Figure 16. Results from color transformations derived from the scene shown on the right (d) with 
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5. Quantitative Evaluation of Color Fusion Methods

To quantitatively compare the performance of the different color fusion schemes discussed in
this study we performed both a subjective ranking experiment and a computational image quality
evaluation study. Both evaluation experiments were performed with the same set of 138 color fused
multiband images. These images were obtained by fusing 23 three-band (visual, NIR, LWIR) TRICLOBS
images (each representing a different scene, see [74]) with each of the six different color mappings
investigated in this study (CTN, CTN-2 band, statistical, luminance-from-fit, salient-hot-targets, and
rigid-3D-fit).

5.1. Subjective Ranking Experiment

5.1.1. Methods

Four observers (two males and two females, aged between 31 and 61) participated in a subjective
evaluation experiment. The observers had (corrected to) normal vision and no known color deficiencies.
They were comfortably seated at a distance of 50 cm in front of a Philips 231P4QU monitor that was
placed in a dark room. The images were 620 × 450 pixels in size, and were presented on a black
background with a size of 1920 × 1080 pixels in a screen area of 50.8 × 28.8 cm2. For each scene,
the observers ranked its six different fused color representations (resulting from the six different
color fusion methods investigated in this study) in terms of three criteria: image naturalness (color
realism, how natural the image appears), discriminability (the amount of different materials that can
be distinguished in the image), and the saliency of hot targets (persons, cars, wheels, etc.) in the scene.
The resulting rank order was converted to a set of scores, ranging from 1 (corresponding to the worst
performing method) to 6 (denoting the best performing method). The entire experiment consisted of
three blocks. In each block, the same ranking criterium was used (either naturalness, discriminability
or saliency) and each scene was used only once. The presentation order of the 23 different scenes was
randomized between participants and between blocks. On each trial, a different scene was shown
and the participant was asked to rank order the six different color representations of that given scene
from “best performing” (leftmost image) to “worst performing” (rightmost image). The images were
displayed in pairs. The participant was instructed to imagine that the display represented a window
showing two out of six images that were arranged on a horizontal row. By selecting the right (left)
arrow on the keyboard the participant could slide this virtual window from left to right (vice versa)
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over the row of images, corresponding to higher (lower) ratings. By pressing the up-arrow the left-right
order of the two images on the screen could be reversed. By repeatedly comparing successive image
pairs and switching their left-right order the participant could rank order the entire row of six images.
When the participant was satisfied with the result, he/she pressed the Q-key to proceed to the next trial.

5.1.2. Results

Figure 17 shows the mean observer ranking scores for naturalness, discriminability, and hot
target saliency for each of the six color fusion methods tested (CTN, SCF, CTN2, LFF, SHT, and R3DF).
This figure shows the scores separately both for images that were included and excluded from the
training sets.

To measure the inter-rater agreement (also called inter-rater reliability or IRR) between our
observers we computed Krippendorff’s alpha, using the R package ‘irr’ [77]. The IRR analysis showed
that the observers had a substantial agreement in their ratings on naturalness (α = 0.51), and a very
high agreement in their ratings of the Saliency of hot targets in the scenes (α = 0.95). However, they
did not agree in their ratings of the discriminability of different materials in the scene (α = 0.03).

Figure 17a shows that the CTN and LFF methods score relatively high on naturalness, while the
results of the R3DF method were rated as least natural by the observers. This figure also shows that
the LFF method yields more natural looking results especially for images that were included in the
training set. For scenes that were not included in the training set the naturalness decreases, meaning
that the relation between daytime reference colors and nighttime sensor values does not extrapolate
very well to different scenes.

Figure 17b shows that the ratings on discriminability vary largely between observers, resulting
in a low inter rater agreement. This may be a result of the fact that different observers used different
details in the scene to make their judgments. In a debriefing, some observers remarked that they had
paid more attention to the distinctness of vegetation, while others stated that they had fixated more on
details of buildings. On average, the highest discriminability scores are given to the R3DF, SHT and
SCF color fusion methods (in descending order).

Figure 17c shows that the SHT method, which was specifically designed to enhance the saliency
of hot targets in a scene, appears to perform well in this respect. The R3DF method also appears to
represent the hot targets at high contrast.
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for each of the six color fusion methods (CTN, SCF, CTN2, LFF, SHT, R3DF). Filled (empty) bars
represent the mean ranking scores for methods applied to images that were (not) in their training
set. Filled (open) bars represent the scores when the methods were applied to images that were (not)
included their training set. Error bars represent the standard error of the mean.

5.2. Objective Quality Metrics

5.2.1. Methods

We used three no-reference and three full-reference computational image quality metrics to
objectively assess and compare the performance of the six different color fusion schemes discussed in
this study.

The first no-reference metric is the global color image contrast metric (ICM) that measures the
global image contrast [78]. The ICM computes a weighted estimate of the dynamic ranges of both the
graylevel and color luminance (L* in CIELAB L*a*b* color space) histograms. The range of ICM is [0,1].
Larger ICM values correspond to higher perceived image contrast.

