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Abstract: Precision agriculture is a farm management technology that involves sensing and then
responding to the observed variability in the field. Remote sensing is one of the tools of precision
agriculture. The emergence of small unmanned aerial vehicles (sUAV) have paved the way to
accessible remote sensing tools for farmers. This paper describes the development of an image
processing approach to compare two popular off-the-shelf sUAVs: 3DR Iris+ and DJI Phantom 2.
Both units are equipped with a camera gimbal attached with a GoPro camera. The comparison of
the two sUAV involves a hovering test and a rectilinear motion test. In the hovering test, the sUAV
was allowed to hover over a known object and images were taken every quarter of a second for
two minutes. For the image processing evaluation, the position of the object in the images was
measured and this was used to assess the stability of the sUAV while hovering. In the rectilinear test,
the sUAV was allowed to follow a straight path and images of a lined track were acquired. The lines
on the images were then measured on how accurate the sUAV followed the path. The hovering
test results show that the 3DR Iris+ had a maximum position deviation of 0.64 m (0.126 m root
mean square RMS displacement) while the DJI Phantom 2 had a maximum deviation of 0.79 m
(0.150 m RMS displacement). In the rectilinear motion test, the maximum displacement for the 3DR
Iris+ and the DJI phantom 2 were 0.85 m (0.134 m RMS displacement) and 0.73 m (0.372 m RMS
displacement). These results demonstrated that the two sUAVs performed well in both the hovering
test and the rectilinear motion test and thus demonstrated that both sUAVs can be used for civilian
applications such as agricultural monitoring. The results also showed that the developed image
processing approach can be used to evaluate performance of a sUAV and has the potential to be used
as another feedback control parameter for autonomous navigation.
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1. Introduction

In the past decade, there has been an increased use of small unmanned aerial vehicles (sUAV)
in the United States. The advent of sUAV was brought about by the advancement of miniaturized
sensor systems, microprocessors, control systems, power supply technologies, and global positioning
systems (GPS). With the recent release of the operational rules for commercial use of sUAV by the
Federal Aviation Administration [1], this will open the doors to integrating sUAV into the national
airspace. Applications of sUAV in the civilian area include real estate photography, fire scouting,
payload delivery, and agriculture.

Agriculture is one of the areas that will be largely impacted with the use of sUAV. For a farmer,
knowing the health and current state of the year’s crop is essential for effective crop management.
Precision Agriculture, which is a spatial-based technology, is used by farmers to monitor and manage
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their crop production [2,3]. Precision agriculture can not only improve crop productivity, but it also
provides the means to an efficient use of resources (e.g., water, fertilizer, and pesticides).

One of the tools of Precision Agriculture is remote sensing. Remote sensing is an approach
in which information is obtained without requiring a person to be physically present to collect the
data. Combined with Geographic Information Systems (GIS) and Global Positioning Systems (GPS),
remote sensing provides farmers the technologies needed to maximize the output of their crops [4–6].
Satellite imaging has been used to remotely monitor crops [7]. However, the prohibitive cost, low image
resolution, and low sampling frequency are some of the disadvantages of satellite imaging. Manned
aircraft has also been tried in order to implement remote sensing in agriculture [8]. Similar to satellite
imaging, the cost and the frequency of sampling are the inhibiting factors. Furthermore, a comparative
study between using sUAV and manned aircraft to image citrus tree conditions showed that sUAV
produced higher spatial resolution images [9]. One of the most useful yet affordable remote sensing
systems can now be obtained with the purchase of a small quadcopter or drone [10,11] which can
then be flown over a farmer’s desired agriculture fields. The drones can then take images of the
farmer’s crop with a variety of camera filters to provide the farmer with multiple spectrums of imaging.
Not only is a sUAV useful in providing current aerial images of their entire crop, but it also allows for
the opportunity for image processing and analysis which can give even more information about the
health of their crops as well as identifying areas of the crop that require specific forms of attention.
A study by Bulanon et al. [12] to evaluate different irrigation systems of an apple orchard used a
combination of sUAV and image processing. The small drones can be easily flown and maintained
with little training making them a great option for farmers looking to further their farming by merging
agriculture with the technology of remote sensing.

