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Abstract: A depth estimation algorithm from plenoptic images is presented. There are two stages to
estimate the depth. First is the initial estimation base on the epipolar plane images (EPIs). Second is
the refinement of the estimations. At the initial estimation, adaptive window matching is used to
improve the robustness. The size of the matching window is based on the texture description of the
sample patch. Based on the texture entropy, a smaller window is used for a fine texture. A smooth
texture requires a larger window. With the adaptive window size, different reference patches based
on various depth are constructed. Then the depth estimation compares the similarity among those
patches to find the best matching patch. To improve the initial estimation, a refinement algorithm
based on the Markov Random Field (MRF) optimization is used. An energy function keeps the
data similar to the original estimation, and then the data are smoothed by minimizing the second
derivative. Depth values should satisfy consistency across multiple views.
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1. Introduction

Lytro, a light field camera, is a new generation photography tool. The concept of a light field camera
can be traced back to Adelson et al. in 1991 [1,2]. With a micro-lens array lying in between the main
lens and the sensor, this kind of camera can receive more information than the conventional camera
can. Recently, light field cameras, including Raytrix [3] and Lytro [4] become available for consumers.
One light field image can be decoded to a set of multiple view images with slight shifts. Therefore, the
main feature is the ability to refocus the photo, as shown in Figure 1, after capturing one single
shot. Light field cameras are believed to start a new era in the field of computational photography.

Figure 1. The refocused Lytro images. Each image is focused in different depth from close to far
(left to right).
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Despite the potential, applications using light fields have not become popular. One reason is
that accessibility of sources for research is relatively hard compared to traditional digital cameras.
Additionally, its high cost makes it not a good choice. And, the official software released by Lytro does
not allow the users to access the source images. All we can do with the official software is to view the
photo gallery. However, recently third-party toolboxes can decode the files. Although the quality of
decoded images from third-party toolboxes fall behind those from official software, it opens the door
for more experiments.

Depth estimation, which we focus on in this paper, is one of the important research studies in
light fields. We decide to use Lytro camera to capture source images because of the relatively friendly
accessibility. The source .lfp (light field picture) file is extracted to a set of multiple-view images.
For representing the light field data, we exploit the epipolar plane image (EPI) as shown in Figure 2.
The shift between views is small due to the characteristic of dense sampling. A scene point can project
onto different positions in different views. As a result, those projected positions create line segments
on the EPIs. The slope of the line segment has a relation to the depth value of the point. In other words,
if we can detect the slope of line segments, the depth value can be easily estimated.

Figure 2. The epipolar plane images. s and t denote the horizontal and vertical position within the
multiple view image sets. With fixed t and spatial position y (which is inferred by the red line), we can
get a slice representing the shift of a horizontal line from different views. We call this the horizontal
epipolar plane image (EPI). The green line infers the vertical EPI.

2. Background and Related Work

The plenoptic camera has a micro-lens array lying in front of the sensor [2,5,6]. The image captured
by the sensor can be broken up with the micro-lens array. Therefore, the sensor gathers light from
different sources and directions, which is so-called Light-field photography.

There are some benefits of light fields compared to images captured by traditional cameras.
First, users can refocus the picture after capturing. Second, a set of multiple-view images can be
synthesized from a light field image which was captured in one single snapshot. Those multiple-view
images, with different shifts in one snapshot, can construct the disparity in a nearly continuous space.
These views are called as epipolar plane images (EPIs) [7]. Each corresponding pixel in the scene can be
projected into a slope line in EPIs because of a dense sampling. The EPIs provide more information
and robustness for depth estimation of the scene.



J. Imaging 2017, 3, 17 3 of 15

There hasn’t been much published work on depth estimation from light fields. Bishop and
Favaro [8] first propose an analysis of aliasing in views captured by a plenoptic camera and a method
to reduce the aliasing via space-varying filtering in the captured light field. In their later publication [9],
they propose a method for full-resolution depth estimation by analyzing the correspondences in
the sub-image .

