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Abstract: We present an instrumentation devoted to the mapping of indoor ambient conditions by
an infrared camera. In addition to a measurement grid composed of several spherical sensors, an
infrared camera is used to visualize and quantify the spatial distribution of the air temperature,
the air speed, and the mean radiant temperature. A suitable procedure is developed so that from
its temperature history recorded by the infrared camera, each sensor can measure, after solving an
inverse heat transfer problem, all the three cited parameters. As the sensors are all imaged at the
same time by the camera, an interpolation is done with the values they provide; the 2D distribution of
each parameter is then obtained. By using a pair of stereoscopic cameras, it is possible to determine
the 3D coordinates of each sensor of the measurement grid; consequently, the 3D mapping of the
indoor ambient conditions is possible. Two steps are followed and allow us to achieve our goal: the
validation of the performance of the sensor in terms of accuracy and reliability, and the validation
of the complete experimental procedure which relies on digital image processing and on inverse
heat transfer.

Keywords: infrared thermography; mapping; triangulation; indoor conditions; thermal environment;
microclimatic monitoring

1. Introduction

Nowadays, people spend most of their time indoors. This leads to an increase in the demand
for comfortable indoor environmental conditions. The indoor thermal comfort indices, such as
the Predicted Mean Vote/Predicted Percentage Dissatisfied (PMV/PPD), the Standard Effective
Temperature (SET), and the operative temperature can be computed in order to determine the level
of thermal comfort in an indoor environment both in the design stage and for the assessment in the
field [1–3]. These indices depend on two groups of parameters. As detailed in ASHRAE Standard
55 [4], in the ISO 7730 Standard [5], and in the EN 15251 Standard [6], the first group is composed
of the quantifiable parameters, also known as the non-subjective parameters. These parameters are
the air temperature, the air speed, the air humidity, and the mean radiant temperature. The second
group includes the activity level and the clothing thermal insulation of the occupants. These latter
parameters may vary from one occupant to the other and, thus, are highly subjective. While the
two subjective parameters are evaluated by questions-answers during the thermal comfort assessment,
the four non-subjective parameters can be measured directly using an appropriate instrument.

From the point of view of the spatial dimension, a scientific instrument can be either a 0D
instrument or a whole-field measurement instrument. A 0D instrument, also called punctual
instrument, gives the value of the measurand at a point. The thermocouple, the anemometer, the
hygrometer, and the globe thermometer are some punctual instruments used, respectively, for the
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measurement of the air temperature, the air speed, the air humidity, and the mean radiant temperature.
One can refer to Dell’Isola et al. [3], Fraden [7], and Parsons [8] for detailed discussions on these sensors.

A whole-field measurement instrument can achieve two complementary and useful tasks; namely,
the quantification and the visualization of the spatial distribution of the measurand. As described
by Sun and Zhang [9], as well as Sandberg [10], particle image velocimetry is one of the whole-field
measuring methods used to measure air velocity in 2D and 3D. It uses a high-speed RGB camera in
order to follow particles in the fluid. After an appropriate image processing, between two instants, it is
possible to determine the displacement of the particles and their velocity. As the particles are chosen
such that their density is close to that of the fluid, both have the same velocity. Although this technique
gives accurate results and provides a micro scale air velocity pattern, the covered area is less than a
square meter and it requires systems for the illumination and the particle injection. So, the technique
have a heavy experimental setup and a high computational cost.

In several applications, an infrared camera is used as a 2D temperature sensor. For example,
Datcu et al. [11] have used an infrared camera to accurately capture the building temperature
distribution, Grinzato et al. [12,13], and Balaras and Argiriou [14] have used an infrared camera
for default detection and for thermal isolation assessment of the building envelope. Other authors,
Choi et al. [15], Korukçu and Kilic [16], and Shastri et al. [17], for example, have used an infrared
camera in order to monitor and to evaluate the thermal response of a human under specific
environmental conditions.

Some studies, Fokaides et al. [18] and Cehlin et al. [19], have reported the use of an infrared
camera for the measurement and the visualization of the spatial distribution of air temperature in
an indoor environment. Since air is transparent, an auxiliary device is used. The thermal energy
balance between the auxiliary device and the surrounding air is used to achieve the measurement.
Pretto et al. [20] have suggested the use of small multipart sensors. Each part of the sensor is used
for the measurement of one of the four indoor parameters by the infrared camera. Following the
same idea, a complete and successful demonstration has been presented by Djupkep et al. [21]. They
showed that the temperature history, recorded by an infrared camera, of a single sensor can be used to
estimate air temperature, air speed, and the mean radiant temperature after solving an inverse heat
transfer problem. A measurement grid, built by arranging several sensors in the field of view of the
camera, is used to visualize the spatial distribution of each of these indoor parameters by interpolating
punctual measurements given by each sensor. The main objective of this paper is to extend the field of
application of infrared thermography to the mapping of the indoor ambient conditions. The proposed
instrumentation has four components: A measurement grid, an infrared camera, a pair of stereoscopic
cameras and a moving system. Four key points are addressed in order to ensure its reliability: the
robust detection of the sensors in the images, the determination of the 3D coordinates of each sensor of
the measurement grid, the evaluation in terms of accuracy and robustness of experimental performance
achieved by the sensor, and the mapping of the indoor ambient conditions.

The paper is organized as follows: in the next section, we recall the theoretical fundamentals of the
sensor. In the third section, we present the experimental validation of the sensor. In the fourth section,
the dynamic Hough transform is used as a robust detection tool. We also present the determination
of the 3D coordinates of each sensor by triangulation. In the fifth section, some experiments are
conducted in order to quantify and to visualize the indoor parameters distribution in 2D and in 3D.
The last section is the conclusion of the paper.