With the price of remote sensing sUAVs becoming much more affordable and thus a realistic
application for today’s farmers, the challenge is selecting the sUAV that will be suitable for the specific
application. Chao et al. [13] conducted a survey on the different off-the-shelf autopilot packages for
small unmanned aerial vehicles available in the market. The comparative review looked at different
autopilot systems and its sensor packages which includes GPS receiver and inertial sensors to estimate
3-D position and attitude information. They also suggested possible sensor configurations, such as
infrared sensors and vision sensors, to improve basic autonomous navigation tasks. An example
of this is a vision-guided flight stability and autonomy system that was developed to control micro
air vehicles [14]. A forward-looking vision-based horizon detection algorithm was used to control
a fixed-wing unmanned aerial vehicle and the system appeared to produce more stable flights than
those remotely controlled by a human pilot. The research work by Carnie et al. [15] investigated the
feasibility of using computer vision to provide a level of situational awareness suitable for sense and
avoid capability of a UAV. Two morphological filtering approaches were compared for target detection
using a series of image streams featuring real collision-course aircraft against a variety of daytime
backgrounds. These studies demonstrate the potential of using vision systems and image processing to
add another level of control hierarchy to UAV systems. In this paper, the vision system of two popular
off-the-shelf sUAVs were used to compare their performances in multiple aerial competence tests.
A customized image processing algorithm was developed to analyze the acquired images and evaluate
the performance of the sUAVs. The results of this study would be helpful for choosing a particular
off-the-shelf sUAV for a certain application such as agricultural monitoring. The objectives of this
paper are:

1. To compare the flight performance of two off-the-shelf sUAVs: 3DR Iris+ and DJI Phantom.
2. To develop image processing algorithms to evaluate the performance of the two sUAVs.
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2. Materials and Methods

2.1. Small Unmanned Aerial Vehicles

Unmanned aerial vehicles (UAV) can be classified according to size. The classification includes
micro UAV, small UAV, medium UAV, and large UAV [16]. The micro UAVs are extremely small in
size and applies to sizes of about an insect to 30–50 cm long. The small UAV (sUAV) are UAVs with
dimension greater than 50 cm and less than 2 m. The Federal Aviation Agency defines sUAV as an
aircraft that weighs more than 0.25 kg but less than 25 kg [17]. The medium UAVs have dimension
ranging from 5 to 10 m and can carry payloads of up to 200 kg, while large UAVs applies to the
UAVs used mainly for combat operations by the military. In this paper the focus is on sUAV and its
application to agriculture. While most people are able to build their own sUAV using do-it-yourself kits,
off-the-shelf ready-to-fly sUAV are also available. The advantages of the off-the-shelf sUAV are that
they are ready to fly and there is not much tuning involved as compared with the DIY kits. In addition,
these off-the-shelf sUAV come with camera gimbals that could then be easily used for agricultural
surveying. Two of the most popular sUAV in the market were used in this study: (1) 3DR Iris+ [18] and
(2) DJI Phantom 2 [19]. Some specifications on the two drones are provided in Table 1. An image of the
3DR Iris+ is shown in Figure 1 and is noticeably wider than the DJI Phantom 2 which is pictured in
Figure 2. The greater width of the Iris+ makes it so that the distance between the front and back props
is less than the distance from side to side. In contrast, the DJI Phantom 2 provides prop locations that
are symmetrically set in a square around the center of the drone. Both of the drones use functionally
similar gimbals to operate a Go-Pro camera for in flight imaging.

Table 1. Iris+ and Phantom 2 Specifications.

Features IRIS+ Phantom 2

Motors 4 4
Max Payload 400 g 300 g
Flight Time 16–22 min 14–25 min

Max Flight Speed 22.7 m/s 15 m/s
Motor to Motor Dimensions 550 mm 350 mm

Flight Controller Pixhawk NASA-MV2
Software (Ground Station) Mission Planner DJI Ground Station

Flight Modes Manual Manual
Hover Hover
Auto Auto

Battery 5100 mAh 5200 mAh
Gimbal Tarot Go-Pro Gimbal DJI Go-Pro Gimbal
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2.2. Image Acquisition for Stability Evaluation

The image acquisition system used for both sUAV was a GoPro Hero 3 camera, which was
attached to the sUAV using a customized camera gimbal. The GoPro Hero 3 can shoot both videos and
pictures. In this paper, the camera was used to acquire images. The camera was set to capture images
with 11 megapixel resolution and the white balance was set to 5500 K.J. Imaging 2017, 3, 4  4 of 14 
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Figure 2. sUAV camera frame and world frame relationship.

