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Abstract: This paper proposes the transformation S →
→
C , where S is a digital gray-level image

and
→
C is a vector expressed through the textural space. The proposed transformation is denominated

Vectorial Image Representation on the Texture Space (VIR-TS), given that the digital image S is

represented by the textural vector
→
C. This vector

→
C contains all of the local texture characteristics in

the image of interest, and the texture unit
→
T entertains a vectorial character, since it is defined through

the resolution of a homogeneous equation system. For the application of this transformation, a new

classifier for multiple classes is proposed in the texture space, where the vector
→
C is employed as a

characteristics vector. To verify its efficiency, it was experimentally deployed for the recognition of
digital images of tree barks, obtaining an effective performance. In these experiments, the parametric
value λ employed to solve the homogeneous equation system does not affect the results of the image
classification. The VIR-TS transform possesses potential applications in specific tasks, such as locating
missing persons, and the analysis and classification of diagnostic and medical images.

Keywords: Vectorial Image Representation on the Texture Space (VIR-TS); texture unit
→
T ; homogeneous

equation system; multiclass classifier; digital image recognition

1. Introduction

Visual texture is an important element for component classification in scenes and is
commonly used for the processing of visual information. The surfaces of all materials
are characterized through their texture properties, which can be described as follows:
(a) the visual texture is a spatial distribution of gray levels; (b) the visual texture can be
perceived through different scales or resolutions; (c) the texture is an area property and
not a point property; (d) a region is perceived as texture when the number of primitive
objects within it is large. On the other hand, according to reference [1], some important
perceptions in the quality of a texture are uniformity, density, rugosity, linearity, direction,
frequency, and phase. Henceforth, a texture can be considered as fine, rough, soft, regular,
irregular, or linear. The grade of irregularity or the properties of a texture can be found
scattered throughout the entire image. In the field of texture analysis, there exist three
major problems: (a) texture classification, focused on determining to which class the
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sampled texture belongs [2–4]; (b) texture segmentation, where an image is sectioned
into multiple regions and each region has a specific type of texture [5,6]; and (c) texture
synthesis, which focuses on constructing a model that can be employed to produce artificial
textures for specific applications such as computer graphics [7,8]. Furthermore, according to
reference [9], the characteristics extraction techniques can be classified into three categories:
geometrical methods, signal processing, and statistical models. Geometrical methods
are based on the analysis of primitive textures. Some geometrical methods for primitive
extractions include adaptative region extractions, mathematical morphology, structural
methods, and border detection [10,11]. The model-based methods hypothesize the subjacent
texture, constructing a parametric model that can generate the intensity’s distribution of
interest. Ergo, these models can also be employed for texture synthesis. Some of these
models that are applied for texture synthesis are called stochastic spatial interaction models,
random field models, and fractals [12,13]. The signal processing methods perform an
analysis of the frequency components of the images; the latter are also known as filtering
methods, and to mention only some of these, we submit spatial domain filter, frequency
analysis, and spatial/spatial–frequency methods [14,15]. Last but not least, the statistical
methods offer an analysis of the spatial distribution of the local texture characteristics. Such
characteristics are represented through a histogram of a variable dimension depending
on the procedure employed to calculate the texture unit [16–18]. This histogram presents
the occurrence frequency of the estimated texture units within the digital image, and its
dimension is dependent on the unit texture definition. Selection of the texture extraction
method is conducted in agreement with the problem under consideration. There are two
types of classifiers for image classification in an a priori knowledge scheme: one-class and
multiclass. For one-class classifiers [19,20], an unequivocal class is clearly defined, while
the remaining classes are of no interest. In this situation, a region is defined within the
characteristics space; this region represents the textural characteristics of the known class.
This region is the acceptance zone for the class of interest or is employed as a prototype. On
the other hand, in the multiclass classifiers [21–23], the characteristics space is divided into
multiple regions, each region corresponding to the characteristics of a class and, frequently,
the class (image) is represented by a characteristics vector known as a prototype vector.
The classification of multiclass images consists of comparing the characteristics vector of a
test image with the characteristics vectors of the known classes. Henceforth, the test image
is assigned to the class with the most similar characters. This discrimination is performed
by means of finding the distance between the vectors within the characteristics space.

