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Abstract: Three-dimensional (3D) reconstruction of a tree canopy is an important step in order to
measure canopy geometry, such as height, width, volume, and leaf cover area. In this research,
binocular stereo vision was used to recover the 3D information of the canopy. Multiple images
were taken from different views around the target. The Structure-from-motion (SfM) method was
employed to recover the camera calibration matrix for each image, and the corresponding 3D
coordinates of the feature points were calculated and used to recover the camera calibration matrix.
Through this method, a sparse projective reconstruction of the target was realized. Subsequently,
a ball pivoting algorithm was used to do surface modeling to realize dense reconstruction. Finally,
this dense reconstruction was transformed to metric reconstruction through ground truth points
which were obtained from camera calibration of binocular stereo cameras. Four experiments were
completed, one for a known geometric box, and the other three were: a croton plant with big leaves
and salient features, a jalapeno pepper plant with median leaves, and a lemon tree with small leaves.
A whole-view reconstruction of each target was realized. The comparison of the reconstructed box’s
size with the real box’s size shows that the 3D reconstruction is in metric reconstruction.

Keywords: 3D images; multiple view reconstruction; metric reconstruction; plant reconstruction;
machine vision; stereo vision

1. Introduction

Three-dimensional (3D) reconstruction of a plant/tree canopy can not only be used to measure
the height, width, volume, area, and biomass of the target, but also can be used to visualize the object
in virtual 3D space. 3D reconstruction is also called 3D digitizing or 3D modeling. Plant/tree 3D
reconstruction could be cataloged into two types: (1) depth-based 3D modeling; and (2) image-based
3D modeling. Depth-based 3D modeling involves using sensors, such as, ultrasonic sensors, lasers,
Time-of-Flight (ToF) cameras, and Microsoft red, green, and blue depth (RGB-D) cameras.

Using ultrasonic sensors, Sinoquet et al. [1] created a 3D model of corn plant profiles and
canopy structure. The 3D results were used to calculate the leaf area and its distribution in the plant.
Tumbo et al. [2] used ultrasonics in the field to measure citrus canopy volume. Twenty ultrasonic
transducers were arranged on vertical boards (10 sensors per side). The ultrasonic sensors were
installed behind a tractor, which was assumed to travel at an approximate speed of 0.5 km/h. A formula
was provided to calculate the volume. To study the accuracy of this calculation, Zaman and Salyani [3]
conducted research on the effect of ground speed and foliage density on canopy volume measurement.
The experimental results showed that there was a 17.37% to 28.71% difference between the estimated
and manually measured volumes.
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Also using laser sensors, Tumbo et al. [2] described how to measure citrus canopy volume.
Comparisons were made between the estimated volume and manually measured volume. The results
showed high correlation. Wei and Salyani [4] employed a laser scanner and developed a laser scanning
system, data acquisition system, and corresponding algorithm to calculate tree height, width, and
canopy volume. To evaluate the accuracy of their system, a rectangular box was used as a target.
Five repeated experiments were conducted to measure the box’s height, length, and volume. However,
no direct comparison between estimated volume and manually measured volume of citrus trees was
made. Wei and Salyani [5] extended the same laser scanning system to calculate foliage density. They
defined foliage density as the ratio of foliage volume to tree canopy volume, where foliage volume was
defined as the space contained within the laser incident points and the tree row plane, while canopy
volume was defined as the space enclosed between outer canopy boundary and the tree row plane.
Lee and Ehsani [6] developed a laser scanner-based system to measure citrus geometric characteristics.
After the experimental trees were trimmed to an ellipsoid shape, whose volumes were easy to manually
measure, the surface area and volume were estimated by using a laser scanner. Rosell et al. [7] reported
the use of a 2D light detection and ranging (LIDAR) scanner to obtain the 3D structures of plants.
Sanz-Cortiella et al. [8] assumed that there was a linear relationship between the tree leaf area and the
number of impacts of laser beam on the target. The point clouds generated by the laser scanner were
used to calculate the total leaf area. Both indoor and outdoor experiments were conducted to validate
this assumption. Zhu et al. [9] reconstructed the shape of a tree crown from scanned data-based
on alpha shape modeling. A boundary mesh model was extracted from the boundary point cloud.
This method resulted in a rough shape reconstruction of a big (20-meter high) tree.