To acquire the images for stability evaluation, the focal plane of the camera was set parallel to
the ground and this was accomplished with the camera gimbal (Figure 2). The field of view in the
real world coordinates with planar dimensions (xworld, yworld) was mapped to the camera’s discrete
sensor elements (xcamera, ycamera). Ground control points, which include a PVC square and lined tracks,
were used to calculate the spatial resolution (∆xworld, ∆yworld). The spatial resolution was determined
by the number of pixels in the sensor array and the field of view of the camera [20].

∆xworld =
xworld
xcamera

∆yworld =
yworld
ycamera

Since the camera was set parallel to the ground, the relationship between the two-dimensional
image and the three-dimensional scene [21,22] can be expressed using a simple perspective
transformation expressed by the following equation:

[ xcamera

ycamera

]
=


fcamera

zworld
0

0
fcamera

zworld

[ xworld
yworld

]

where fcamera is the focal length of the camera.

2.3. Performance Evaluation Tests

The application of sUAV for civilian applications such as agricultural surveying and real estate
photography involves taking a single picture at a certain altitude or taking multiple pictures following
a waypoint path generated by the user. Based on these applications, two performance evaluation
tests were conducted to compare the two off-the-shelf sUAVs. These tests were the hovering test and



J. Imaging 2017, 3, 4 5 of 14

rectilinear motion test. In both of these tests, a GoPro camera is attached to the sUAV camera gimbal
and the camera takes images. The images are then used to evaluate the flight performance of the sUAV
using image processing and analysis. Xiang and Tian evaluated the performance of an autonomous
helicopter by hovering using onboard sensors [23].

2.3.1. Hovering Test

In the hovering test, the sUAV was flown over a 2-m square PVC pipe at three different altitudes:
5, 15 and 25 m. At each altitude, the sUAV was allowed to hover for two minutes and images were taken
every 0.5 s. The pixel resolution for each altitude are the following: 116 pixels/m (5 m), 71 pixels/m
(15 m), and 51 pixels/m (25 m). The two sUAV were tested on the same day with a wind speed of
2 miles per hour (ESE). The time-lapse images of the PVC square were used to measure stability of the
sUAV while hovering. Figure 3 shows one of the hovering tests for the DJI Phantom.
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2.3.2. Rectilinear Motion Test

In the rectilinear motion test, the sUAV was programmed to fly a straight path over the running
track at Northwest Nazarene University (NNU). The waypoint path of the sUAV was based on the
straight line markings of the running track, which constrains the straight line motion of the sUAV.
The wind condition during this test was 4 miles per hour (ESE). Similar to the hovering test, the camera
was also programmed to acquire images as it moved over the track every 0.5 s. The acquired images
were then used to measure the stability in straight line motion. Figure 4 shows one of the tests for the
3DR Iris+.



J. Imaging 2017, 3, 4 6 of 14

J. Imaging 2017, 3, 4  5 of 14 

 

(5 m), 71 pixels/m (15 m), and 51 pixels/m (25 m). The two sUAV were tested on the same day with a 
wind speed of 2 miles per hour (ESE). The time-lapse images of the PVC square were used to measure 
stability of the sUAV while hovering. Figure 3 shows one of the hovering tests for the DJI Phantom. 

 
Figure 3. Hovering test for the DJI Phantom. 

2.3.2. Rectilinear Motion Test 

In the rectilinear motion test, the sUAV was programmed to fly a straight path over the running 
track at Northwest Nazarene University (NNU). The waypoint path of the sUAV was based on the 
straight line markings of the running track, which constrains the straight line motion of the sUAV. 
The wind condition during this test was 4 miles per hour (ESE). Similar to the hovering test, the 
camera was also programmed to acquire images as it moved over the track every 0.5 s. The acquired 
images were then used to measure the stability in straight line motion. Figure 4 shows one of the tests 
for the 3DR Iris+. 