The second no-reference metric is the color colorfulness metric (CCM) that measures the color
vividness of an image as a weighted combination of color saturation and color variety [78]. Larger CCM
values correspond to more colorful images.

The third no-reference metric is the number of characteristic colors in an image (NC).
We obtained this number by converting the RGB images to indexed images using minimum variance
quantization [79] with an upper bound of 65,536 possible colors. NC is then the number of colors that
are actually used for the indexed image representation.

The first full-reference metric is the color image feature similarity metric (FSIMc) that combines
measures of local image structure (computed from phase congruency) and local image contrast
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(computed as the gradient magnitude) in YIQ color space to measure the degree of correspondence
between a color fused image and a daylight reference color image [80]. The range of FSIMc is [0,1].
The larger the FSIMc value of a colorized image is, the more similar it is to the reference image.
Extensive evaluation studies on several color image quality databases have shown that FSIMc predicts
human visual quality scores for color images [80].

The second full-reference metric is the color natural metric (CNM: [78,81,82]). The CNM measures
the similarity of the color distributions of a color fused image and a daylight reference color image
in Lab color space using Ma’s [83] gray relational coefficients. The range of CNM is [0,1]. The larger
the CNM value of a colorized image is, the more similar its color distribution is to that of the
reference image.

The third full-reference metric is the objective evaluation index (OEI: [81,82]). The OEI measures
the degree of correspondence between a color fused image and a daylight reference color image by
effectively integrating four established image quality metrics in CIELAB L*a*b* color space: phase
congruency (representing local image structure; [84]), gradient magnitude (measuring local image
contrast or sharpness), image contrast (ICM), and color naturalness (CNM). The range of OEI is [0,1].
The larger the OEI value of a colorized image is, the more similar it is to the reference image.

5.2.2. Results

Table 1 shows the mean values (with their standard error) of the computational image metrics for
each of the six color fusion methods investigated in this study. The full-reference FSIMc, CNM and
OEI metrics all assign the largest values to the LFF method. This result agrees with our subjective
observation that LFF produces color fused imagery with the most natural appearance (Section 5.1.2).
The original CTN method also appears to perform well overall, with the highest mean image contrast
(ICM), image colorfulness (CCM) and color naturalness (CNM) values. In addition, the sample-based
CTN method outperforms the statistical SCF method (which is computationally more expensive and
yields a less stable color representation) on all quality metrics. The low CNM value for the R3DF
method confirms our subjective observation that the imagery produced by this method yields looks
less natural. CTN and CTN2 both have the same CNM values, and do not differ much in their CCM
values, supporting our qualitative and somewhat surprising observation that CTN2 does not lead to
more naturalistic colors than the three band CTN color mapping.

To assess the overall agreement between the observer judgements and the computational metrics
we computed Spearman’s rank correlation coefficient between all six computational image quality
metrics and the observer scores for naturalness, discriminability and saliency of hot targets (Table 2).
Most computational metrics show a significant correlation with the human observer ratings for
naturalness. It appears that the OEI metric most strongly predicts the human observer ratings on all
three criteria. This agrees with a previous finding in the literature that the OEI metric ranked different
color fused images similar as human observers [81]. The correlation between the OEI and perceived
naturalness is specially high (0.95).

Table 1. Results of the computational image quality metrics (with their standard error) for each of the
color fusion methods investigated in this study. Overall highest values are printed in bold.

Method
No-Reference Metric Full-Reference Metric

ICM CCM NC FSIMc CNM OEI

CTN 0.382 (0.008) 4.6 (1.2) 815 (43) 0.78 (0.02) 0.82 (0.02) 0.73 (0.02)
SCF 0.370 (0.006) 3.6 (1.0) 1589 (117) 0.77 (0.02) 0.76 (0.02) 0.72 (0.02)

CTN2 0.380 (0.008) 4.4 (1.2) 938 (102) 0.78 (0.02) 0.82 (0.02) 0.73 (0.02)
LFF 0.358 (0.009) 4.5 (1.2) 860 (64) 0.80 (0.01) 0.82 (0.02) 0.74 (0.02)
SHT 0.349 (0.007) 4.4 (1.2) 1247 (241) 0.78 (0.01) 0.82 (0.02) 0.72 (0.02)

R3DF 0.341 (0.011) 4.1 (1.1) 2630 (170) 0.77 (0.01) 0.74 (0.02) 0.70 (0.03)

ICM = image contrast metric, CCM = color colorfulness metric, NC = number of colors, FSIMc = feature similarity
metric, CNM = color natural metric, OEI = objective evaluation index.
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Table 2. Pearson’s correlation coefficient between the computational image quality metrics and the
observer ratings for naturalness, discriminability and the saliency of hot targets. Overall highest values
are printed in bold.