2. Theoretical Fundamentals of the Sensor

2.1. The Measurement Grid

Due to the fact that air is transparent, an auxiliary device is associated to the infrared camera in
order to quantify and visualize the spatial distribution of the indoor ambient parameters. This auxiliary
device, the measurement grid, is presented in Figure 1. It is composed of a set of spherical sensors
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(a), each having a diameter DS, arranged vertically and horizontally. A metal wire (b) of diameter
Dw ! DS passes through the sensors and is used to attach each row of sensors on the frame (c) and to
heat the sensors by the Joule effect. A spring (d) maintains the wire straight, horizontally. The electric
current needed for the Joule effect is provided by a voltage generator (e). Some mini-fans (f) allow
the determination of the mean radiant temperature by modifying the heat exchange by convection
between sensors and air.
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A theoretical analysis of the presented model has been conducted by Djupkep et al. [21]. The 
influences of several parameters (the noise level of the experimental data, the initial temperature of 
the sensor, the thermo-physical properties of the sensor, the temporal length of the experimental data) 
on the accuracy of the model have been investigated. They found that one can expect the following 
uncertainties when the signal-to-noise ratio is greater than 53݀ܤ and ℎଶ/ℎଵ > 3: 
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3. Experimental Performance of the Sensor 

In order to accurately measure the sensor’s temperature using the infrared camera, the sensor, a 
hollow aluminum sphere, is covered with a high-emissivity acrylic paint (Figure 3a). The diameter of 
the sensor is 12	mm, the metallic part has a thickness of 1	mm, and the acrylic part has a maximum 
thickness of 0.2	mm and an emissivity of 0.96. 
  

Figure 2. Thermal model of the sensor [21]. Reprinted with permission from Rev. Sci. Instrum.,
84, 084906 (2013). Copyright 2013 American Institute of Physics.
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Considering the general case where the spherical metallic sensor, having a thickness em, is covered
by a high emissive paint of thickness ep, ideally ep ! em, Equation (1) can be rewritten as below:

$

&

%

rpρcVqp ` pρcVqms
dT
dt
“ ´hA pT´ Tairq ´ σεA

`

T4 ´ T4
rad

˘

`
.

Qcond_w

T pt “ 0q “ T0

(3)

where subscripts p and m represent, respectively, the emissive component and the metallic component
of the sensor. T0 is the initial temperature and T is the temperature at time t. ρ is the density, c is
the specific heat, V is the volume, A is the surface, ε is the emissivity, and h is the Convective Heat
Transfer Coefficient (CHTC). Tair is the air temperature around the sensor, Trad is the Mean Radiant
Temperature (MRT), and σ is the Stefan-Boltzmann constant. When a steady-state is achieved, the
sensor has the temperature Teq and Equation (3) gives:

T4
rad “ T4

eq `
h
σε

`

Teq ´ Tair
˘

´

.
Qcond_w

σεA
(4)

The insertion of Equation (4) into Equation (3) yields the following:
$

&

%

rpρcVqp ` pρcVqms
dT
dt
“ ´hA

`

T´ Teq
˘

´ σεA
´

T4 ´ T4
eq

¯

T pt “ 0q “ T0

(5)

2.3. Estimation of the Ambient Parameters

Three of the four ambient parameters appear explicitly in Equations (4) and (5). They are air
temperature Tair, air speed vair through the CHTC h, and the mean radiant temperature Trad. An inverse
heat transfer problem has been solved in order to estimate these three parameters. After that, a transient
regime is created on the sensor, its temperature history is recorded by the IR camera. If T “ χ pt, Θ, T0q is
the theoretical temperature history obtained after solving Equation (5) and rT “ rχ ptq is the experimental
temperature history given by the IR camera, the parameter estimation problem is the determination
of the parameter vector Θ “

“

h, Teq
‰tr (superscript tr is the transpose operator) which minimizes the

error function ξ given by:

ξ “
m “ M
ÿ

m “ 1

”

Tm ´ rTm

ı2
“

m “ M
ÿ

m “ 1

rχ ptm, Θ, T0q ´ rχ ptmqs
2 (6)

A theoretical analysis of the presented model has been conducted by Djupkep et al. [21].
The influences of several parameters (the noise level of the experimental data, the initial temperature of
the sensor, the thermo-physical properties of the sensor, the temporal length of the experimental data)
on the accuracy of the model have been investigated. They found that one can expect the following
uncertainties when the signal-to-noise ratio is greater than 53dB and h2{h1 ą 3 :

Air temperature: ∆Tair ď 0.5 ˝C for 10 ˝C ď Tair ď 40 ˝C and |Tair ´ Trad| ď 20 ˝C.
Mean radiant temperature: 0.5 ˝C ď ∆Trad ď 1.5 ˝C for 10 ˝C ď Trad ď 40 ˝C and |Tair´Trad| ď 20 ˝C.
Air speed: 0.07 m{s ď ∆vair ď 0.2 m{s for 0 m{s ď vair ď 2 m{s.

3. Experimental Performance of the Sensor

In order to accurately measure the sensor’s temperature using the infrared camera, the sensor, a
hollow aluminum sphere, is covered with a high-emissivity acrylic paint (Figure 3a). The diameter of
the sensor is 12 mm, the metallic part has a thickness of 1 mm, and the acrylic part has a maximum
thickness of 0.2 mm and an emissivity of 0.96.
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The experimental performances of the sensor are evaluated in terms of its reliability and the
accuracy achieved on each of the three parameters measured. Our results are compared to the ISO
7726 standard [23]. The prescriptions of this standard are summarized in Table 1. The experimental
setup (Figure 3b,c) consists of a fan that can provide air at various speeds and temperatures, a radiant
heat source that can modify the amount of heat exchanged by radiation and the IR camera, which
records the temperature history of the sensor.

Table 1. Accuracy prescriptions of the standard ISO 7726 (response time as short as possible).