To our knowledge, the texture unit has not been defined through a homogeneous
equation system, which is defined through an observation window. In this paper, the
local texture characteristics are extracted from grayscale images S. To extract the texture
characteristics, a mobile observation window of W = 3 × 3 in size is employed to detect
local random patterns of P pixels across the image. In each detected position, the pixel
values are considered constants within a homogeneous equation system whose solution is

the vectorial unit texture
→
T . This unit

→
T is represented in a new texture space as a vector

radius that extends from the origin to the vector position
→
T , such that each random pattern

of P pixels has a corresponding texture unit vector
→
T (vector radius). By adding together

all of the components of the vector radius,
→
C is calculated; this latter vector contains all

of the local texture characteristics of the image under study, S. Ergo, the transformation

represents a gray-level image S through a vector
→
C, whose direction and magnitude depend

entirely on the textures of the image. This transformation has been denominated Vectorial
Image Representation on the Texture Space (VIR-TS), due to the representation of a digital

image S through the vector
→
C. The efficiency of the VIR-TS transform was experimentally

corroborated through the classification of tree stem images with a multiclass classifier,

where the
→
C vector is employed as a characteristics vector.
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The report has the following structure. Materials and methods are presented in Section 2.
In Section 2.1, the texture space is described based on three subsections: Section 2.1.1, the
definition of the texture unit is shown; Section 2.1.2, the definition of the texture unit is
represented graphically; and Section 2.1.3, the representation of a digital image in texture
space is described. In Section 2.2, the procedure to measure the similarity in texture space
between a prototype vector and a test vector is explained. Section 2.3 describes a classifier
for multiple classes in texture space and where the VIR-TS vector is used as a feature vector.
In Section 3, the experimental work is developed. In Section 3.1, a digital image database is
vector-represented in texture space where each vector has its own direction and magnitude.
Furthermore, using the vectors obtained in the transformation, the similarity between
images is measured. In Section 3.2, experimental results of image classification are reported,
which demonstrate the high efficiency of the VIR-TS technique. A discussion of our work
is provided in Section 4. Finally, in Section 5 the most relevant conclusions are presented.

2. Materials and Methods
2.1. Texture Space
2.1.1. Texture Unit Definition

In the texture analysis, a mobile observation window W frequently bears a W =
I × J = 3 × 3 size [21,24,25]; it is deployed to extract the local texture characteristics of an
image under study. This window is shifted pixel-by-pixel across the whole image and,
for each position, the window detects a discrete pattern, which is employed to generate a
decimal code called a texture unit. Afterward, the texture unit is interpreted as a discrete
variable and is then taken as an index to generate a discrete histogram h(k). Such a
histogram h(k) is interpreted as a texture spectrum and is then deployed as a characteristics
vector in image classifiers [21].

Now, bearing in mind the structure of the mobile observation window, and considering
the gray-level image such as a random matrix = {sm,n} (m = 1, 2, . . . , M; n = 1, 2, . . . , N),
with size M × N, and for each position, a discrete pattern P =

{
pi,j

}
(I = 1, 2, 3; J = 1, 2, 3) is

detected through the window, as shown in Figure 1. If the pattern elements are considered
the coefficient of a homogeneous equation system, the system will be:

CPT = 0 =⇒

 p11 p12 p13
p21 p22 p23
p31 p32 p33

t1
t2
t3

 =

0
0
0

 =⇒
p11t1 + p12t2 + p13t3 = 0
p21t1 + p22t2 + p23t3 = 0
p31t1 + p32t2 + p33t3 = 0

(1)

where CP=

 p11 p12 p13
p21 p22 p23
p31 p32 p33

 is termed the coefficient matrix of the homogeneous linear

system, represented as a matrix of 3 × 3 real elements, and T =

t1
t2
t3

 is called the unit

texture vector. The trivial solution of the homogeneous equation system occurs when
all of the elements of vector T have a value of zero: t1 = 0, t2 = 0, t3 = 0. Nonetheless,
this solution is not functional for our interests; thus, a nontrivial solution must be found.
Therefore, based on a linear algebra concept, the nontrivial solution is possible when its
determinant is equal to zero; as a consequence, there will be infinite solutions. To achieve
this, the term K is introduced within the equations and their determinant is equal to zero,
as shown in Equation (2):

det
∣∣Cp

∣∣ =
∣∣∣∣∣∣

p11 p12 p13
p21 p22 p23
p31 p32 Kp33

∣∣∣∣∣∣ = 0 (2)
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Figure 1. A pattern P detected in the grayscale image S through an observation window of 3 × 3
elements.