Method
No-Reference Metric Full-Reference Metric

ICM CCM NC FSIMc CNM OEI

Naturalness 0.66 0.64 0.92 0.81 0.81 0.95
Discriminability 0.68 0.45 0.77 0.67 0.66 0.84

Saliency hot targets 0.68 0.16 0.58 0.65 0.32 0.77

6. Discussion and Conclusions

We have proposed three new methods that focus on improving performance in different military
tasks. The luminance-fit (LFF) method was intended to give a result in which the luminance more closely
matches the daytime situation (compared to the result of the CTN method). Both our qualitative and
quantitative (observer experiments and computational image quality metrics) evaluations indicate that
this is indeed the case. This method is especially suited for situations in which natural daytime colors
are required (leading to good situational awareness, and fast and easy interpretation) and for systems
that need to be operated by untrained users. The disadvantage of this method over the CTN-scheme is
that it leads to a somewhat lower discriminability of different materials. Again, the choice between the
two fusion schemes has to be based on the application (i.e., adapted to the task and situation).

Secondly, we proposed a salient-hot-targets (SHT) fusion scheme, intended to render hot targets
as more salient by painting the hot elements in more vibrant colors. The results of the quantitative
evaluation tests show that this method does indeed represent hot elements as more salient in the fused
image in most situations. However, in some cases a decrease in saliency may result. This suggests that
this fusion scheme may be improved, e.g., by adapting the luminance of the hot elements to that of
their local background (i.e., by enhancing local luminance contrast), or by using a different mixing
scheme (e.g., by replacing the scheme depicted in the inset of Figure 10b by a different one).

Our third proposal was to create a color fusion method (rigid-3D-fit or R3DF method) that
combines the advantages of the sample-based method (the fact that the direct correspondence between
sensor values and output colors is used to create a result that closely matches the daytime image) along
with the advantages of the statistical method (the fact that this method leads to a smooth transformation
in which a fuller range of colors is used, leading to better discriminability of materials). A rigid-3D-fit
was used to transform the input (sensor values) and output (daytime colors) (by mapping their CLUTs)
to assure that the color space did not collapse under the transformation. The results of this fusion
scheme look somewhat similar to that of the statistical method, although the colors are somewhat less
naturalistic (but still intuitive). However, this method results in better discriminability of materials
and has good generalization properties (i.e., it transfers well to untrained scenes). This is probably
due to the fact that the transformation is constrained by the direct correspondence between input and
output (and not only by the widths of the distributions). This fusion method is especially suited for
applications in which the discriminability of different materials is important while the exact color is
somewhat less important. Still, the colors that are generated are quite intuitive. Another advantage of
this method is that the transformation may be derived from a very limited number of image samples
(e.g., N = 4), and does not rely on a large training set spanning the complete set of possible multiband
sensor values. The transformation can be made to yield predefined colors for elements of interest in
the scene (e.g., vegetation, certain targets).

The results from both our qualitative and quantitative evaluation studies show that the original
CTN method works quite well and that it shows good transfer to untrained imagery taken in the
same environment and with similar sensor settings. Even in cases in which the environment or sensor
settings are different, it still applies reasonably well.
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Surprisingly, the CTN2 two-band mapping does not performs as well as expected, even when
applied to untrained scenes. This suggests that there may be a relationship between the daytime
colors and the LWIR sensor values which the fusion method utilizes and that this also applies to the
untrained situations. It may be the case that there are different types of environments in which this
relationship differs and that we happen to have recorded (and evaluated) environments in which
this relationship was quite similar. Given the limited dataset we used (and which is freely available
for research purposes: [74]) this may not be surprising. It suggests that the system should be trained
with scenes representing different types of environments in which LWIR can be used to infer the
daytime color.

One of the reasons why the learned color transformation does not always transfer well to untrained
situations is probably that, in a new situation, the sensor settings can differ considerably. When, for
instance, the light level changes, the (auto)gain settings may change, and one may end up in a very
different location in 3D sensor/color space, which may ultimately result in very different output
colors (for the same object). This can be only be prevented by using the sensor settings to recalculate
(recalibrate) the values to those that would have been obtained if sensor settings had been used that
corresponded to the training situation.

The set of images that is available for testing is still rather limited. Therefore, we intend to
extend our dataset to include more variation in backgrounds, environmental conditions (weather,
light conditions, etc.), which can serve as a benchmark set for improving and testing new color fusion
schemes in the future.

Acknowledgments: Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command,
USAF, under grant number FA9550-17-1-0079. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purpose notwithstanding any copyright notation thereon. The authors thank
Yufeng Zheng and Erik Blasch for providing the Matlab code of the OEI metric.

Author Contributions: The two authors contributed equally to the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Li, S.; Kang, X.; Fang, L.; Hu, J.; Yin, H. Pixel-level image fusion: A survey of the state of the art. Inf. Fusion
2017, 33, 100–112. [CrossRef]

2. Mahmood, S.; Khan, Y.D.; Khalid Mahmood, M. A treatise to vision enhancement and color fusion techniques
in night vision devices. Multimed. Tools Appl. 2017, 76, 1–49. [CrossRef]

3. Zheng, Y. An Overview of Night Vision Colorization Techniques Using Multispectral Images: From Color
Fusion to Color Mapping. In Proceedings of the IEEE International Conference on Audio, Language and
Image Processing (ICALIP), Shanghai, China, 16–18 July 2012; pp. 134–143.