Quantity Class C (Comfort) Class S (Thermal Stress)

Measuring
Range Accuracy Measuring

Range Accuracy

Air speed [0.05; 1] m/s

Required:
˘(0.05 + 0.05vair) m/s a

Desirable:
˘(0.02 + 0.07vair) m/s a

[0.2; 20] m/s

Required:
˘(0.1 + 0.05vair) m/s a

Desirable:
˘(0.05 + 0.05vair) m/s a

Air
temperature [10; 40] ˝C

Required: ˘0.5 ˝C b

Desirable: ˘0.2 ˝C b [´40; 120] ˝C

Required:
[´40; 0]˝C: ˘(0.5 + 0.01|Tair|) ˝C c

[0; 50] ˝C: ˘0.5 ˝C c

[50; 120] ˝C:
˘(0.5+0.04(Tair ´ 50)) ˝C c

Desirable: required/2 c

Mean radiant
temperature [10; 40] ˝C

Required: ˘2 ˝C
Desirable: ˘0.2 ˝C

When the levels cannot
be achieved, indicate the

actual measuring
precision.

[´40; 150] ˝C

Required:
[´40; 0] ˝C: ˘(5 + 0.02|Tair|) ˝C

[0; 50] ˝C: ˘5 ˝C
[50; 150] ˝C:

˘(5+0.08(Trad ´ 50))˝C
Desirable:

[´40; 0] ˝C: ˘(0.5 + 0.01|Trad|)˝C
[0; 50] ˝C: ˘5 ˝C

[50; 150] ˝C:
˘(0.5 + 0.04(Trad ´ 50)) ˝C

a: These levels shall be guaranteed whatever the direction of flow within a solid angle 3πsr; b: These
levels shall be guaranteed at least for |Tair ´ Trad| ď 10 ˝C; c: these levels shall be guaranteed at least
for |Tair ´ Trad| ď 20 ˝C.

3.1. Validation of the Thermal Model of the Sensor

The objective here is to verify that for all imposed conditions (air temperature, air speed, and MRT),
the model (5) fits very well with the experimental data and that the estimated values are very close to
the true imposed values. The sensor is heated by the Joule effect such that its temperature increased
for at least 6 ˝C. Then, the voltage generator is switched off and the sensor enters a transient regime
during which its temperature is recorded by the IR camera during 5 min at a rate of five recordings
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per second. Figure 4a shows a typical experimental curve as well as the curve corresponding to the
estimated parameters. As confirmed by Figure 4b, the difference between the estimated curve and
the experimental curve is such that

ˇ

ˇTexp ptq ´ Test ptq
ˇ

ˇ ď 0.2 ˝C. When one of the three parameters
(air temperature, air speed, and MRT) has a fixed value and the others change, we arrive to the same
conclusion: The model (5) describes very well the thermal behavior of the sensor.
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Figure 4. Typical curves; (a) experimental and estimated curves; and (b) difference between both curves.

3.2. Validation of the Measurement of Air Speed

The CHTC h is estimated from the temperature history of the sensor. Air speed is then deduced.
The correlation between the CHTC and the air speed has been sufficiently documented (Froessling [24],
Katsnel'son and Timofeyeva [25], Whitaker [26]). Using our method, we determined a correlation
between the CHTC and the air speed. Figure 3b,c shows the experimental setup used. A fan provides
air flow at various speeds. The sensor is placed at 3 cm from the air exit. The value of the air speed is
given by a hot wire anemometer having an uncertainty of 0.2 m{s and the air temperature is given by
a thermocouple having an uncertainty of 0.5 ˝C. The anemometer and the thermocouple have been
chosen on the basis of the level of accuracy needed and their costs. For this work our goal was to
meet the accuracy requirement of the standard ISO 7726. We achieved that with a low cost hot wire
anemometer. During the calibration process, in order to reduce the measurement error resulting from
the misalignment of the anemometer (thermocouple) and the air flow provided by the fan, several
preliminary tests have been performed. The best position of the anemometer (thermocouple) was
when the standard deviation of the measurements given by the anemometer (thermocouple) was less
than its uncertainty.

Once the air speed is settled, the sensor is heated such that its temperature increased for at least
6 ˝C. After that, the IR camera records the sensor temperature history while it cools. The following
values of air speed have been imposed:p0; 0.3; 0.6; 0.9; 1.1; 1.3; 1.5; 1.7; 1.9; 2.1; 2.3; 2.5; 2.7; 3q ˘ 0.2 m{s.
The air temperature has been maintained at p24˘ 0.5q ˝C.

Figure 5a shows the curve, given by the proposed method, of the CHTC versus the air speed.
As presented in Figure 5b, the resulting correlation is in accordance with existing correlations. The
maximum error obtained on the air speed is 0.3 m{s. This maximum uncertainty is obtained for air
speed equal to 3 m{s. For the same air speed, the standard ISO 7726 prescribes a desirable uncertainty
of 0.2 m{s. This is of the same order of magnitude as that of the anemometer and is in accordance with
the expected theoretical error for a signal to noise ratio SNR ě 50dB [21]. The following relations are
then written:

h “ 1.81v3
air ´ 11.64v2

air ` 36.56vair ` 8.77 (7)

vair “
´

0.69h2 ` 7.30h´ 111.40
¯

ˆ 10´3 (8)
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Figure 6 gives the measurement error on the air temperature. It appears that, as the ratio ℎଶ/ℎଵ 
increases, the measurement error decreases. Furthermore, the value of ℎଵ  also influences the 
accuracy of the measurement in that the accuracy is better for a small value of ℎଵ. In all cases, for ℎଶ/ℎଵ > 3,	 the maximum measurement error is less than 0.6	°C. There is a good agreement with the 
accuracy requirement of ISO 7726 [23]. 
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Figure 5. CHTC versus air speed. (a) Experimental results; and (b) comparison with other correlations.