Studying the application of a ToF camera, Cui et al. [10] described a 3D reconstruction method
initiated by scanning the object using the ToF camera, and the reconstruction was realized through
the combination of 3D super-resolution and a probabilistic multiple scan alignment algorithm. In 3D
reconstruction, a ToF camera was usually used in combination with a red, green, and blue (RGB) camera.
The ToF camera provided depth information, and the RGB camera would give color information.
Shim et al. [11] presented a method to calibrate a multiple view acquisition system composed of ToF
cameras and RGB color cameras. This system has the ability to calibrate multi-modal sensors in real
time. Song et al. [12] combined a ToF image with images taken from stereo cameras to estimate a
depth map for plant phenotyping. The experiments were conducted in a glasshouse using green
pepper plants as targets. The canopy characteristics such as stem length, leaf area, and fruit size were
estimated. This estimation was a challenging task since occlusion was occuring. The depth information
from the ToF image was used to assist the determination of the disparity between left and right images.
A global optimization method, using graph cuts developed by Boykov and Kolmogorov [13], was
also used to find the disparity. The result using the graph cuts (GC) method was compared with
the one resulting from combing graph cuts and ToF depth information. A quality evaluation was
conducted, and GC + ToF gave the highest score. A smooth surface reconstruction of a pepper leaf was
obtained using this method. Adhikari and Karkee [14] developed a 3D vision system to automatically
prune apple trees. The vision system was composed of a ToF 3D camera and a RGB color camera.
Experimental results showed that this system had about 90% accuracy in identifying pruning points.

The RGB-D camera is a Microsoft [15] product called Kinect that is designed for Xbox360. Kinect
is composed of a RGB camera, a depth camera, and an infrared laser projector. Kinect was mostly
used indoors for video game and view reconstruction. Izadi et al. [16] and Newcombe et al. [17]
used a moving Kinect to reconstruct a dense indoor view. Kinect Fusion was employed to realize the
reconstruction in real time because there was a special requirement on their hardware, specifically
the GPU, to use it. Chene et al. [18] applied Kinect on 3D phenotyping of plants. An algorithm was
developed to segment the depth image from the top view of the plant. The 3D view of the plant was
then reconstructed from the segmented depth image. Azzari et al. [19] used Kinect to characterize
vegetation structure. The measurements calculated from their depth image matched well with the
results of a plant size measured manually. Different experiments were conducted in the lab, and
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in an outdoor field under different light conditions—such as early afternoon, late afternoon, and
night. Experimental results showed that the Kinect had a limitation under direct sunlight. Wang and
Zhang [20] used two Kinect devices to make a 3D reconstruction of a dormant cherry tree that was
moved into a laboratory environment. During the experiment, some parts of the branches were missed
due to occlusion and a long distance between camera and tree. The reconstructed results could be used
for automatic pruning.

Image-based 3D modeling involved reconstructing the 3D properties from 2D images by using
single camera or stereo cameras. Zhang et al. [21] used stereo vision to reconstruct a 3D corn model.
The boundaries of the corn leaves were extracted and matched. The 3D leaves were modeled using
a space intersection algorithm from 2D boundaries. This was a two-image reconstruction. Song [22]
used stereo vision to model crops in horticulture. The cameras were installed on the top of the crops,
and a top view of the crop was reconstructed. Han and Burks [23] did work on 3D reconstruction of a
citrus canopy. Multiple images were used, and consecutive images were stitched together through
image mosaic techniques. The canopy was reconstructed from the stitched image. The results did not
realize real-size reconstruction.

The estimation of camera matrices is the first step in 3D reconstruction. The method of
self-calibration described by Pollefeys et al. [24,25] is usually used. Fitzgibbon and Zisserman [26]
described a method to automatically recover camera matrices and 3D scene points from a sequence
of images. These images were sequentially acquired through an uncalibrated camera, and image
triplets were used to estimate camera matrices and 3D points. Then the consecutive image triplets were
formed into a sequence through one-view overlapping or two-view overlapping. Snavely et al. [27]
developed a novel method to recover camera matrices and 3D points from unordered images. All
these technologies were known as Structure from Motion (5fM). The sparse feature points were used to
match the images. The most often used features were called Scale Invariant Feature Transform (SIFT)
as described by Lowe [28].