Hence, the problem becomes that in finding a K value, so that the condition det
∣∣Cp

∣∣ =
0 is satisfied. From Equation (2), in terms of the matrix elements CP, K has a value of

K =
p31(p12 p23 − p22 p13) + p32(p13 p21 − p23 p11)

p33(p21 p12 − p11 p22)
(3)

Once the value K is determined, it is introduced into the equation system; Equation (1)
then takes the following form:

p11t1 + p12t2 + p13t3 = 0
p21t1 + p22t2 + p23t3 = 0

p31t1 + p32t2 + Kp33t3 = 0
(4)

where the value K is determined by Equation (3).
Afterward, to determine the texture unit T, the nontrivial solution of Equation (4) must

be found. As a first step, the first two linear equations are left depending on t3:

p11t1 + p12t2 = p13t3
p21t1 + p22t2 = p23t3

(5)

employing the Cramer Rule method, the solution for t1 is obtained through:

t1 =
Dt1

D
=

∣∣∣∣p13t3 p12
p23t3 p22

∣∣∣∣∣∣∣∣p11 p12
p21 p22

∣∣∣∣ =
p13 p22 − p23 p12

p11 p22 − p12 p21
t3 (6)
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while the solution for t2 is:

t2 =
Dt2

D
=

∣∣∣∣p11 p13t3
p21 p23t3

∣∣∣∣∣∣∣∣p11 p12
p21 p22

∣∣∣∣ =
p11 p23 − p21 p13

p11 p22 − p12 p21
t3 (7)

where D is the determinant of the 2 × 2 equation system, Dt1 is the determinant for t1,
and Dt2 is the determinant for t2. It is noteworthy that t1 and t2 function on the basis of t3;
accordingly, the infinite solution in parametric form is:

∞ − solutions


t1 = p13 p22−p23 p12

p11 p22−p12 p21
λ

t2 =
p1,1 p2,3−p21 p13
p11 p22−p12 p21

λ

t3 = λ

λ ∈ R (8)

Observing Expression (8), for each real value of lambda λ, a unique resolution of the
infinite solution is found. For example, when λ = 0, the trivial solution of the equation
system is obtained (t1 = 0, t2 = 0, and t3 = 0); henceforth, the nontrivial solution is
obtained when λ ̸= 0.

2.1.2. Graphical Representation

Based on Equation (1) and Expression (8), the unit texture vector is defined by: T =t1
t2
t3

 =


p13p22−p23p12
p11p22−p12p21

λ
p11p23−p21p13
p11p22−p12p21

λ

λ

. It can be represented through the Cartesian coordinate system

form:

⇀
T = t1 û1 + t2 û2 + t3 û3 =

p13 p22 − p23 p12

p11 p22 − p12 p21
λû1 +

p11 p23 − p21 p13

p11 p22 − p12 p21
λû2 + λû3 (9)

where û1, û2, û3 are the unit vectors that indicate the axis direction in a rectangular coordi-
nate system of three dimensions (Figure 2a). Hereafter (9), the p13 p22−p23 p12

p11 p22−p12 p21
λ, p11 p23−p21 p13

p11 p22−p12 p21
λ,

λ scalars are the components of vector
⇀
T in the directions u1, u2, u3. Finally, from Equa-

tion (8), the magnitude of vector
⇀
T is:

∣∣∣∣⇀T ∣∣∣∣ =
√(

p13 p22 − p23 p12

p11 p22 − p12 p21
λ

)2
+

(
p11 p23 − p21 p13

p11 p22 − p12 p21
λ

)2
+ λ2 (10)

and its directing cosines are:

cosα =
p13 p22−p23 p12
p11 p22−p12 p21

λ∣∣∣∣⇀T ∣∣∣∣
cosβ =

p11 p23−p21 p13
p11 p22−p12 p21

λ∣∣∣∣⇀T ∣∣∣∣
cosγ = λ∣∣∣∣⇀T ∣∣∣∣

. (11)

where
cos2α + cos2β + cos2γ = 1. (12)

with
∣∣∣∣⇀T ∣∣∣∣ being the magnitude of vector

⇀
T ; its graphic presentation is displayed in Figure 2b.