3.3. Validation of the Measurement of Air Temperature and Mean Radiant Temperature

In order to modify the convective effect with respect to the radiative effect on the sensor,
the air speed is modified such that two equilibria are created on the sensor. For each equilibrium,
the parameters

`

h1, Teq1
˘

and
`

h2, Teq2
˘

are estimated. Using Equation (4), the air temperature and
the mean radiant temperature are then determined respectively by Equation (9) and Equation (10):

Tair “
σε

´

T4
eq1 ´ T4

eq2

¯

` h1Teq1 ´ h2Teq2

ph1 ´ h2q
(9)

Trad “

»

–

σε
´

h1T4
eq2 ´ h2T4

eq1

¯

` h1h2
`

Teq2 ´ Teq1
˘

σε ph1 ´ h2q
´

.
Qcond_w

σεA

fi

fl

1{4

(10)

Using the experimental setup of Figure 3b,c, the temperature and the speed of the air supplied
by the fan are kept to known values. The amount of heat exchanged by radiation between the sensor
and its surrounding depends on the power of the lamp. For each trial, the MRT is kept constant
by adjusting the power of the lamp to a constant value. The true value of the triplet

`

vair, Tair, Teq
˘

is known and serves as a reference for comparison. For each trial, seven air speeds are considered.
The objective is to determine the ratio h2{h1 for which the best accuracy on the measured parameters
is achieved. For each of seven imposed air speeds, the temperature history of the sensor is used
to estimate

`

h, Teq
˘

. We then compose the couple
!

`

h, Teq
˘

i ,
`

h, Teq
˘

j

)

; i ‰ j; i, j “ 1, 2, . . . , 7 and
compute the air temperature and the MRT using Equations (9) and (10), respectively. Table 2, with
P1 ą P2 ą P3 ą P4, summarizes the experimental data considered.

Table 2. Experimental data.

Trial
Air

Temperature
(˝C)

Lamp
Power

Air Speed (m/s)
CHTC (W/m2/K) ∆vair

(m/s)
1 2 3 4 5 6 7

1

25.5 ˘ 0.5

P1
0

8.77
0.15

14.00
0.30

18.74
0.45
23.03

0.75
30.41

1.30
40.60

2.00
49.81

0.2
2 P2
3 P3
4 P4 = 0

Figure 6 gives the measurement error on the air temperature. It appears that, as the ratio h2{h1

increases, the measurement error decreases. Furthermore, the value of h1 also influences the accuracy
of the measurement in that the accuracy is better for a small value of h1. In all cases, for h2{h1 ą 3,
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the maximum measurement error is less than 0.6 ˝C. There is a good agreement with the accuracy
requirement of ISO 7726 [23].J. Imaging 2016, 2, 10 8 of 20 
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4. 3D Reconstruction of the Measurement Grid 

The complete reconstruction of the measurement grid is achieved when the 3D coordinates of 
all of the sensors are known in a common coordinate system. These 3D coordinates are found by 
triangulation by stereovision; that is, by using a pair of cameras. The steps to follow in order to 
finalize the 3D reconstruction of the measurement grid are given in Figure 8. 
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Figure 6. Measurement error on air temperature versus the ratio h2{h1. (a) h1 “ 8.77 W{m2{K;
(b) h1 “ 14.00 W{m2{K; and (c) h1 “ 18.74 W{m2{K.

During the experiment, the true value of the MRT was not available. In order to validate our
result, we made an assumption. As theoretical investigations suggest [21], there is a minimum value
of the ratio h2{h1 which guarantees a reliable measurement. For any ratio greater than that minimum
value, the values found for the MRT must be the same. Consider Figure 7 showing the estimated MRT
versus the ratio h2{h1 for each trial. It is clear that the greater the ratio h2{h1, the better the accuracy as
presented in Table 3. The value of h1 has also a major influence. When h1 is high (Figure 7b,c), the MRT
values found, which were expected to be equal, vary significantly. The standard deviation is equal to
1.72 ˝C for the first trial (Table 3). However, Figure 7a shows that for h2{h1 ą 2.63, the MRT values
found are close and show a standard deviation less than 1 ˝C during each trial (Table 3). Thus, the
method gives accurate results when h2{h1 ą 2.63 and h1 is as small as possible. Of course, the best
value of h1 is the value corresponding to a null air speed.
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Figure 7. MRT measured versus the ratio h2{h1. (a) h1 “ 8.77 W{m2{K; (b) h1 “ 14.00 W{m2{K; and
(c) h1 “ 18.74 W{m2{K.

Table 3. Mean value and standard deviation of the measured mean radiant temperature.

Trial
h2{h1 ą 2.63

h1 “ 8.77 W{m2{K
h2{h1 ą 1.60

h1 “ 8.77 W{m2{K
h2{h1 ą 1.60

h1 “ 14.00 W{m2{K

Mean Value Standard
Deviation Mean Value Standard

Deviation Mean Value Standard
Deviation

1 67.91 ˝C 0.75 ˝C 67.00 ˝C 1.67 ˝C 74.55 ˝C 1.72 ˝C
2 53.32 ˝C 0.69 ˝C 52.53 ˝C 1.42 ˝C 57.98 ˝C 1.22 ˝C
3 37.29 ˝C 0.42 ˝C 36.88 ˝C 0.73 ˝C 40.38 ˝C 1.26 ˝C
4 23.73 ˝C 0.22 ˝C 23.80 ˝C 0.22 ˝C 22.84 ˝C 0.52 ˝C
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4. 3D Reconstruction of the Measurement Grid

The complete reconstruction of the measurement grid is achieved when the 3D coordinates of
all of the sensors are known in a common coordinate system. These 3D coordinates are found by
triangulation by stereovision; that is, by using a pair of cameras. The steps to follow in order to finalize
the 3D reconstruction of the measurement grid are given in Figure 8.J. Imaging 2016, 2, 10 9 of 20 
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The detection of the sensors of the measurement grid in the images aims to extract their 
temperature history and to determine their 3D coordinates. We use the Hough transform  
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Figure 8. Synoptic of the 3D reconstruction of the measurement grid.