Quan et al. [29] did research on plant modeling based on multiple images. SfM was used to
estimate camera motion from multiple images. Here, instead of using sparse feature points, quasi-dense
feature points as described by Lhuillier and Quan [30] were used to estimate camera matrices and 3D
points of the plant. The leaves of the plant were modeled by segmenting the 2D images and computing
the depths using the computed 3D points, and the branches were drawn through an interactive
procedure. This modeling method was suitable for a plant with distinguishable leaves. To model a tree,
which has small leaves, Tan et al. [31] did research on image-based 3D reconstruction. StM was also
employed to recover camera matrices and 3D quasi-dense points. To make a full 3D reconstruction of
the tree, the visible branches were first reconstructed, followed by the occluded branches. The occluded
branches were reconstructed through an unconstrained growth and constrained growth method.
Subsequently, the leaves were added to the branches. Some of the leaves were from segmented images,
while others were derived from the synthesizing methodology. Teng et al. [32] used machine vision to
recover the sparse and unoccluded leaves in three dimensions. The method used was similar to the
work of Quan et al. [29]. The results of the 3D reconstruction were used to classify the leaves and to
identify the plant’s type.

Furukawa and Ponce [33] provided a patch-based multiple view stereo (PMVS) algorithm to
produce dense points to model the target. Small rectangular patches, called surfel, were used as feature
points. The cameras’ matrices were pre-calibrated using the method provided by Snavely et al. [27].
Features in each image were detected, then matched across multiple images. An expansion procedure,
similar to the method provided by Lhuillier and Quan [30], was used to produce a denser set of patches.

Santos and Oliveira [34] applied the PMVS method to agricultural crops, such as basil and
ixora. Plants with big and unoccluded leaves were well reconstructed. The reported processing time
for 143 basil images was approximately 110 min, and almost 40 min for 77 ixora images. The image
numbers will increase with the plant’s size, consequently the processing time required will also
increase with the increased number of images. Most of the processing was spent on feature detection
and matching. The matching procedure was conducted through serial computation; however, if it
could be conducted in parallel computation, the processing time would be significantly reduced.
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Currently, a Graphics processing unit (GPU)-based SIFT, which is known as SiftGPU described by
Wau [35], is available to do key points detection and matching via parallel computing. The bundler
package described by Snavely [36] and the PMVS package developed by Furukawa and Ponce [33]
were combined into a single package called VisualSFM by Wu [37], which involved using parallel
computing technology. This would significantly decrease the running time.

The objectives of our study were to:

e Provide a new method to calibrate camera calibration matrix in metric level.

e  Apply the fast software ‘VisualSFM’ on complicate objects, e.g., plant/tree, to generate a full-view
3D reconstruction.

e  Generate the metric 3D reconstruction from projective reconstruction and achieve real-size 3D
reconstruction for complicate agricultural plant scenes.

2. Materials and Methods

2.1. Hardware

In this paper, two Microsoft LifeCam Studio web high definition (HD) cameras (1080 p) were
assembled inside a wooden box, and mounted approximately in parallel, with the baseline at 30 mm,
as shown in Figure 1. To acquire images, they were connected to a Lenovo IdeaPad Y500 laptop
with a NVIDIA GeForce GT650M GPU, which can be used in parallel computation to accelerate the
computing time in feature points detection and matching.

(A) (B)

Figure 1. Stereo cameras which are used to acquire images: (A) whole view; (B) inside view.

2.2. Stereo Camera Calibration

=
A 3D point (X) and its projection (?) in 2D image is related through camera calibration matrix

—
P. The relationship is expressed as sx = PX, where ¥ = (x,y, 1)T is in homogenous form in 2D,

}—5 =(X,Y,Z, 1)T is in homogenous form in 3D, P is a 3 x 4 matrix, and s is a scale. The objective of
camera calibration is to determine camera calibration matrix P, which includes both intrinsic parameters
and extrinsic parameters. Zhang [38] provided a flexible technique for camera calibration using only
five images taken from different angles. A checkerboard was used as calibration pattern. For each
image, the plane of the checkerboard was assumed as z-plane, so the Z coordinates for all the 3D
points were zero. X and Y coordinates could be obtained from the actual checkerboard size. All these
provided ground truth. A Matlab toolbox, developed by Bouguet [39], was used to solve camera
calibration matrix using Zhang’s algorithm. This toolbox is not only suitable for a single camera, but is
also suitable for stereo cameras.