An approach based on epipolar plane images (EPIs) is most popular recently. As mentioned in the
previous section, the slope of line segments indicates disparity of the corresponding pixel. Therefore,
depths can be found more easily if we can detect the slope of the line segments. Wanner et al. [10–13]
propose an estimation by analyzing the local structure of the all-in-focus EPIs constructed by their novel
method using the structure tensor, which is known to yield robust and accurate results for orientation.
However, due to the local nature of the involved derivative filters, this method is able to recover
disparities between two pixels, which implies small baselines between the cameras. Thus the depth
analysis method severely restricts the possible camera setup parameters. Diebold and Goldluecke [14]
improve Wanners’ method by applying refocusing on EPIs to eliminate lines with slope beyond the
ability of tensor analyzing. Ng [6] demonstrates how to sharpen the EPIs to achieve refocusing.

Tao [15] proposed a similar approach to estimate depth from light fields. EPIs that have different
slope value, that is, refocused in various depths, estimate depth from defocus and correspondence
separately, and find the optimal solution by applying Markov Random Fields (MRF) optimization.
However, because of relying on the slope of EPIs and a simple algorithm for defocus and correspondence,
objects that are too far from the main lens focus plane will have an inaccurate estimation. Despite the
poor performance, their method is the first to estimate depth from Lytro light field images.

Another approach based on EPIs is proposed by Kim et al. [16]. Unlike others’ works, which
take images captured by light field cameras as the input, their method is designed to handle images
with high resolution and dense angular-spatial resolution that are taken by a digital single-lens reflex
camera. They claim to have the capability for parallel programming. They also propose a fine-to-coarse
approach to achieve optimization for estimated depth. However, the result somehow depends on the
quality of input images, that is, the correctness of estimation relies on how much information the input
images can provide. For inputs that have poor quality, for example Lytro light field images with noise
and blur, the performance of their method will be limited.

Since the product’s birth just a few years ago, light field cameras are still unpopular for consumers.
Though Raytrix [3] has the ability to capture images with high quality, its high price and hardware
requirement was unfriendly to consumers. Also, users have to connect Raytrix to a computer when
they want to take pictures, and this is inconvenient when taking outdoor natural scenes. Lytro [4], on
the other hand, is relatively easy to get because of the lower price. However, the data format for Lytro
images has not been made public officially. The only choice for the researcher to use Lytro images is to
decode the light field picture file (.lfp file) through a third-party toolbox. Moreover, these tools usually
require camera-dependent data to achieve image calibration because the layout of the micro-lens array
does not perfectly align due to manufacturing defects. We have tried some of these tools and hoped to
find the one that suits our work.

D.G. et al. [17] provide a toolbox written in Matlab for calibration. Acquired from an open-source
LFP picture decoder python-lfp-reader [18], the sensor’s raw data are composed of subimages lying
hexagonally because of the layout of Lytro’s micro-lens array. This tool converts hexagonally sampled
data to an orthogonal grid, and uses a 15-parameter camera model for calibration. It includes a 4D
intrinsic matrix and a distortion model. Therefore, it can relate pixels to rays in 3D space. Their tool
also provides a method to achieve color correction and image rectification. Though it outperforms in
color, the images synthesized by the tool have poor quality with low resolution.

Cho et al. [19] propose another method to achieve calibration and multiple-view images
reconstruction, which is easier to use and is able to obtain images with higher quality compared
to the work described above. The raw data from the camera sensor is decoded by Nirav Patel’s project
lfptools [20]. This work requires users to take a series of white images to detect the center and offset of
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each micro-lens as the preparation for calibration. They also analyze and evaluate several interpolation
techniques for pixel resampling, and show that direct interpolation in raw images for a hexagonal grid
produces better results than first making a low-resolution regular grid image. Finally, they propose
a dictionary learning based interpolation technique which demonstrates a higher quality image
reconstruction. The output of their system is already all-in-focus, that is, all the objects in the scene
are in the range of depth of field, which is a convenience for depth estimation. Though being weak
in color saturation, we decide to use images reconstructed by this work because of higher resolution
and quality.

3. Depth Estimation

Our method takes a set of 5 × 5 multiple-view images as the input and comprises three stages:
confidence measure, adaptive window matching and refinement. The light field images are smoothed by
an edge-aware filter as preprocessing and are constructed into a 4D function for representation.
Each pixel is then assigned a confidence value. The confidence not only decides window size for
matching but also is influential in the stage of refinement. Next, we estimate depth by adaptive window
matching. After all the pixels in the light field are assigned an estimated depth value, we apply
an energy minimization to eliminate outliers and achieve optimization as the final result.