4.1. Scanning of the Measurement Grid

The field of view of the cameras is a limiting factor. Depending on the size of the measurement
grid, cameras may not be able to simultaneously capture all of the sensors of the measurement grid.
In such a case, the cameras are displaced from one position to the other in order to scan the entire
measurement grid. Figure 9 shows an example of successive parts of the measurement grid during the
scanning. Thanks to a pan-tilt unit, the motion of the cameras is possible. To complete the next steps,
images recorded at two successive positions of the camera must overlap.
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4.2. Detection of Sensors in the Images

The detection of the sensors of the measurement grid in the images aims to extract their
temperature history and to determine their 3D coordinates. We use the Hough transform
(Ioannoua et al. [27]) for the detection of our spherical sensors. The Hough transform is an algorithm



J. Imaging 2016, 2, 10 10 of 21

which is easy to implement and has a high noise tolerance. It represents, in its parameter space, the
geometrical shape to detect. To define a circle in a 2D Cartesian coordinate system, three parameters
must be known: The coordinates

`

cx, cy
˘

of the center and the radius r. Thus, in the parameter space,
a circle is represented by the point

`

cx, cy, r
˘

. The first step of the Hough transform is the detection
of edge points in the image. Each edge point belongs hypothetically to the boundary of the searched
circle. So, each of the detected edge points is represented in the parameter space. An accumulator
is used such that each of its pixel coordinates represents a circle and the pixel value is equal to the
number of edge points belonging to the searched circle. In the accumulator, the coordinates of local
maxima are the representation of a real circle. Figure 10 shows the result of the sensors detection in an
IR image by Hough transform.
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4.3. Corresponding Points between Images

A point mi in the image I1 and a point mj of the image I2 are called corresponding points if they
represent the same real point [28]. In order to identify corresponding points between N1 points in the
image I1 and N2 points in the image I2, we can emphasize on the fact that two corresponding points
must have a similar neighborhood. The level of similarity is given by the normalized cross correlation
coefficient. The normalized cross correlation between the point mi and the point mj is:

NCC pi, jq “
ř

ℵ
“

I1 pmiq ´ I1
‰ “

I2
`

mj
˘

´ I2
‰

c

ř

ℵpmiq

“

I1 pmiq ´ I1
‰2 ř

ℵpmjq

“

I2
`

mj
˘

´ I2
‰2

(11)

The neighborhood ℵ pmq , of the pixel m, includes all of the pixels belonging to a window of a
given size centered on m. I is the mean value of these pixels. The corresponding point of mi is the
point mj˚ such that NCC pi, j˚q “ max

j“1,2,...,N2
rNCC pi, jqs .

Figure 11 presents an example of corresponding points between two RGB images corresponding
to two positions of the camera.
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4.4. Geometric Calibration of A Camera

The objective of the geometric calibration of a camera is the identification and the determination
of parameters of the mathematical model which exist between the 3D coordinates of a real point
and its 2D coordinates in the image. The pinhole model (Hartley and Zisserman [28]) is the most
popular model used to describe a camera. As illustrated in Figure 12, the camera projects the real point
M pX, Y, Zq into the image point m pC, Lq . This is possible after three transformations of the coordinate
systems <re f , <cam, <ret, <d

ret and <pix which are, respectively, the reference 3D coordinate system,
the 3D coordinate system linked to the camera, the 2D retinal coordinate (without and with distortion)
system belonging to the image plane, and the 2D pixel coordinate system. We have:

<ref Ñ <cam, rXC, YC, ZCs
tr
“ R rX, Y, Zstr ` t (12)

where R is the rotation matrix and t is the translation vector.

<cam Ñ <ret, px, yq “ p f XC{ZC, f YC{ZCq (13)

where f is the focal length of the camera lens.

<ret Ñ <d
ret, rxd, yds “ rx, ys

`

1` d1r` d2r2 ` d3r3˘`
“

d4
`

3x2 ` y2˘` 2d5xy, 2d4xy` d5
`

x2 ` 3y2˘‰ (14)

where r “
`

x2 ` y2˘ and di are the distortion parameters.

<d
ret Ñ <pix, rC, Ls “

“

kxxd ` kxydcotϕ` Cx ` Cycotϕ,
`

kyyd ` Cy
˘

{sinϕ
‰

(15)
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`

Cx, Cy
˘

are the coordinates of the point where the optical axis of the camera lens meets the image
plane, ϕ is the angle between the x axis and the y axis, kx and ky are the number of pixels per unit
length. fx “ f kx and fy “ f ky.

Defining the intrinsic vector Pin “
“

fx, fy, cx, cy, ϕ, d1, d2, d3, d4, d5
‰

and the extrinsic vector
Pex “ rR11, R12, R13, R21, R22, R23, R31, R32, R33, t1, t2, t3s , we write m “ F pPin, Pex, Mq .The calibration
consists then in determining the vectors Pin and Pex from a given set of corresponding points M Ø m.
These points are found using a calibration target (Figure 13). The camera records N different
images of the calibration target. The 3D coordinates of Np key points of the target (the corners
of the squares in Figure 13) are known in a chosen 3D coordinate system and their 2D coordinates
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are known in the pixel coordinate system. Vectors Pin and Pex are determined such that the sum
ři“N

i“1
řj“Np

j“1 ‖ mj
i ´ F

´

Pin, Pi
ex, Mj

¯

‖
2

has a minimum value (Heikkilä and Silven [29], Zhang [30]).
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4.5. Triangulation by Stereoscopic Vision