The external camera parameters provided by Zhang’s [38] method were built on each
checkerboard’s own coordinate system, not on the same world coordinate system. In order to build
the same world coordinate system, a large 2D x-z coordinate system was plotted on an A0-size paper,
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together with a vertical checkerboard (Figure 2), and all of these provided the 3D ground truth on the
same coordinate system. The detailed 2D x-z coordinate system is shown in Figure 3. Each line in the
x-z plane was at 50 mm spacing. The middle line (0z) was rotated —10° around Oyig to get the left
line, and rotated +10° around Oyig to get the right line. The checkerboard was then placed at different
locations on the left, middle, and right line (marked as 1 through 45 in Figure 3). The 3D coordinates of
each corner on the checkerboard, at each location, could be solved as the ground truth. Two images
were taken at each location from the left and right cameras. From these 2D images, the 2D projection
of these corners could also be solved.

Based on these 2D and 3D coordinates, the gold standard algorithm of Hartley and Zisserman [40]
was used to calculate the camera matrices for both left and right cameras.
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Figure 3. 2D x-z coordinate system (each line is 50 mm separated).
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Based on camera calibration matrix and 2D image coordinates, we can get estimated 3D points.
When compared to the actual 3D points, we can estimate the error in X, Y, and Z directions (Figure 4).
These experimental results showed that this stereo camera set had good accuracy when the distance
between cameras and the target was less than 800 mm. The statistical analysis for errors in the X, Y,
and Z directions are shown in Table 1. The mean error in x direction is 0.42 mm, the mean error in y
direction is 0.36 mm, and the mean error in z direction is 2.78 mm.
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Figure 4. Error plots in X, Y, and Z direction. (A) errors in x direction; (B) errors in y direction; (C) errors
in z direction.
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Table 1. Statistical analysis of errors between estimated and actual corners.

Axis Mean Absolute Error (mm) Standard Deviation (mm)
X 0.42 0.35
Y 0.36 0.31
V4 2.78 1.74

2.3. Image Acquisition

To make a full view reconstruction of the plant or tree, multiple images from different view
angles had to be taken over the target. The stereo camera (shown in Figure 1) and a laptop with
image acquisition software were used to acquire the images. One setup of the experiment is shown in
Figure 5, where the target plant was in the center, and the stereo cameras positions are shown around
it. The images taken from the adjacent locations should have an overlapping region.

Figure 5. An example of stereo camera setup for image acquisition with the 3D reconstruction results
(56 stereo pairs were used).

2.4. Feature Points Detection and Matching

At the beginning, feature points were detected as Harris corners [41]. A pixel was selected as a
salient pixel if its response was an eight-way local maximum. Normalized cross correlation (NCC)
and normalized sum of squared differences (NSSD) described by Richard [42] could be used to match
the features. Harris corner features were not invariant to affine and scale transform. Mikolajczyk and
Schmid [43] provided different scale and affine invariant feature point detectors, such as Harris-Laplace
and Harris-Affine. Mikolajczyk and Schmid [44] did a performance evaluation for four different local
feature detectors (Harris-Laplace, Hessian-Laplace, Harris-Affine, and Hessian-Affine) and 10 different
feature descriptors. Lowe [28] provided a Scale Invariant Feature Transform (SIFT) descriptor to
describe the detected keypoints. Using Lowe’s SIFT research, Yan and Sukthankar [45] derived a
PCA-based SIFT (PCA-SIFT), and Morel and Yu [46] provided an affine SIFT (ASIFT). To enhance
the computing speed of SIFT, a speeded up robust features (SURF) was provided by Bay et al. [47].
To further improve the computation speed of SIFT, a parallel algorithm called SiftGPU was provided
by Wu [35].

Snavely et al. [27] applied SIFT on multiple-view reconstruction from unordered images.
Snavely [36] provided the software called Bundler to realize this method. In Snavely’s research, the SIFT
feature points for each image were detected. Each pair of two images were then matched using ANN
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algorithm from Arya et al. [48]. This process was conducted in serial computation. The computation
time required increased significantly as the number of input images and the number of feature points
per image increased. Santos and Oliveira [34] applied Bundler on their plant phenotyping, and they
reported that almost one hour would be needed to match the features for each two images of the total
143 images, and almost 30 min for 77 images.

Wu [37] provided a fast method called visual structure from motion (SfM) method to accelerate
the feature points’ detection, matching, bundle adjustment, and 3D reconstruction. Wu’s method was
applied in this paper.