Based on Figure 2b, the texture unit
⇀
T is a radius vector that extends from the origin to the

coordinates t1 = p13 p22−p23 p12
p11 p22−p12 p21

λ, t2 =, p11 p23−p21 p13
p11 p22−p12 p21

λ, t3 = λ.
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It is clear that the direction and magnitude depend on the λ value and the elements in
the P pattern.
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2.1.3. Image Representation on the Texture Space

Given that, if a grayscale image S has an M × N size and if this image is analyzed
through an I× J window, then there are (M − I + 1)× (N − J + 1) patterns P. Furthermore,

given that each P pattern (in the image domain) generates a texture unit
→
T (in texture

space), then when the image S is analyzed locally through the observation window for
the n − th pattern Pn (n = 1, 2, 3, . . . , NP = (M − I + 1)× (N − J + 1)), the n − th texture

unit
→
Tn is calculated (radius vector in texture space); as a consequence, the image S can be

represented through a series of radius vectors. Thus, adding together all of the components

of all of these radius vectors in the texture space, the image S is represented by vector
→
C,

defined as: →
C = a1û1 + a2û2 + a3û3 (13)

The directions are given by û1, û2, û3 and the components a1, a2, a3 are calculated with:

a1 =
NP=(M−I+1)×(N−J+1)

∑
n=1

t1n

a2 =
NP=(M−I+1)×(N−J+1)

∑
n=1

t2n

a3 =
NP=(M−I+1)×(N−J+1)

∑
n=1

t3n

, (14)

where t1n is the n − th component of the elements for t1, t2n is the n − th component of
the elements for t2, and t3n is the n − th component of the elements for t3. Equation (9)
was considered, and NP is the total of the patterns found in the digital image under study.

Figure 3 depicts vector
→
C, which is in texture space.
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Figure 3. Graphic representation of the texture vector
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C with its directing cosines.

Considering Figure 3 and Equation (13), the magnitude of vector
→
C is:∣∣∣∣→C∣∣∣∣ = √

a2
1 + a2

2 + a2
3 (15)

where its directing cosines are given with:

cosα = a1∣∣∣∣→C∣∣∣∣
cosβ = a2∣∣∣∣→C∣∣∣∣
cosγ = a3∣∣∣∣→C∣∣∣∣

(16)

and holding the equivalence:

cos2

 a1∣∣∣∣→C∣∣∣∣
+ cos2

 a2∣∣∣∣→C∣∣∣∣
+ cos2

 a3∣∣∣∣→C∣∣∣∣
 = 1 (17)

Based on the performed analysis, image S can be represented as a radius vector
∣∣∣∣→C∣∣∣∣ in

the texture space whose magnitude and direction depend on the randomness in the image
under study.

2.2. Similarity Measurement between a Prototype Image and Test Image

With the knowledge that the S →
→
C transformation is possible, then the measurement

of similarity between a prototype image and an unknown test image can be performed in
the texture space.

Given a digital image Sc of a c class whose texture vector is
→
Cc, and given an unknown

test image STest whose vector is
→
CTest, the difference between the Sc and STest images in the
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texture space can be calculated through subtraction of the unknown image
→
CTest minus the

vector of the prototype image
→
Cc:

→
Cdif =

→
CTest −

→
Cc (18)

where
→
Cdif is the difference vector between the texture images.