Triangulation by stereoscopic vision is the determination of the 3D coordinates of a point using at
least two cameras [31]. Considering a pair of stereoscopic cameras, Figure 14 presents the synoptic of
the triangulation. The point M must be located simultaneously in the field of view of both cameras.
If the point M is projected onto the point ml in the left image and onto the point mr in the right image,
we can write ml “ F ppPinql , pPexql , Mq and mr “ F ppPinqr , pPexqr , Mq . If the intrinsic vectors, the
extrinsic vectors, the points ml and mr are known, the two preceding equations can be solved in order
to determine the 3D coordinates of the point M.
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Instead of determining the 3D coordinates of M in an arbitrary 3D coordinate system, the
coordinate system of one of the cameras can be used. In this case the rotation matrix RS and the
translation vector tS between the coordinate systems of both cameras are determined by a calibration
of the stereoscopic cameras. The calibration data are a set of N pairs of images of a calibration target
having Np points. Each pair of images corresponds to a given spatial orientation of the calibration
target. For the pair i pi “ 1, 2, . . . , Nq , RS and tS can be determined using AS “ pArqi pAlq

´1
i , with

AS “

«

RS tS
0tr 1

ff

, Ar “

«

Rr tr

0tr 1

ff

and Al “

«

Rl tl
0tr 1

ff

.

4.6. Rotation and Translation between Two Positions of the Camera

Consider
`

Xi
1, Yi

1, Zi
1
˘

and
`

Xi
2, Yi

2, Zi
2
˘

, i “ 1, 2, 3, 4, the coordinates of four points in the coordinate
systems p<camqP1

and p<camqP2
of the camera, respectively, at the first and the second position.
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The rotation R2,1 and the translation t2,1 between coordinate systems p<camqP1
and p<camqP2

are such

that
`

Xi
1, Yi

1, Zi
1
˘tr
“ t2,1 `R2,1

`

Xi
2, Yi

2, Zi
2
˘tr . R2,1 and t2,1 are obtained by solving Equations (12).

M “

»

—

—

—

–

1, X1
2 , Y1

2 , Z1
2

1, X2
2 , Y2

2 , Z2
2

1, X3
2 , Y3

2 , Z3
2

1, X4
2 , Y4

2 , Z4
2

fi

ffi

ffi

ffi

fl

,

$

’

&

’

%

M rt1, R11, R12, R13s
tr
“
“

X1
1 , X2

1 , X3
1 , X4

1
‰tr

M rt2, R21, R22, R23s
tr
“
“

Y1
1 , Y2

1 , Y3
1 , Y4

1
‰tr

M rt3, R31, R32, R33s
tr
“
“

Z1
1 , Z2

1 , Z3
1 , Z4

1
‰tr

(16)

Suppose that for a complete scanning of the measurement grid, the camera passes through
P different positions (Figure 10). The rotation Ri,k and the translation ti,k (Figure 15) between
coordinate systems p<camqPi

and p<camqPk
of the camera, respectively, at positions Pi and Pk are given

by Ri,k “
śj“i´1

j“k Rj`1,j and ti,k “ tk`1,k `
”

řl“i´k´1
l“1

´

śj“i´l´1
j“k Rj`1,j

¯

ti´l`1,i´l

ı
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Figure 15. Rotation and translation between positions of the camera.

Thus, if the coordinate system of the camera at position P1 is taken as the common coordinate
system, it is possible to determine the 3D coordinates of all of the sensors in that common system if we
know all of the rotation matrices Ri,1, the translation vectors ti,1 and the 3D coordinates of the sensors
in the coordinate system of the camera at position Pi.

5. Mapping of the Indoor Parameters

5.1. Acquisition System

The acquisition system has three components and is presented in Figure 16. The IR camera is
used to record thermal data from which the temperature of each sensor is obtained (Figure 17), the pair
of stereoscopic RGB cameras is used to compute the 3D coordinates of the sensors by triangulation,
and the pan-tilt unit serves to move the cameras during the scanning of the measurement grid. A web
interface has been developed in order to ensure a synchronous working of these components and
their control for short and long duration experiments. One can find the technical specifications in
Béland et al. [32]. From the recorded temperature history, the indoor parameters are estimated for each
sensor. By associating the value of the indoor parameter with the 3D coordinates of the point where this
value has been measured, an interpolation is conducted and the mapping of the indoor parameter is
obtained. Two experiments follow in order to illustrate the outcomes of the proposed instrumentation.
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5.2. Example of 2D Mapping of Air Speed and Air Temperature above A Fan-Coil Unit 

We present here the result of the quantification and the visualization of the air temperature and 
air speed in the median plane above a fan-coil. The fan-coil is installed under the windows of a room 
of size ܪ × ܮ × ܲ = ሺ2.5 × 2 × 3ሻ	mଷ as sketched in Figure 18a. The experimental setup is illustrated 
in Figure 18b. The measurement grid contains 48 sensors placed approximately at 10	cm intervals 
horizontally and 20	ܿ݉ intervals vertically. This grid is placed 10	cm above the fan-coil and covers 
an area of ሺ1 × 0.8ሻ	mଶ. All the sensors are in the field of view of the cameras, thus no camera motion 
is required. The mean external temperature is around 33	°C and the fan-coil provides air at a constant 
temperature of 18	°C.  Three inlet air speeds ( ௔௜௥ଵݒ = 1.25	m/s, ௔௜௥ଶݒ  = 1.95	m/s,  and ݒ௔௜௥ଷ =2.80	m/s), measured at the center of the fan-coil, are available. 
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Figure 18. 2D mapping above a fan-coil. (a) Fan-coil position in the room; and (b) scheme of the 
experimental setup. 