There are several ways to represent light fields. One way is to consider it as a collection of pinhole
views from multiple viewpoints parallel to the image plane. In this work, we adopt a 4D function
to represent light field data, which is so-called two-plane parametrization. Letting s, t be the angular
parameter referring to different viewpoints and x, y be the spatial parameter of the image plane within
a single view, we define L(s, t, x, y) to represent intensity value of the ray passing through the view
point (s, t) and the image plane position (x, y). s represents the horizontal angular position and t
denotes the vertical one. If we fix a horizontal line with constant y∗ in the image plane and a constant
angular coordinate t∗, we will get a 2D slice that can show the shift of each pixel across each view. This
view is called epipolar plane image (EPI), which is a common data structure when it comes to image
analysis and 3D reconstruction.

A point in 3D space is projected to a line segment on the EPI slice. This is because of the
densely sampled baseline of the micro-lens array. The slope of the line segment is related to its depth.
As a result, we can estimate the depth of pixels according to slope m by the following equation at the
corresponding position:

m =
∆s
∆x

=
1
d
= −Z

f
(1)

where f is a constant value referring to the distance between the micro-lens plane and the focused
plane, and d is the displacement between two adjacent views. Thus, we can get the depth Z.

In this paper, we call EPI with fixed t∗ and y∗ the horizontal EPI (i.e., the EPI visualizes disparities
of the horizontal lines), and the one with fixed s∗ and x∗ the vertical EPI. Therefore, the slope of the line
segments can be estimated from vertical EPIs as well. For notation, we use Et∗y∗(s, x) to represent the
pixel at position (s, x) in horizontal EPI, and Es∗x∗(t, y) to represent that at position (t, y) in vertical EPI.

Before starting the estimation, we first introduce how we measure confidence at each pixel, that is,
whether the local structure at a certain position is confident enough to apply the estimation. The main
concept for our depth estimation is to detect the slope of the line segment. However, there may be
ambiguous regions due to a similar color. In this case, the slope we obtain may not be correct as shown
in Figure 3. A way to avoid this problem is to assign confidence to the pixel according to source images.
If it is in the region with high divergence, the depth estimated will have higher possibility to be correct,
and thus we assign higher confidence to it.
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Figure 3. In ambiguous regions, slope may be incorrectly estimated. The blue line indicates the right
slope, has higher possibility to be correctly estimated due to higher confidence. However, the slope of
the red line may be incorrectly estimated due to the homogeneous color.

In order to enhance robustness of our confidence measure, we must consider that there
may be some quality shortage such as noise in the input images. Therefore, we first apply an
edge-aware filter to smooth the input, hoping to reduce the effect from noise. Instead of applying edge
detection, the method we use for confidence measure is a simple difference measure inspired by [16].
Defining Cs(s, t, x, y) the confidence at position (x, y) from view point (s, t), the measure of it is:

Cs(s, t, x, y) = ∑
x′∈Nh(s,t,x,y)

‖L(s, t, x, y)− L(s, t, x′, y)‖

+ ∑
y′∈Nv(s,t,x,y)

‖L(s, t, x, y)− L(s, t, x, y′)‖
(2)

where Nh(s, t, x, y) is a 1D horizontal window centered at position (x, y) from view point (s, t) and
Nv(s, t, x, y) is the vertical one. In our work we choose the window size to be 9.

Source confidence also points out the difficulty in obtaining the right depth. In the main step of
depth computation, considering the robustness of estimation, we find optimal slope by matching 1D
windows with disparities corresponding to the slope among different views. The size of the window
is determined by its confidence. For pixels with higher confidence, it is possible that the slope of
a line segment can be detected correctly. In other words, the lower confidence a pixel has, the bigger
window size is needed for estimating depth. We define several intervals of confidence corresponding
to different sizes where the relationship looks like:

Psize =


5 if Cs ≥ 0.8
9 if 0.8 > Cs ≥ 0.5
17 if 0.5 > Cs ≥ 0.2
33 if 0.2 > Cs

(3)

Roughly, we divide into four intervals based on the confidence value with 0.2, 0.5 and 0.8.
Each range will nearly double its window size.

With this rule, we can save the computing time for pixels with high confidence and still be able to
obtain estimation that is dependable. Another meaning for the adaptive size is that if the confidence is
low, it is usually relatively distant from the boundaries and has homogeneous color in the 1D window.
On the other hands, sharp edges usually bring high confidence. So we have no need to worry that
details will be eliminated during matching.