Images deploy the
→
Cc and

→
CTest vectors. Considering the cosines law and the geometry

present in Figure 4, we obtain:∣∣∣∣→Cdif

∣∣∣∣2 =

∣∣∣∣→CTest

∣∣∣∣2 + ∣∣∣∣→Cc

∣∣∣∣2 − 2
∣∣∣∣→CTest

∣∣∣∣∣∣∣∣→Cc

∣∣∣∣cosφ (19)

and from (19), we obtain:

2
∣∣∣∣→CTest

∣∣∣∣∣∣∣∣→Cc

∣∣∣∣cosφ =

∣∣∣∣→CTest

∣∣∣∣2 + ∣∣∣∣→Cc

∣∣∣∣2 − ∣∣∣∣→Cdif

∣∣∣∣2 (20)

Due to the geometry of the problem, if (18) is substituted in (20), we obtain:

2
∣∣∣∣→CTest

∣∣∣∣∣∣∣∣→Cc

∣∣∣∣cosφ =

∣∣∣∣→CTest

∣∣∣∣2 + ∣∣∣∣→Cc

∣∣∣∣2 − ∣∣∣∣→CTest −
→
Cc

∣∣∣∣2 (21)

On applying the distributive law:

2
∣∣∣∣→CTest

∣∣∣∣∣∣∣∣→Cc

∣∣∣∣cosφ =
→
CTest·

→
CTest +

→
Cc·

→
Cc −

→
CTest·

→
CTest +

→
CTest·

→
Cc −

→
Cc·

→
Cc +

→
Cc·

→
CTest (22)

On reducing, we reach

2
∣∣∣∣→CTest

∣∣∣∣∣∣∣∣→Cc

∣∣∣∣cosφ = 2
(→

CTest·
→
Cc

)
(23)

From (23), the following relationship can be achieved:

cosφ =

→
CTest·

→
Cc∣∣∣∣→CTest

∣∣∣∣∣∣∣∣→Cc

∣∣∣∣ (24)

where the symbol indicates a scalar product,
∣∣∣∣→CTest

∣∣∣∣ is the magnitude of vector
→
CTest,

∣∣∣∣→Cc

∣∣∣∣ is

the magnitude of vector
→
Cc, and cosφ is the cosine of the angle formed between

the
→
CTest and

→
Cc vectors. With the knowledge that Expression (24) is employed to measure

the similarity between vectors, this equivalence is achieved:

sim(STest, Sc) = cosφ =

→
CTest·

→
Cc∣∣∣∣→CTest

∣∣∣∣∣∣∣∣→Cc

∣∣∣∣ (25)

where sim(S_Test, S_c) is the similarity measurement between the STest and Sc images.
Thus, based on Figure 4 and Equation (25), the following conditions (as points) can be
indicated:

1. If cosφ = 0, then sim(STest, Sc) = 0, because
→
CTest and

→
Cc are orthogonal, φ = 90◦.

Ergo, the STest and Sc images are completely different (see Figure 5a).
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2. If cosφ = 1, then sim(STest, Sc) = 1, because
→
CTest and

→
Cc have the same direction and

magnitude, φ = 0◦. For this case, the STest and Sc images are identical (see Figure 5b).
3. If 0 < cosφ < 1, then 0 < sim(STest, Sc) < 1; consequently, the STest and Sc images

have a certain degree of similarity between them, given that the
→
CTest and

→
Cc vectors

are not parallel within the texture space. Therefore, the condition 0◦ < φ < 90◦ is
satisfied (see Figure 5c).
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Figure 5. (a) The
→
CTest and the

→
Cc vectors are orthogonal, and the similarity of STest and Sc equals 0.

(b) The
→
CTest and

→
Cc vectors are parallel; hence, the STest and Sc images are identical, and (c) there is

a certain angle between the
→
CTest and the

→
Cc vectors; thus, the STest and Sc images possess a certain

degree of similarity.
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Based on conditions 1–3 and on Figure 5, it is possible to measure the similarity
between images within the texture space; therefore, texture image classification is also
a possibility.

2.3. Image Classification in the Texture Space

Figure 6 schematically displays the proposed multiclass classifier for image recogni-
tion within the texture space. The classifier consists of two phases: learning and recog-
nition. During the learning phase, a human expert identifies and names a known image
database Sc (c = 1, 2, 3, . . . , C), where each image is considered as an independent class;

each class has a series of radius vectors
→
Tn that are calculated, and with these radius vec-

tors, the prototype vector
→
Cc is obtained. This

→
Cc vector represents all of the local texture

characteristics of the image Sc within the c class. In the recognition phase, an unknown test

image STest is represented through a series of radius vectors
→
T t(t = n), and the