5.2.1. 2D Mapping of the Air Speed 

Figure 19 presents the 2D mapping of air speed for the three inlet air speeds of the fan-coil. 
Qualitatively, when the inlet air speed increases, the spatial distribution of the air speed has higher 
values. From these measurements, some characteristics can be retrieved. The horizontal profiles for 
heights 10	cm, 50	cm, and 90	cm above the fan coil are given by Figure 20. The profile at small 

Figure 17. Data retrieved during the scanning. (1) to (6): partial views of the measurement grid
corresponding to the successive positions of the cameras.

5.2. Example of 2D Mapping of Air Speed and Air Temperature above A Fan-Coil Unit

We present here the result of the quantification and the visualization of the air temperature and
air speed in the median plane above a fan-coil. The fan-coil is installed under the windows of a room
of size H ˆ Lˆ P “ p2.5ˆ 2ˆ 3q m3 as sketched in Figure 18a. The experimental setup is illustrated
in Figure 18b. The measurement grid contains 48 sensors placed approximately at 10 cm intervals
horizontally and 20 cm intervals vertically. This grid is placed 10 cm above the fan-coil and covers an
area of p1ˆ 0.8q m2. All the sensors are in the field of view of the cameras, thus no camera motion is
required. The mean external temperature is around 33 ˝C and the fan-coil provides air at a constant
temperature of 18 ˝C. Three inlet air speeds (vair1 “ 1.25 m{s, vair2 “ 1.95 m{s, and vair3 “ 2.80 m{s),
measured at the center of the fan-coil, are available.
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Figure 18. 2D mapping above a fan-coil. (a) Fan-coil position in the room; and (b) scheme of the
experimental setup.

5.2.1. 2D Mapping of the Air Speed

Figure 19 presents the 2D mapping of air speed for the three inlet air speeds of the fan-coil.
Qualitatively, when the inlet air speed increases, the spatial distribution of the air speed has higher
values. From these measurements, some characteristics can be retrieved. The horizontal profiles for
heights 10 cm, 50 cm, and 90 cm above the fan coil are given by Figure 20. The profile at small heights
(Figure 20a) is similar to the profile at the exit of the fan-coil. The air speed in this case is constant
between ´25 cm and 15 cm around the axis of the fan-coil. When the height increases, the profile
becomes convex in shape with a maximum value around the main axis (Figure 20b). For higher heights
(Figure 20c), the profile tends to become horizontal; a maximum penetration height exists. In order to
determine this penetration height, we analyze the vertical profile (Figure 21) at the center axis of the
fan-coil. The penetration height corresponds to the height at which air features are not influenced by
the fan-coil. Before the switching-on of the fan-coil, the air speed is null along the room. We assume
then that any air speed greater than zero is a result of the switching-on of the fan-coil. Taking into
account the uncertainty of 0.3 m{s provided by the proposed instrumentation, we set the decision
threshold to 0.3 m{s. Thus, the penetration height is the height at which the air speed is equal to
0.3 m{s. From Figure 21, the penetration height is identified as being 50 cm for the first inlet air speed,
68 cm for the second inlet air speed, and 84 cm for the third inlet air speed.
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Figure 19. 2D mapping of the air speed above a fan-coil. (a) Inlet air speed vair1 “ 1.25 m{s; (b) inlet
air speed vair2 “ 1.95 m{s; and (c) inlet air speed vair3 “ 2.80 m{s.
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Figure 20. 2D mapping of the air speed above a fan-coil, horizontal profiles. (a) Height of 10 cm; (b)
height of 50 cm; and (c) height of 90 cm.
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Figure 21. 2D mapping of the air speed above a fan-coil, vertical profile at the center axis.

5.2.2. Air Thermal Stratification

Before the fan-coil is switched on, a thermocouple, placed at the center of the room, indicates
p29.3˘ 0.5q ˝C. Using our instrumentation, the mapping of the air temperature above the fan coil
turned off is presented in Figure 22a. It shows that, in the room, the air temperature is not constant;
there is a permanent thermal stratification. The air is hotter closer to the ceiling and cooler closer to
the floor (Webster et al. [33]). It is clear from this result that the room's occupants could be subjected
to local thermal discomfort due to the temperature difference between their ankles and their heads
(Yu et al. [34]; ASHRAE Standard 55 [4]). Furthermore, in this situation where the room is in thermal
equilibrium with the outdoors, isothermal lines are parallel to the floor (Figure 22b). Figure 22c shows
the plot of the vertical temperature profile at the main axis of the fan-coil. It allows a quantification
of the dependence between the temperature and the height in the stratified room. We see that the air
temperature increases by 1 ˝C when the height increases by 40 cm.
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Figure 22. Air stratification. (a) Air temperature spatial distribution; (b) horizontal profiles; and
(c) vertical profile at the center axis.



J. Imaging 2016, 2, 10 17 of 21

5.2.3. 2D Mapping of the Air Temperature

Air with a temperature of 18 ˝C is supplied at three inlet speeds, vair1 “ 1.25 m{s, vair2 “ 1.95 m{s,
and vair3 “ 2.80 m{s by the fan-coil. The air temperature distribution above the fan-coil is the result
of a non-isothermal air flow in a portion of space where, initially, the air speed is null and the air
temperature is given by Figure 22a. Figure 23 gives the mapping of the air temperature for the three
inlet air speeds. Obviously, the initial temperature pattern (Figure 22a) is modified by the cold air
supplied by the fan-coil. Instead of being horizontal, the isotherm lines now have a convex shape.
For the lower inlet air speed for example, the air becomes stagnant from a certain height which is the
penetration height (Figure 23a). One can also discuss the level of thermal comfort achieved when such
a fan-coil is used. The temperature difference between the bottom and the top of the inspected area
depends on the inlet air speed. For the first inlet air speed (Figure 23a), instead of 2 ˝C as, initially, this
temperature difference is greater than 10 ˝C.
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Figure 23. 2D mapping of the air temperature above a fan-coil. (a) Inlet air speed vair1 “ 1.25 m{s;
(b) inlet air speed vair2 “ 1.95 m{s; and (c) inlet air speed vair3 “ 2.80 m{s.