4. Toet, A.; Hogervorst, M.A. Progress in color night vision. Opt. Eng. 2012, 51, 010901. [CrossRef]
5. Zheng, Y. An exploration of color fusion with multispectral images for night vision enhancement. In Image

Fusion and Its Applications; Zheng, Y., Ed.; InTech Open: Rijeka, Croatia, 2011; pp. 35–54.
6. Wichmann, F.A.; Sharpe, L.T.; Gegenfurtner, K.R. The contributions of color to recognition memory for

natural scenes. J. Exp. Psychol. Learn. Mem. Cognit. 2002, 28, 509–520. [CrossRef]
7. Bramão, I.; Reis, A.; Petersson, K.M.; Faísca, L. The role of color information on object recognition: A review

and meta-analysis. Acta Psychol. 2011, 138, 244–253. [CrossRef] [PubMed]
8. Sampson, M.T. An Assessment of the Impact of Fused Monochrome and Fused Color Night Vision Displays on

Reaction Time and Accuracy in Target Detection; Report AD-A321226; Naval Postgraduate School: Monterey,
CA, USA, 1996.

9. Gegenfurtner, K.R.; Rieger, J. Sensory and cognitive contributions of color to the recognition of natural scenes.
Curr. Biol. 2000, 10, 805–808. [CrossRef]

10. Tanaka, J.W.; Presnell, L.M. Color diagnosticity in object recognition. Percept. Psychophys. 1999, 61, 1140–1153.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.inffus.2016.05.004
http://dx.doi.org/10.1007/s11042-017-4365-y
http://dx.doi.org/10.1117/1.OE.51.1.010901
http://dx.doi.org/10.1037/0278-7393.28.3.509
http://dx.doi.org/10.1016/j.actpsy.2011.06.010
http://www.ncbi.nlm.nih.gov/pubmed/21803315
http://dx.doi.org/10.1016/S0960-9822(00)00563-7
http://dx.doi.org/10.3758/BF03207619
http://www.ncbi.nlm.nih.gov/pubmed/10497433


J. Imaging 2017, 3, 36 22 of 25

11. Castelhano, M.S.; Henderson, J.M. The influence of color on the perception of scene gist. J. Exp. Psychol.
Hum. Percept. Perform. 2008, 34, 660–675. [CrossRef] [PubMed]

12. Rousselet, G.A.; Joubert, O.R.; Fabre-Thorpe, M. How long to get the “gist” of real-world natural scenes?
Vis. Cognit. 2005, 12, 852–877. [CrossRef]

13. Goffaux, V.; Jacques, C.; Mouraux, A.; Oliva, A.; Schyns, P.; Rossion, B. Diagnostic colours contribute to the
early stages of scene categorization: Behavioural and neurophysiological evidence. Vis. Cognit. 2005, 12,
878–892. [CrossRef]

14. Oliva, A.; Schyns, P.G. Diagnostic colors mediate scene recognition. Cognit. Psychol. 2000, 41, 176–210.
[CrossRef] [PubMed]

15. Frey, H.-P.; Honey, C.; König, P. What’s color got to do with it? The influence of color on visual attention in
different categories. J. Vis. 2008, 8, 6. [CrossRef] [PubMed]

16. Bramão, I.; Inácio, F.; Faísca, L.; Reis, A.; Petersson, K.M. The influence of color information on the recognition
of color diagnostic and noncolor diagnostic objects. J. Gen. Psychol. 2011, 138, 49–65. [CrossRef] [PubMed]

17. Spence, I.; Wong, P.; Rusan, M.; Rastegar, N. How color enhances visual memory for natural scenes.
Psychol. Sci. 2006, 17, 1–6. [CrossRef] [PubMed]

18. Ansorge, U.; Horstmann, G.; Carbone, E. Top-down contingent capture by color: Evidence from RT
distribution analyses in a manual choice reaction task. Acta Psychol. 2005, 120, 243–266. [CrossRef] [PubMed]

19. Green, B.F.; Anderson, L.K. Colour coding in a visual search task. J. Exp. Psychol. 1956, 51, 19–24. [CrossRef]
[PubMed]

20. Folk, C.L.; Remington, R. Selectivity in distraction by irrelevant featural singletons: Evidence for two forms
of attentional capture. J. Exp. Psychol. Hum. Percept. Perform. 1998, 24, 847–858. [CrossRef] [PubMed]

21. Driggers, R.G.; Krapels, K.A.; Vollmerhausen, R.H.; Warren, P.R.; Scribner, D.A.; Howard, J.G.; Tsou, B.H.;
Krebs, W.K. Target detection threshold in noisy color imagery. In Infrared Imaging Systems: Design, Analysis,
Modeling, and Testing XII; Holst, G.C., Ed.; The International Society for Optical Engineering: Bellingham,
WA, USA, 2001; Volume 4372, pp. 162–169.

22. Horn, S.; Campbell, J.; O’Neill, J.; Driggers, R.G.; Reago, D.; Waterman, J.; Scribner, D.; Warren, P.; Omaggio, J.
Monolithic multispectral FPA. In International Military Sensing Symposium; NATO RTO: Paris, France, 2002;
pp. 1–18.