In this part, we demonstrate the core algorithm for depth estimation. We first select a position
(x∗, y∗) from viewpoint (s∗, t∗) for estimation, and then measure the possibility with a series of
hypothetical depths, which correspond to the slope on EPIs, and hope to get the optimal one through
the method.

As mentioned previously, a selected position usually can correspond to two EPI slices: one
is horizontal EPI Et∗ ,y∗ and the other is vertical EPI Es∗ ,x∗ . The two EPI slices will both be used for
computing. As with the EPI slices, we have the horizontal window defined as Ph(s, x) and the vertical
one as Pv(t, y), centering at position (s, x) on Et∗ ,y∗ and (t, y) on Es∗ ,x∗ , where the size of the window is
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decided by source confidence. Let’s define the union of two patches sampled at a chosen position as
the reference patch. For a chosen position (s∗, t∗, x∗, y∗) and a hypothetical disparity d, a set of patches
R(d) can be sampled as:

R(d) =
{(

Ph(s′, x′), Pv(t′, y′)
)∣∣x′ = x∗ + (s′ − s∗)d;

y′ = y∗ + (t′ − t∗)d; s′ = t′ = 1, ..., n
} (4)

where n corresponds to the number of views in the light field. Figure 4 visualizes equation 4 more
precisely. The set R(d) is the union of patches sampled at a shifted position according to the disparity
from different view points. You can also interpret that we are trying to find the optimal shear value of
a parallelogram that covers the range with maximal color consistency.

Figure 4. The two parallelograms represent window matching with different window size in their
optimal shear value (i.e., hypothetical d). For convenience of visualizing, we only show the ones on the
horizontal EPI, but it can be applied on the vertical EPI as well.

Next we define how to measure the correctness of the set R with hypothetical disparity d. Our main
concept of estimation is that if the hypothetical depth is the closest to ground truth, the difference
between the reference patch and sampled patches should be the lowest. The score for set R with
disparity d can be obtained by summing up similarities of corresponding pixels from the reference
patch and sampled patches:

S(d) =
1∣∣R(d)∣∣ ∑

P∈R(d)
K(P, P∗) (5)

where P is actually the simplified representation of the union (Ph, Pv) , and P∗ is the union for the
reference patch. The similarity between the two unions is defined as:

K(P, P∗) = ∑
ri∈P,r∗ i∈P∗

k(ri − r∗ i) (6)

k(x) =

{
1− ‖ x

h
‖2 if ‖ x

h
‖ ≤ 1

0 otherwise
(7)

We apply a bell-shaped kernel to measure the similarity of intensity values between the two pixels,
which is the same as was used by [16]. We set the threshold to 20% of the maximum color difference.
The variable x was the normalized color difference. Thus, the bandwidth parameter h was set to 0.2 in
our experiment. The kernel can be replaced by other kinds of bell-shaped kernel, such as the Gaussian
kernel, but the kernel we chose takes less time to compute. For each selected position, we compute
scores for the whole range of admissible disparities. The disparity d with the highest score will be
assigned to the estimated depth at that position.

d∗ = arg max
d

S(d) (8)

Remember that in the ambiguous region, the estimation has a relatively lower possibility to be
correct. In other words, it may happen that scores for several hypothetical disparities are similar due to
the region of similar color being larger than the window size. Therefore, in addition to source confidence
Cs, we define another confidence to denote how good the estimation is. We call this the estimated
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confidence Ce. This confidence is obtained by dividing the highest score by the average score, where

Ce =
S(d∗)

S̄
. Considering the two kinds of confidence together becomes meaningful as it combines

two complementary measures. The comparison is shown in Figure 5. For example, in the noisy
region, source confidence may become high while estimated confidence remains unreliable. The two
confidence measurements will be used in the stage of refinement demonstrated in the following section.

(a) Original image. (b) Source confidence map. (c) Estidmated confidence map.

Figure 5. Comparison between source confidence and estimated confidence. In the map, red color
denotes higher confidence, and blue denotes lower confidence. In ambiguous regions, such as the floor
or the background, source confidence becomes high because of noise, but the estimated confidence
reduces the ambiguity.

4. Data Refinement

There may exist outliers which have survived the estimation process as shown in Figure 6.
To eliminate the influences of these outliers, we apply an energy minimization algorithm. The goal of
this step is to enhance consistency and smoothness for the region with similar colors, and meanwhile,
preserve the estimation which is judged reliable. With the help of multiple-view input data, we also
consider the consistency of the estimation at corresponding positions among multiple views.