 
Figure 4. Rectilinear motion test for the 3DR Iris+. Figure 4. Rectilinear motion test for the 3DR Iris+.

2.4. Image Processing for Performance Evaluation

2.4.1. Hovering Test

To evaluate the hovering test using image processing [24], the center of the area of the PVC square
inside the image was used as the stability parameter. The stability was measured based on the change
of the center of the area. The image processing was based on position tracking of the center of the PVC
square. Figure 5 demonstrates this concept. The solid black line is the segmented PVC square from the
first acquired image and this was used as the set point. The gray lines are the segmented PVC square
from the subsequent images. The position of the center of the area for each subsequent image were
then compared with the set point image, and this was used to evaluate the stability in the hovering
test. The position displacement from the set point image was calculated for each image.
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Figure 5. Concept of the hovering test evaluation using image processing.

2.4.2. Rectilinear Motion Test

Figure 6 shows the concept of the rectilinear motion test evaluation. The black sUAV is the
start position and the square enclosing the sUAV represents the field of view (FOV) of the camera.
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As the sUAV follows the programmed straight path, the actual position of the sUAV is different from
the directed path and this is shown by the gray sUAVs with their respective FOVs. The features in
the running track were then used to measure the deviation from the programmed straight path by
comparing the line positions from the image acquired from the start position. Similar to the hovering
test, the position displacement of the line was calculated for each image.J. Imaging 2017, 3, 4  7 of 14 
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3. Results and Discussion

3.1. Hovering Test

Figure 7 shows the original image of the PVC square and the segmented image. The high contrast
between the PVC and the grass facilitated the segmentation of the PVC from the background and
a simple thresholding operation was implemented. After thresholding, the object features such as
centroid position and box length were calculated. This image and its features were used as the set
point image and the position of the PVC square from the subsequent image was compared to this
image and the position displacement calculated.
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Figure 8 shows the comparison between the set point image and a subsequent image. The overlaid
images show that the position of the PVC square changed, which means that the sUAV is moving
even though it is in hover mode. The overlaid images demonstrated that a simple image processing
approach, such as image subtraction, could be used to evaluate the stability of the sUAV in hover mode.J. Imaging 2017, 3, 4  8 of 14 
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Figure 9 shows the position displacement of the 3DR Iris+ from its starting position while it is
in hover mode at the three different altitudes. The position displacement is the difference between
the centers of the PVC square from the set point image and the subsequent images for both the x
and y axes. The hovering results of the 3DR Iris+ showed that the maximum position displacement
was 0.64 m while hovering at the lowest height of 5 m and the maximum position displacement
was 0.34 m while hovering at 25 m. The lowest altitude had a mean position deviation of 0.29 m
(RMS displacement of 0.126 m) and the highest altitude had a mean position deviation of 0.14 m
(RMS displacement of 0.052 m). A similar trend can be observed from the hovering results of the DJI
Phantom (Figure 10), which showed a maximum displacement of 0.79 m while hovering at 5 m and
a maximum displacement of 0.34 m at a hovering height of 25 m. The mean position displacement
values for 5 and 25 m were 0.36 m (RMS displacement of 0.15 m) and 0.11 m (RMS displacement
of 0.09 m), respectively. In both sUAVs, the lower altitude showed the highest position deviation.
It is noted that as the altitude increased, the pixel resolution decreased which could result in higher
uncertainty and in the deviation variability as the height was increased. Although both sUAVs were in
hover mode, it was expected that they deviate from their set position. The position displacement is
brought about by a number of factors. The first is that the GPS sensor found in most of the off-the-shelf
sUAVs have hover accuracies in the ±2 m range. This is proven by the deviation from the hover
images. The second factor is the disturbance caused by wind. The third is the feedback control system
that holds the position of the sUAV. The Proportional Integral Derivative (PID) controller is the most
commonly used for off-the-shelf sUAVs. The gains for the PID controller affect the response of the
sUAV to disturbance. The results of this hovering test will be very useful when performing image
mosaicking, which is a process of stitching images to form an image with a much larger field of
view. Based on these results, when performing image mosaicking, the image altitude should be taken
into account when configuring the image overlaps in the mission planning. As mentioned by Xiang
and Tian [23], as the sUAV continuously vary around the hover point, it affects the coverage of a
single image and also impacts the required overlap amount of the images during the flight. It was
recommended to investigate such variations to determine the effects on the overlaps. Hunt et al. [25]
described the different overlaps used at varying heights for an unmanned aircraft monitoring winter
wheat fields.
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3.2. Rectilinear Motion Test