23. Lanir, J.; Maltz, M.; Rotman, S.R. Comparing multispectral image fusion methods for a target detection task.
Opt. Eng. 2007, 46, 1–8. [CrossRef]

24. Martinsen, G.L.; Hosket, J.S.; Pinkus, A.R. Correlating military operators’ visual demands with multi-spectral
image fusion. In Signal Processing, Sensor Fusion, and Target Recognition XVII; Kadar, I., Ed.; The International
Society for Optical Engineering: Bellingham, WA, USA, 2008; Volume 6968, pp. 1–7.

25. Jacobson, N.P.; Gupta, M.R. Design goals and solutions for display of hyperspectral images. IEEE Trans.
Geosci. Remote Sens. 2005, 43, 2684–2692. [CrossRef]

26. Joseph, J.E.; Proffitt, D.R. Semantic versus perceptual influences of color in object recognition. J. Exp. Psychol.
Learn. Mem. Cognit. 1996, 22, 407–429. [CrossRef]

27. Fredembach, C.; Süsstrunk, S. Colouring the near-infrared. In IS&T/SID 16th Color Imaging Conference;
The Society for Imaging Science and Technology: Springfield, VA, USA, 2008; pp. 176–182.

28. Krebs, W.K.; Sinai, M.J. Psychophysical assessments of image-sensor fused imagery. Hum. Factors 2002, 44,
257–271. [CrossRef] [PubMed]

29. McCarley, J.S.; Krebs, W.K. Visibility of road hazards in thermal, visible, and sensor-fused night-time imagery.
Appl. Ergon. 2000, 31, 523–530. [CrossRef]

30. Toet, A.; IJspeert, J.K. Perceptual evaluation of different image fusion schemes. In Signal Processing, Sensor
Fusion, and Target Recognition X; Kadar, I., Ed.; The International Society for Optical Engineering: Bellingham,
WA, USA, 2001; Volume 4380, pp. 436–441.

31. Toet, A.; IJspeert, J.K.; Waxman, A.M.; Aguilar, M. Fusion of visible and thermal imagery improves situational
awareness. In Enhanced and Synthetic Vision 1997; Verly, J.G., Ed.; International Society for Optical Engineering:
Bellingham, WA, USA, 1997; Volume 3088, pp. 177–188.

32. Essock, E.A.; Sinai, M.J.; McCarley, J.S.; Krebs, W.K.; DeFord, J.K. Perceptual ability with real-world nighttime
scenes: Image-intensified, infrared, and fused-color imagery. Hum. Factors 1999, 41, 438–452. [CrossRef]
[PubMed]

http://dx.doi.org/10.1037/0096-1523.34.3.660
http://www.ncbi.nlm.nih.gov/pubmed/18505330
http://dx.doi.org/10.1080/13506280444000553
http://dx.doi.org/10.1080/13506280444000562
http://dx.doi.org/10.1006/cogp.1999.0728
http://www.ncbi.nlm.nih.gov/pubmed/10968925
http://dx.doi.org/10.1167/8.14.6
http://www.ncbi.nlm.nih.gov/pubmed/19146307
http://dx.doi.org/10.1080/00221309.2010.533718
http://www.ncbi.nlm.nih.gov/pubmed/21404949
http://dx.doi.org/10.1111/j.1467-9280.2005.01656.x
http://www.ncbi.nlm.nih.gov/pubmed/16371136
http://dx.doi.org/10.1016/j.actpsy.2005.04.004
http://www.ncbi.nlm.nih.gov/pubmed/15963935
http://dx.doi.org/10.1037/h0047484
http://www.ncbi.nlm.nih.gov/pubmed/13286435
http://dx.doi.org/10.1037/0096-1523.24.3.847
http://www.ncbi.nlm.nih.gov/pubmed/9627420
http://dx.doi.org/10.1117/1.2746248
http://dx.doi.org/10.1109/TGRS.2005.857623
http://dx.doi.org/10.1037/0278-7393.22.2.407
http://dx.doi.org/10.1518/0018720024497880
http://www.ncbi.nlm.nih.gov/pubmed/12452272
http://dx.doi.org/10.1016/S0003-6870(00)00010-7
http://dx.doi.org/10.1518/001872099779611030
http://www.ncbi.nlm.nih.gov/pubmed/10665211


J. Imaging 2017, 3, 36 23 of 25

33. Essock, E.A.; Sinai, M.J.; DeFord, J.K.; Hansen, B.C.; Srinivasan, N. Human perceptual performance with
nonliteral imagery: Region recognition and texture-based segmentation. J. Exp. Psychol. Appl. 2004, 10,
97–110. [CrossRef] [PubMed]

34. Gu, X.; Sun, S.; Fang, J. Coloring night vision imagery for depth perception. Chin. Opt. Lett. 2009, 7, 396–399.
35. Vargo, J.T. Evaluation of Operator Performance Using True Color and Artificial Color in Natural Scene Perception;

Report AD-A363036; Naval Postgraduate School: Monterey, CA, USA, 1999.
36. Krebs, W.K.; Scribner, D.A.; Miller, G.M.; Ogawa, J.S.; Schuler, J. Beyond third generation: A sensor-fusion

targeting FLIR pod for the F/A-18. In Sensor Fusion: Architectures, Algorithms, and Applications II;
Dasarathy, B.V., Ed.; International Society for Optical Engineering: Bellingham, WA, USA, 1998; Volume
3376, pp. 129–140.