Figure 6. Temporary result from depth computing.

We first explain notations and their meaning used for our energy function. For simplification, we
let v represent the viewpoint instead of (s, t), and i represent the position instead of (x, y). Therefore,
the depth at position i from viewpoint v is then defined as D(v, i). Our energy function can be
separated into several parts:

In order to preserve estimations that are judged reliable, we define a local cost function which
denotes how expensive it is to assign a depth value to the position i.

Edata = ∑
v

∑
i

C(v, i)
∣∣D(v, i)− Dest(v, i)

∣∣ (9)
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where Dest(v, i) denotes the depth value obtained from the previous stage, and C(v, i) is the product
of source confidence Cs and estimated confidence Ce.

This term is defined for enhancing smoothness of depth values. Similar to the common smoothness
energy term, the kernel is simply a second derivative kernel:

Esmooth = ∑
v

∑
i

∣∣∆D(v, i)
∣∣ (10)

Depth values should satisfy consistency across multiple views. If a depth value is assigned to
a particular position, the values on position belonging to the corresponding line segment should be
consistent. We define Wv,i(v′) representing the transferred position at view point v′ according to depth
value D(v, i). To minimize the difference of sampled values, the energy term is defined as:

Econsist = ∑
v

∑
i

∑
v′ !=v

{
R
(

L(v, i), L(v′, Wv,i(v′))
)

×
∣∣D(v, i

)
− D

(
v′, Wv,i(v′)

)∣∣} (11)

To avoid the occlusion case, the difference of the intensity cannot be over 20%. In the above
equation, R(x, y) is a binary controller that will be 1 if ‖x− y‖ < 0.2, otherwise it will be 0.

Now we have all the elements for energy measurement. Letting D be the union of multiple views
depth sets, the quality of D is evaluated as:

E(D) = λdataEdata + λsmoothEsmooth + λconsistEconsist (12)

where λdata, λsmooth and λconsist are parameters controlling weights of each term. In general, all weights
can be set equal to 1. To enhance the smoothing effect, λsmooth is set to 6 in our experiment. Minimizing
Equation (12) will give us D∗, which is our ideal result. There are several ways to achieve energy
minimization. We estimate the depth value from the neighbor that satisfies the Markov property.
Thus, the cost function can be solved with the MRF optimization method. For implementation, we follow
the framework introduced by Kappes et al. [21] which is a minimization method for Markov Random
Fields. They have demonstrated different implementations for the MRF problem and have a good
performance comparison among them. Also, they provide API with some optimization algorithms such
as graph cuts [22–24] and their method is available at the website [25].

5. Experiment Results and Discussion

Honauer et al. [26] provides a dataset and evaluation methodology for depth estimation on 4D
light fields. The data are diverse, including fine details, multiple planes, near and far objects. We have
tested our algorithm with the dataset. The results are shown in Figure 7. The metrics from different
datasets are shown in Table 1. Comparing our results with the ground truth, the results show that
part of the error happened at the boundary that always has significant error. This error happens with
incorrect window size.

The adaptive window involves the boundary features to help the depth estimation and also
includes the error. For a better estimate, we may need to decide the pixel belongs to the foreground or
the background. However, that is not easy.

Table 1. Metrics from different datasets.

Boxes Sideboard Dino Cotton

MSEx100 25.8 15.7 9.7 57.6
BadPixel (0.07%) 66.5 50.5 31.7 63.7
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(a) source (b) ground truth (c) ours (d) error

Figure 7. compare the result to the ground truth. Reproduced from Reference [26] (CC BY-NC-SA 4.0).

Datasets we use are taken by a first generation Lytro camera. As mentioned before, though users
can view the captured images through Lytro’s official software, things we can do with the data are
limited. Hence, we extract and decode the raw data from the sensor using the toolbox provided by
Cho et al. [19]. Each dataset consists of 5× 5 multiple view images with a resolution of 987× 987.
In fact, the toolbox can extract at most 9× 9 images from a sensor’s raw data. However, the further
from the central viewpoint an image is, the poorer quality it will have. As a result, we only choose
central 5× 5 images for the experiment. Though the inputs are poor in color saturation and noisy due
to hardware limitation, the quality is good enough to fit our framework. We prepare five datasets in
this paper, and all of them are indoor scenes with obvious depth displacement.
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Therefore, we compare our results with others’ for evaluation. We compare our work with
Tao et al. [15] and Kim et al. [16]. Results of these comparisons are shown in Figures 8–10. The method
from Kim et al. is designed for inputs with high spatial and angular resolution. Because the code for
the method is not provided, we implement it by ourselves. They claim that their algorithm works well
on data with lower resolution such as those provided by [13]. However, when applied to low-quality
inputs such as Lytro images, the method gets poor outputs. Tao’s method, on the other hand, is the first
to estimate depth from Lytro images. Their system also handles the sensor’s raw data decoding, but the
obtained resolution is limited to be about 320× 320.