5.3. Example of 3D Mapping of Air Speed and Air Temperature above a Fan-Coil Unit

In this section we show that our instrumentation can be used successfully for the mapping of
the indoor ambient parameters when the analyzed area is much greater than the field of view of the
cameras. In such a case, the measurement grid is sufficiently large and a scanning is needed in order to
record the temperature of all of the sensors. We apply the procedure to the mapping of the air speed
and air temperature around a fan-coil which supplies hot air from the floor. The experimental setup is
shown in Figure 24a. When the measurement grid is moved to several positions around the fan-coil,
the 3D mapping of the parameters can be achieved. Figure 24b shows the four positions considered
here for the mapping. Distances between the measurement grid and the median plane of the fan-coil
are respectively 0 cm, 5 cm, 20 cm, and 35 cm. The measurement grid, in this case, covers an area of
p1.2ˆ 1.7q m2 and contains 286 sensors placed approximately at 8 cm intervals horizontally and 10 cm
intervals vertically.
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Figure 24. 3D mapping above a fan-coil. (a) Experimental setup; and (b) successive positions of the
measurement grid.

The motion of the cameras is ensured by the pan-tilt unit. At each position, the IR camera records
a set of IR images corresponding to a partial view of the measurement grid, and the RGB cameras
record a pair of stereoscopic images. From the IR images, the temperature history of the sensors is
extracted; from each pair of stereoscopic images, their 3D coordinates are determined by triangulation.
As presented in section 4, the rotation and the translation between coordinate systems of the camera
for two successive positions can be determined. The 3D coordinates of all of the sensors can then be
found in a common coordinate system. Figure 25a shows, for the first position of the measurement
grid, the result of its 3D reconstruction. The reconstruction is slightly noisy due to errors which are
introduced by the calibration of the cameras and the triangulation. By filtering this raw result using a
RANSAC, we obtain the 3D coordinates of all 286 sensors (Figure 25b). Finally, Figure 25c gives the 3D
coordinates of all of the sensors for the four positions of the measurement grid.
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Figure 25. 3D coordinates of the sensors. (a) Raw data of the triangulation; (b) filtered data; and (c) the
reconstructed measurement grid for the four positions.

The problem here takes the form of a non-isothermal air flow where the mean inlet air temperature
is 40 ˝C, the mean inlet air speed is 1.5m{s, the initial air temperature in the room is 23 ˝C and, initially,
air speed has a null value in the room. Figure 26 gives the results of the 3D mapping of air speed and air
temperature. Coordinates p0, 0, 0q correspond to the origin of the coordinate system of the left camera.
Thus, the proposed instrumentation provides a good mean for the visualization of the distribution of
indoor parameters. For the present case where the fan-coil has a dimension of p10ˆ 56q cm2, it appears
that, a significant impact of the fan-coil is noticeable only in a region close to its median plane; that is,
at distances 0 cm and 5 cm from the median plane. Far from the fan-coil, the air temperature, as well
as the air speed, has a quasi-uniform distribution.
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Although it meets the requirement of accuracy of the standard ISO 7726, some improvements is 
needed to also meet the desirable accuracy prescribed by the standard. Specifically, a more accurate 
and sensitive anemometer has to be considered for calibration. Furthermore, a camera with a high 
spatial resolution may improve the signal-to-noise ratio of the experimental data. 

Figure 26. 3D mapping. (a) Case of air speed; and (b) case of air temperature.

6. Conclusions

An instrumentation devoted to the mapping of the indoor conditions by infrared thermography
has been presented. It is associated with a measurement grid built by arranging a set of sensors
horizontally and vertically, an IR camera, a pair of stereoscopic RGB cameras and a pan-tilt unit.
The sensor, which is used to determine all of the ambient parameters, has been validated experimentally.
The results show that a maximum uncertainty of 0.3 m{s, 0.6 ˝C and 1.7 ˝C is achieved, respectively,
on air speed, air temperature, and mean radiant temperature, respectively. Image processing tools
have been presented. The objectives achieved are the robust detection of sensors in the images through
Hough transform, the determination of the 3D coordinates of the sensors by triangulation, and the
registration of all of the sensors in a common 3D coordinate system, specifically when the camera
is moved in order to scan the entire measurement grid. The full procedure works very well and the
mapping of the indoor parameters is possible. Two in situ experiments have been conducted. The first
experiment involved the 2D mapping of air temperature and speed above a cooling fan-coil unit,
and the second experiment involved the 3D mapping of air temperature and speed around a heating
fan-coil unit. Results show that the instrumentation proposed is reliable and can be regarded as both a
measurement technique and a visualization technique. All of the experiments presented in this paper
have been conducted in office buildings without any occupants. At this time, no experiment has been
conducted in the presence of occupants. As the method uses an infrared camera, there must be a free
path between the camera and all of the sensors of the measurement grid. This is the main constraint
of the proposed method. For the experiments where occupants are present, a difficulty could be to
find the best way to place the measurement grid such that it is visible by the camera. Let us remind
that, instead of using three different sensors, the proposed method uses a simple metallic spherical
sensor for the contactless measurement of three different ambient parameters. From this point of view,
the method has a low economic cost, particularly for the mapping of these parameters. A simple
distribution of such sensors (measurement grid) in space can provide useful data for the mapping.
The use of the dedicated instruments (anemometer, thermocouple, etc.) will result in a point-to-point
process which is very time consuming and cumbersome. At this time one drawback of the method
is its accuracy level. Although it meets the requirement of accuracy of the standard ISO 7726, some
improvements is needed to also meet the desirable accuracy prescribed by the standard. Specifically, a
more accurate and sensitive anemometer has to be considered for calibration. Furthermore, a camera
with a high spatial resolution may improve the signal-to-noise ratio of the experimental data.
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