37. Scribner, D.; Warren, P.; Schuler, J. Extending Color Vision Methods to Bands Beyond the Visible.
In Proceedings of the IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and
Applications, Fort Collins, CO, USA, 22 June 1999; pp. 33–40.

38. Sun, S.; Jing, Z.; Li, Z.; Liu, G. Color fusion of SAR and FLIR images using a natural color transfer technique.
Chin. Opt. Lett. 2005, 3, 202–204.

39. Tsagaris, V.; Anastassopoulos, V. Fusion of visible and infrared imagery for night color vision. Displays 2005,
26, 191–196. [CrossRef]

40. Zheng, Y.; Hansen, B.C.; Haun, A.M.; Essock, E.A. Coloring night-vision imagery with statistical properties
of natural colors by using image segmentation and histogram matching. In Color Imaging X: Processing,
Hardcopy and Applications; Eschbach, R., Marcu, G.G., Eds.; The International Society for Optical Engineering:
Bellingham, WA, USA, 2005; Volume 5667, pp. 107–117.

41. Toet, A. Natural colour mapping for multiband nightvision imagery. Inf. Fusion 2003, 4, 155–166. [CrossRef]
42. Wang, L.; Jin, W.; Gao, Z.; Liu, G. Color fusion schemes for low-light CCD and infrared images of

different properties. In Electronic Imaging and Multimedia Technology III; Zhou, L., Li, C.-S., Suzuki, Y., Eds.;
The International Society for Optical Engineering: Bellingham, WA, USA, 2002; Volume 4925, pp. 459–466.

43. Li, J.; Pan, Q.; Yang, T.; Cheng, Y.-M. Color Based Grayscale-Fused Image Enhancement Algorithm for Video
Surveillance. In Proceedings of the IEEE Third International Conference on Image and Graphics (ICIG’04),
Hong Kong, China, 18–20 December 2004; pp. 47–50.

44. Howard, J.G.; Warren, P.; Klien, R.; Schuler, J.; Satyshur, M.; Scribner, D.; Kruer, M.R. Real-time color fusion
of E/O sensors with PC-based COTS hardware. In Targets and Backgrounds VI: Characterization, Visualization,
and the Detection Process; Watkins, W.R., Clement, D., Reynolds, W.R., Eds.; The International Society for
Optical Engineering: Bellingham, WA, USA, 2000; Volume 4029, pp. 41–48.

45. Scribner, D.; Schuler, J.M.; Warren, P.; Klein, R.; Howard, J.G. Sensor and Image Fusion; Driggers, R.G., Ed.;
Marcel Dekker Inc.: New York, NY, USA; pp. 2577–2582.

46. Schuler, J.; Howard, J.G.; Warren, P.; Scribner, D.A.; Klien, R.; Satyshur, M.; Kruer, M.R. Multiband E/O
color fusion with consideration of noise and registration. In Targets and Backgrounds VI: Characterization,
Visualization, and the Detection Process; Watkins, W.R., Clement, D., Reynolds, W.R., Eds.; The International
Society for Optical Engineering: Bellingham, WA, USA, 2000; Volume 4029, pp. 32–40.

47. Waxman, A.M.; Gove, A.N.; Fay, D.A.; Racamoto, J.P.; Carrick, J.E.; Seibert, M.C.; Savoye, E.D. Color night
vision: Opponent processing in the fusion of visible and IR imagery. Neural Netw. 1997, 10, 1–6. [CrossRef]

48. Waxman, A.M.; Fay, D.A.; Gove, A.N.; Seibert, M.C.; Racamato, J.P.; Carrick, J.E.; Savoye, E.D. Color night
vision: Fusion of intensified visible and thermal IR imagery. In Synthetic Vision for Vehicle Guidance and
Control; Verly, J.G., Ed.; The International Society for Optical Engineering: Bellingham, WA, USA, 1995;
Volume 2463, pp. 58–68.

49. Warren, P.; Howard, J.G.; Waterman, J.; Scribner, D.A.; Schuler, J. Real-Time, PC-Based Color Fusion Displays;
Report A073093; Naval Research Lab: Washington, DC, USA, 1999.

50. Fay, D.A.; Waxman, A.M.; Aguilar, M.; Ireland, D.B.; Racamato, J.P.; Ross, W.D.; Streilein, W.; Braun, M.I.
Fusion of multi-sensor imagery for night vision: Color visualization, target learning and search. In Third
International Conference on Information Fusion, Vol. I-TuD3; IEEE Press: Piscataway, NJ, USA, 2000; pp. 3–10.