Figure 8. Results from Tao’s method with their light field images and ours. The upper four images are
data provided by Tao [15], and the others are ours. The performance is somehow a little bit different,
but we didn’t make any change to their program.
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(a) source (b) ours (c) Kim’s (d) Tao’s

Figure 9. Result for our method, Kim’s and Tao’s.
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(a) source (b) ours (c) Tao’s

Figure 10. Results from our method and Tao’s using Tao’s data [15]. Our results preserve objects’ edges
and have less noise.

In the results from Tao’s method, boundaries are blurred, and it is hard to distinguish objects.
This result is based on their MRF propagation process, which will smooth the whole image to achieve
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smoothness. Kim’s method, on the other hand, is vulnerable to the noisy quality of Lytro pictures.
Another reason for the bad performance of Kim’s method may be the low number of views of the input
dataset, where insufficient information reduces correctness of the estimation. In ours results, object
contours are preserved and are consistently satisfactory. Though our method cannot obtain the correct
estimation in some ambiguous regions, Kim’s and Tao’s methods also have this kind of problem.

Note that results from Tao’s method seem fine for their data. However, when we run their program
with our input, the performance somehow isn’t as good as we expect. We suspect that the parameters
we used that are different from Tao’s may be one source of the difference in the performance of Tao’s
program between Tao’s input and our input.

Because our method relies on slope analysis to distinguish disparities, the scene used for the
input must have obvious depth displacement. Also, since we take the color difference as the measure
for estimation, it would be better if the difference between foreground and background is significant
enough. Otherwise, occlusion may not be detected in the stage of adaptive window matching.

Another limitation of our method is that the MRF optimization algorithm will over-propagate
the depth value in the concave region as shown in Figure 11. This phenomenon may happen after
applying the optimization algorithm. In cases such as outdoor scenes with fine details, thin objects
such as twigs may also be eliminated. Also, in some cases, our result shows an obvious depth gap
rather than a continuous change in depth. The reason for this is that the shift of the images is too
small (usually limited within [−2, 2] pixels) for our algorithm to detect plenty of labels. Obviously, the
current refinement process is not intelligent enough. In the result, we can see that the first stage is
more noisy, but the refinement stage loses many details. The depth seems very flat. That is because
of the smoothing term by the optimization algorithm. If the depth information was just used for
segmentation, that will be okay. Otherwise, if the regularization can be steered by some local measures,
maybe we can get a better result.

(a) source (b) temporary result (c) refined.

Figure 11. Over-propagation happens in concave regions.

Right now, we did not involve any optimization for performance. The computation time for
each scene is about twenty minutes. Both the first run and the refinement process need ten minutes.
The complexity is linear with the number of images, the size of the picture, the size of matching
windows and number of possible depth values.

6. Conclusions and Future Work

We present a method for depth estimation for Lytro images. Using third-party tools to decode the
source .lfp file into a set of multiple-view images, we first measure the confidence by analyzing the
structure of the origin pictures. We then apply adaptive window matching as the core of the depth
computation. The adjustable size of the matching window enhances robustness and avoids incorrect
estimation in the case of occlusion. For data refinement, we define an energy function to improve not
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only local smoothness but also global consistency. The data term of the energy function also considers
the source confidence and estimated confidence, which we define as a measure of the probability that
the estimate is correct. Energy minimization is achieved by following a framework of Markov Random
Field optimization. Our results outperform current methods for handling depth estimation for light
fields. That is because we first try to enhance the quality of source image sets by trying several tools
and choosing the one that has the best performance. Moreover, the algorithm is designed to enhance
robustness considering features of Lytro pictures. Though the computational cost is currently high, it
can be greatly reduced because the estimation framework is able to undergo parallel processing on
the GPU.
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