2.5. Sparse Bundle Adjustment

Given a set of images, the matched feature points, also known as 2D projections, could be found
through the feature matching algorithm introduced in the previous section. Each matched feature point
had a corresponding 3D point in the scene. The camera matrices and 3D points could be estimated
through bundle adjustment method [40]. The j-th 3D point Xj will be projected on the i-th image as J?;
through the i-th camera calibration matrix P!, where 92; = 151'5(]- [40]. By minimizing the errors between

re-projected projection 32;

3D points Xj could be estimated. A software package called sparse bundle adjustment (SBA) was
provided by Lourakis and Argyros [49] to realize this minimization.

and the actual projection x;-, the camera calibration matrix P!, and sparse

2.6. Dense 3D Reconstruction Using CMV'S and PMVS

The patch model developed by Furukawa and Ponce [33,50] to produce 3D dense reconstruction
from multiple view stereo (MVS) was used in this research. Patch was reconstructed through three
steps: feature matching, patch expansion, and patch filtering. Feature matching was used to generate an
initial bundle of patches. Then the patches were made denser. The outliers were removed by filtering.
Finally, the patches were used to build a polygonal mesh. Furukawa and Ponce [51] developed
software called PMVS to implement this method. PMVS used the output (camera matrices) from
Bundler as the input. Other inputs for PMVS were from another software called CMVS [52].

2.7. Stereo Reconstruction Using VisualSEM

VisualSFM, which was proposed by Wu [37], integrated three technologies together: feature points
detection and matching [35], multicore bundle adjustment [53], and dense 3D reconstruction [33].
Multiple images from a full view of the plant/tree would be imported into this software. A fully
reconstructed result would be generated through the previously mentioned three steps.

2.8. Metric Reconstruction

The result from bundle adjustment was not metric reconstruction, which means that the
reconstructed result did not show the actual size of the target.

A direct reconstruction method using ground truth was provided by Hartley and Zisserman [40]
to realize the metric reconstruction. Using pre-calibrated stereo cameras, the Euclidean ground truth
of a set of 3D points X!, could be solved from the 2D correspondence x| +» x}, and the estimated 3D
points X', could be obtained from bundle adjustment. The estimated 3D points and the Euclidean
3D points were related through a homography transformation (H). Then we have Xi,. = H-Xi,,.
The first two images from the stereo camera were used to solve the Euclidean ground truth from the
2D projection. From our stereo camera calibration we knew that this stereo camera pair had good
accuracy only when the distance between camera and the target was less than 580 mm. Therefore,
those 3D points whose Z coordinates were bigger than 580 mm would be filtered as outliers.

To minimize the homography fitting error, these two sets of 3D points had to be normalized. After
normalization, using the method described by Hartley and Zisserman [40], the centroid of the new
points was at the origin, and the average distance from the origin is v/3. After applying normalization,
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X! = T;-X!,.and X! , = T-X!, the homography between {Xiiwwptsl} and {Xilewpts2} was

newptsl — newpts
estimated using rigid transformation Forsyth and Ponce [54]. By fitting rigid transformation, we
get szewptsl = Hest'Xilewptsz' To de-normalize it, we have Xf;uc = H-Xést, where H = Tl_l-Hest~T2.

Applying H on all the 3D points from bundle adjustment, we can transfer them back to metric scale.
The new camera calibration matrix was Pi,. = Pi ,-H~1.

3. Experimental Results and Discussion

Four test experiments were conducted, one was a box with known geometry, and the other three
were a croton plant with salient features, a jalapeno pepper plant with medium-size leaves, and a
lemon tree with small leaves.

Test 1: A hexagon box with a given geometry was used to verify the reconstruction result. The box
was placed on the top of a table. The stereo camera was manually moved around the box to take
the images. Images taken at the adjacent locations should have some overlap, which is good for
feature matching. The side length of the hexagon is 64 mm, and the height is 70 mm. To give the box
texture, paper with printed citrus leaf images was wrapped around the box, as shown in Figure 6.
Approximately 86 images were taken from various positions around this box using the stereo camera.
The box was first reconstructed by using VisualSFM [37]. The result is shown in Figure 7A. The box
was then was reconstructed by applying the metric reconstruction method (mentioned in step 2.8).
The result is shown in Figure 7B, which shows the real size of the target.

Figure 7. 3D reconstruction. (A) projective reconstruction; (B) metric reconstruction.