51. Aguilar, M.; Fay, D.A.; Ross, W.D.; Waxman, A.M.; Ireland, D.B.; Racamoto, J.P. Real-time fusion of low-light
CCD and uncooled IR imagery for color night vision. In Enhanced and Synthetic Vision 1998; Verly, J.G., Ed.;
The International Society for Optical Engineering: Bellinggam, WA, USA, 1998; Volume 3364, pp. 124–135.

http://dx.doi.org/10.1037/1076-898X.10.2.97
http://www.ncbi.nlm.nih.gov/pubmed/15222804
http://dx.doi.org/10.1016/j.displa.2005.06.007
http://dx.doi.org/10.1016/S1566-2535(03)00038-1
http://dx.doi.org/10.1016/S0893-6080(96)00057-3


J. Imaging 2017, 3, 36 24 of 25

52. Waxman, A.M.; Aguilar, M.; Baxter, R.A.; Fay, D.A.; Ireland, D.B.; Racamoto, J.P.; Ross, W.D. Opponent-Color
Fusion of Multi-Sensor Imagery: Visible, IR and SAR. Available online: http://www.dtic.mil/docs/citations/
ADA400557 (accessed on 28 August 2017).

53. Aguilar, M.; Fay, D.A.; Ireland, D.B.; Racamoto, J.P.; Ross, W.D.; Waxman, A.M. Field evaluations of dual-band
fusion for color night vision. In Enhanced and Synthetic Vision 1999; Verly, J.G., Ed.; The International Society
for Optical Engineering: Bellingham, WA, USA, 1999; Volume 3691, pp. 168–175.

54. Fay, D.A.; Waxman, A.M.; Aguilar, M.; Ireland, D.B.; Racamato, J.P.; Ross, W.D.; Streilein, W.; Braun, M.I.
Fusion of 2-/3-/4-sensor imagery for visualization, target learning, and search. In Enhanced and Synthetic
Vision 2000; Verly, J.G., Ed.; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA,
2000; Volume 4023, pp. 106–115.

55. Huang, G.; Ni, G.; Zhang, B. Visual and infrared dual-band false color image fusion method motivated by
Land’s experiment. Opt. Eng. 2007, 46, 1–10. [CrossRef]

56. Li, G. Image fusion based on color transfer technique. In Image Fusion and Its Applications; Zheng, Y., Ed.;
InTech Open: Rijeka, Croatia, 2011; pp. 55–72.

57. Zaveri, T.; Zaveri, M.; Makwana, I.; Mehta, H. An Optimized Region-Based Color Transfer Method for Night
Vision Application. In Proceedings of the 3rd IEEE International Conference on Signal and Image Processing
(ICSIP 2010), Chennai, India, 15–17 December 2010; pp. 96–101.

58. Zhang, J.; Han, Y.; Chang, B.; Yuan, Y. Region-based fusion for infrared and LLL images. In Image Fusion;
Ukimura, O., Ed.; INTECH: Rijeka, Croatia, 2011; pp. 285–302.

59. Qian, X.; Han, L.; Wang, Y.; Wang, B. Color contrast enhancement for color night vision based on color
mapping. Infrared Phys. Technol. 2013, 57, 36–41. [CrossRef]

60. Li, G.; Xu, S.; Zhao, X. Fast Color-Transfer-Based Image Fusion Method for Merging Infrared and Visible
Images; Braun, J.J., Ed.; The International Society for Optical Engineering: Bellingham, WA, USA, 2010;
Volume 77100S, pp. 1–12.

61. Li, G.; Xu, S.; Zhao, X. An efficient color transfer algorithm for recoloring multiband night vision imagery.
In Enhanced and Synthetic Vision 2010; Güell, J.J., Bernier, K.L., Eds.; The International Society for Optical
Engineering: Bellingham, WA, USA, 2010; Volume 7689, pp. 1–12.

62. Li, G.; Wang, K. Applying daytime colors to nighttime imagery with an efficient color transfer method.
In Enhanced and Synthetic Vision 2007; Verly, J.G., Guell, J.J., Eds.; The International Society for Optical
Engineering: Bellingham, WA, USA, 2007; Volume 6559, pp. 1–12.

63. Shen, H.; Zhou, P. Near natural color polarization imagery fusion approach. In Third International Congress
on Image and Signal Processing (CISP 2010); IEEE Press: Piscataway, NJ, USA, 2010; Volume 6, pp. 2802–2805.

64. Yin, S.; Cao, L.; Ling, Y.; Jin, G. One color contrast enhanced infrared and visible image fusion method.
Infrared Phys. Technol. 2010, 53, 146–150. [CrossRef]

65. Ali, E.A.; Qadir, H.; Kozaitis, S.P. Color night vision system for ground vehicle navigation. In Infrared
Technology and Applications XL; Andresen, B.F., Fulop, G.F., Hanson, C.M., Norton, P.R., Eds.; SPIE: Bellingham,
WA, USA, 2014; Volume 9070, pp. 1–5.

66. Jiang, M.; Jin, W.; Zhou, L.; Liu, G. Multiple reference images based on lookup-table color image fusion
algorithm. In International Symposium on Computers & Informatics (ISCI 2015); Atlantis Press: Amsterdam,
The Netherlands, 2015; pp. 1031–1038.

67. Sun, S.; Zhao, H. Natural color mapping for FLIR images. In 1st International Congress on Image and Signal
Processing CISP 2008; IEEE Press: Piscataway, NJ, USA, 2008; pp. 44–48.