Figure 11 shows an example of the image processing for evaluating the rectilinear motion test.
The first step is to segment the feature that will be used for evaluation. In this case, the feature used
was the green bleacher. A color-based segmentation method was used to segment the green bleacher
because of the high color contrast as compared with the other parts of the image. After segmentation,
a size filter was passed to remove the salt and pepper noise. Following the filtering was an operation
to fill the holes and to extract the large object in the image which was the bleacher. The position of the
bleacher was then used to measure the deviation of the sUAV from the start position.
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running track; (b) Segmented image; (c) Filling hole operation; (d) Extraction of line.

Figure 12 shows the path of the sUAV calculated using image processing for both sUAV. For the
time that the sUAVs were tested, the maximum position deviation from the center line is less than
1 m. It can be noted that both sUAVs deviated from the center line and moved with a sinusoidal
characteristic, which is typical for a position control system trying to correct itself. The 3DR Iris+ had
a maximum position displacement of 0.85 m (RMS displacement of 0.314 m) while the DJI Phantom
2 had a maximum displacement of 0.73 m (RMS displacement of 0.372 m). Similar to the hover test,
this deviation is attributed to the GPS receiver’s hover accuracy and the PID gains for the controller.
The segmentation of the image features also affected the calculation of the position deviation. The line
features on the ground were acquired at different positions as the sUAV was moving forward, thus
affecting the segmentation of the line features. As the images were acquired every 0.5 s, the overall
image intensity would vary for every image and thus affected the segmentation performance. It is
noted that the values of the mean position deviation for the two sUAVs were within the reported
GPS receiver’s accuracy. These results show the current state of-the-art of the control system of the
off-the-shelf sUAVs and this demonstrates their capabilities in surveying tasks for civilian applications.
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Figure 12. Estimated path of the sUAVs for the rectilinear motion test using image processing.

Although the image processing algorithm developed in this study was developed to evaluate and
compare the basic performance of two popular off-the-shelf sUAVs, this image processing algorithm
can be extended to controlling the sUAV similar to the “sense and avoid” algorithm developed by
Carnie et al. [15]. In addition to the other sensors in the sUAV, a vision sensor can be utilized to
estimate the sUAV attitude combined with other inertial measurements and GPS. In this case, features
of the captured image will be used to estimate the relative position of the image and use it as feedback
information to regulate its position such as hovering or moving in a straight line motion (Figure 13).
The future direction of this study will be to extend the developed image processing algorithm and use
it as an additional sensor for the sUAV.
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4. Conclusions

Two of the popular sUAVs in the market: 3DR Iris+ and DJI Phantom 2 were compared and
evaluated using image processing. The comparison included the hovering test and the rectilinear
motion test. For the hovering test, the sUAV took images of an object and the position displacement of
the object in the images were used to evaluate the stability of the sUAV. The rectilinear motion test
evaluated the performance of the sUAVs as it followed a straight line path. Image processing algorithms
were developed to evaluate both tests. Results showed that for the hovering test, the 3DR Iris+ had
a maximum position deviation of 0.64 m (RMS displacement of 0.126 m) while the DJI Phantom 2
had a maximum deviation of 0.79 m (RMS displacement of 0.15 m). In the rectilinear motion test,
the maximum displacement for the 3DR Iris+ and the DJI phantom 2 were 0.85 m (RMS displacement
of 0.314 m) and 0.73 m (RMS displacement of 0.372 m), respectively. These results show that both
sUAVs are capable for surveying applications such as agricultural field monitoring.
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The following abbreviations are used in this manuscript:

DIY Do it yourself
GIS Geographical Information System
GPS Global Positioning System
NGB Near-infrared, Green, Blue
NNU Northwest Nazarene University
PVC Polyvinyl Chloride
RMS Root Mean Square
RGB Red, Green, Blue
sUAV Small Unmanned Aerial Vehicle
UAV Unmanned Aerial Vehicle
VI Vegetation Index
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