The reconstructed length for each side of the above hexagon and the reconstructed height of each
side face are shown in Tables 2 and 3.
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Table 2. Estimated length vs. actual length.

Length L1 L2 L3 L4 L5 Leé
Estimated length (mm) 64.19 63.47 68.82 65.59 63.00 61.99
Actual length (mm) 64.00 64.00 64.00 64.00 64.00 64.00
error (mm) 0.19 —0.53 4.82 1.59 —1.00 —2.01

Table 3. Estimated height vs. actual height.

Height H1 H2 H3 H4 H5 Heé

Estimated height (mm) 70.45 68.53 71.10 68.13 70.68 69.03
Actual height (mm) 70.00 70.00 70.00 70.00 70.00 70.00
error (mm) 0.45 —1.47 1.10 —-1.83 0.68 —-0.97

From this verifying test, we can see that the hexagon box is well reconstructed. The estimated
length and height of the box is very close to the actual size. This method was then applied to
complicated objects, such as a plant and a small tree.

Test 2: Three kinds of plants with different leaf sizes were reconstructed using the method
introduced. The croton plant has big and sparse leaves with salient features. The jalapeno pepper has
medium and sparse leaves. The lemon tree has small and dense leaves. They are shown in Figure 8.

Figure 8. Experimental plants/tree: (A) Croton plant; (B) Jalapeno pepper plant; (C) Lemon tree.

Firstly, the objects were reconstructed in projective views by using VisualSFM from Wu [37].
Then the metric reconstruction algorithm (mentioned in step 2.8) was applied to get the 3D
reconstruction in Euclidean space. For croton plants, the first pair of images were used as the ground
truth. The feature points for these two images were extracted and matched. Together with the camera
matrices of the stereo cameras, the actual 3D points could be calculated by using triangulation method
of Hartley and Zisserman [40]. The estimated 3D points for the same 2D correspondences could be
found from the reconstructed results of VisulaSFM. By applying rigid transform, the transformation
between actual 3D points and estimated 3D points could be achieved. Applying this transformation to
all the estimated 3D points for all the images, the final metric 3D reconstruction could be obtained,
which is shown in Figure 9A. A similar process was applied to the other two plants. For the pepper
plant, the first pair of images was used, and for the lemon tree, the seventh pair of images was
used. The reconstructed view of the target was displayed in a bounding box, which was shown in
Figure 9B,C respectively.
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Figure 9. Reconstructed plants. (A) croton; (B) pepper; (C) lemon.

To roughly calculate the volume of the reconstructed plant canopy, the bounding box was divided
into voxels. If the 3D point is inside the voxel, then that voxel will be marked as used. Unused voxels
will be removed, as shown in Figure 10. All the 3D reconstructed points reside inside some voxels.
The summation of the volume of all these voxels will be the canopy volume. There is a tradeoff
between the size of the voxel and the volume of canopy. This tradeoff was not analyzed in this research
since it is not the primary task. The estimated volume for these three plants are shown in Table 4.

(A) (B)

Figure 10. Demo of volume calculation. (A) Bounding box was divided into voxels; (B) Voxels left after
removing unused voxels.
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Table 4. Volumes of these three plants.

Experimental Targets # of Voxel Hits/# of Total 3D Points Voxel Size (mm?3) Volume (cm®)
Croton 16,156/19,579 28.46 1.23 x 103
Jalapeno pepper 28,591/38,773 12.61 3.61 x 10?
Lemon tree 48,609/96,680 3.76 1.83 x 102

4. Conclusions

This paper demonstrated a new approach to calibrate the camera calibration matrix on a metric
level and then implemented the VisualSFM method to make a projective reconstruction of a plant/tree
canopy. Stereo cameras were employed to estimate the actual 3D points for image pairs. The projective
reconstructed view was then transformed to metric reconstruction by applying rigid transformation.
A verifying experiment was performed by reconstructing a hexagon box. The result showed that
this method can reach the true size of the target object. The same method was applied on three
kinds of plant/tree with different leaf sizes. The reconstructed results presented a good visual
view in 3D with reconstructed leaf features retaining their defining characteristics. This approach
provides a metric reconstruction method that can achieve real-size reconstruction, which is a significant
accomplishment in practical applications such as, 3D visualization, plant phenotypeing, robotic
harvesting, and precision spraying, where real-size characteristics of plants are important for successful
production practices.
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