68. Li, Z.; Jing, Z.; Yang, X. Color transfer based remote sensing image fusion using non-separable wavelet frame
transform. Pattern Recognit. Lett. 2005, 26, 2006–2014. [CrossRef]

69. Hogervorst, M.A.; Toet, A. Fast natural color mapping for night-time imagery. Inf. Fusion 2010, 11, 69–77.
[CrossRef]

70. Hogervorst, M.A.; Toet, A. Presenting Nighttime Imagery in Daytime Colours. In Proceedings of the IEEE
11th International Conference on Information Fusion, Cologne, Germany, 30 June–3 July 2008; pp. 706–713.

71. Hogervorst, M.A.; Toet, A. Method for applying daytime colors to nighttime imagery in realtime.
In Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2008; Dasarathy, B.V., Ed.;
The International Society for Optical Engineering: Bellingham, WA, USA, 2008; pp. 1–9.

72. Toet, A.; de Jong, M.J.; Hogervorst, M.A.; Hooge, I.T.C. Perceptual evaluation of color transformed
multispectral imagery. Opt. Eng. 2014, 53, 043101. [CrossRef]

http://www.dtic.mil/docs/citations/ADA400557
http://www.dtic.mil/docs/citations/ADA400557
http://dx.doi.org/10.1117/1.2709851
http://dx.doi.org/10.1016/j.infrared.2012.11.008
http://dx.doi.org/10.1016/j.infrared.2009.10.007
http://dx.doi.org/10.1016/j.patrec.2005.02.010
http://dx.doi.org/10.1016/j.inffus.2009.06.005
http://dx.doi.org/10.1117/1.OE.53.4.043101


J. Imaging 2017, 3, 36 25 of 25

73. Toet, A.; Hogervorst, M.A. TRICLOBS portable triband lowlight color observation system. In Multisensor,
Multisource Information Fusion: Architectures, Algorithms, and Applications 2009; Dasarathy, B.V., Ed.;
The International Society for Optical Engineering: Bellingham, WA, USA, 2009; pp. 1–11.

74. Toet, A.; Hogervorst, M.A.; Pinkus, A.R. The TRICLOBS Dynamic Multi-Band Image Data Set for the
development and evaluation of image fusion methods. PLoS ONE 2016, 11, e0165016. [CrossRef] [PubMed]

75. Pitié, F.; Kokaram, A.C.; Dahyot, R. Automated colour grading using colour distribution transfer. Comput. Vis.
Image Underst. 2007, 107, 123–137. [CrossRef]

76. Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal.
Mach. Intell. 1987, 5, 698–700. [CrossRef]

77. Gamer, M.; Lemon, J.; Fellows, I.; Sing, P. Package ‘irr’: Various Coefficients of Interrater Reliability and
Agreement (Version 0.84). 2015. Available online: http://CRAN.R-project.org/package=irr (accessed on 25
August 2017).

78. Yuan, Y.; Zhang, J.; Chang, B.; Han, Y. Objective quality evaluation of visible and infrared color fusion image.
Opt. Eng. 2011, 50, 1–11. [CrossRef]

79. Heckbert, P. Color image quantization for frame buffer display. Comput. Gr. 1982, 16, 297–307. [CrossRef]
80. Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment.

IEEE Trans. Image Process. 2011, 20, 2378–2386. [CrossRef] [PubMed]
81. Zheng, Y.; Dong, W.; Chen, G.; Blasch, E.P. The Objective Evaluation Index (OEI) for Evaluation of Night Vision

Colorization Techniques; Miao, Q., Ed.; New Advances in Image Fusion; InTech Open: Rijeka, Croatia, 2013;
pp. 79–102.

82. Zheng, Y.; Dong, W.; Blasch, E.P. Qualitative and quantitative comparisons of multispectral night vision
colorization techniques. Opt. Eng. 2012, 51, 087004. [CrossRef]

83. Ma, M.; Tian, H.; Hao, C. New method to quality evaluation for image fusion using gray relational analysis.
Opt. Eng. 2005, 44, 1–5.

84. Kovesi, P. Image features from phase congruency. Videre J. Comput. Vis. Res. 1999, 1, 2–26.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0165016
http://www.ncbi.nlm.nih.gov/pubmed/28036328
http://dx.doi.org/10.1016/j.cviu.2006.11.011
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://CRAN.R-project.org/package=irr
http://dx.doi.org/10.1117/1.3549928
http://dx.doi.org/10.1145/965145.801294
http://dx.doi.org/10.1109/TIP.2011.2109730
http://www.ncbi.nlm.nih.gov/pubmed/21292594
http://dx.doi.org/10.1117/1.OE.51.8.087004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Overview of Color Fusion Methods 
	Existing and New Color Fusion Methods 
	Existing Color Fusion Methods 
	Statistics Based Method 
	Sample Based Method 

	New Color Fusion Methods 
	Luminance-From-Fit 
	Salient-Hot-Targets 
	Rigid 3D-Fit 


	Qualitative Comparison of Color Fusion Methods 
	Quantitative Evaluation of Color Fusion Methods 
	Subjective Ranking Experiment 
	Methods 
	Results 

	Objective Quality Metrics 
	Methods 
	Results 


	Discussion and Conclusions 