→
CTest vector

is calculated with these. Afterward, the similarity between the test image STest and the
prototype images Sc is measured in the texture space employing Expression (25). The test
image STest is then assigned to the most similar class; such a condition is achieved when

the angle y is the smallest of these during the comparison between the
→
CTest and

→
Cc vectors

(see Figure 5) and when the following condition is satisfied:

max(sim(STest, Sc)) = max(cosφ) =

→
CTest·

→
Cc∣∣∣∣→CTest

∣∣∣∣∣∣∣∣→Cc

∣∣∣∣ (26)

Ergo, the image STest is assigned to the c class when the projection of the vec-

tor
→
CTest above the

→
Cc vector is the unit or that closest to the unit.
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Figure 6. A schematic representation of the multiclass classifier.

The classifier results are displayed in a confusion matrix H = {hcc}; the rows show
the prototype images, the columns show the test images, the elements of the main diagonal
correspond to the correct classification hits, and the elements outside of the diagonal
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represent the classification errors. The classification efficiency in terms of percentage is
calculated with:

E f % =
∑ diag({hcc})

∑c ∑c hcc
× 100 (27)

where E f % is the efficiency in terms of percentage, ∑ diag({hcc}) is the sum of all of the
elements of the main diagonal in the confusion matrix, and ∑c ∑c hcc is the sum of all of the
elements within the confusion matrix.

3. Experimental Work and Results

3.1. Transformation of an Image S Onto a Texture Vector
→
C

In this section, a database comprising 10 digital images of tree stems Sc(c = 1, 2, . . . , 10) is

represented through texture vectors
→
Cc, employing λ = 2 and λ = 25 values and an

observation window of W = 3 × 3 size. The database is presented in Figure 7. Each
image Sc was acquired with a Smartphone LG 50, and rotation and scale are controlled
under natural illumination and with a fixed resolution of M × N = 3120 × 4160 pixels.
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Additionally, the Sc →
→
Cc transformation was performed applying the following

steps: (a) the RGB image acquired with the Smartphone LG 50 was transformed into a
grayscale level Sc deploying MatLab 2016b® scientific software; (b) an observation window
with a W = 3× 3 size is selected; (c) the window W is displaced element-by- element across
the entire gray-level image Sc with a M × N = 3120 × 4160 size; (d) for each pattern P, a

homogeneous equation system is proposed, then its
→
T unit is calculated; (e) all units

→
T are

represented in the texture space as a radius vector, and (f) by adding together all of the

radius vectors, the vector
→
Cc is estimated. Exercising steps a–f, the images in Figure 7 were

represented through a texture vector
→
Cc(c = 1, 2, 3, . . . , 10). The results are presented in

Table 1.



J. Imaging 2024, 10, 48 12 of 17

Table 1. Texture vectors
→
Cc obtained from the digital images shown in Figure 6.

Transformation from Image

to Sc→
→
C c Vector Vectors

→
C Obtained for λ = 2 Vectors

→
C Obtained for λ = 25

S1 →
→
C1 9.56 × 102 û1 + 1.65×105û2 + 177608 û3 11.9 × 105 û1 + 2 × 105 û2 + 22.2 × 105 û3

S2 →
→
C2 −2.38×104û1 + 1.97×105 û2 + 177608 û3 −2.98 × 105û1 + 2.465 × 106 ^

u2 + 22.2 × 105 û3

S3 →
→
C3 −8.73 × 104 û1 + 2.09×105 û2 + 177608 û3 −10.91 × 105 û1 + 2.621 × 106 û2 + 22.2 × 105 û3

S4 →
→
C4 4.44 × 103 û1 + 1.70×105 û2 + 177608 û3 5.55 × 104 û1 + 2.136 × 106 û2 + 22.2 × 105 û3

S5 →
→
C5 −6.06 × 103 û1 + 1.81×105 û2 + 177608 û3 −7.58 × 104 û1 + 2.275 × 106 û2 + 22.2 × 105 û3

S6 →
→
C6 −6.68 × 104 û1 + 2.41×105 û2 + 177608 û3 −8.35 × 105 û1 + 3.021 × 106 û2 + 22.2 × 105 û3

S7 →
→
C7 −2.21 × 104û1 + 1.978×105 û2 + 177608 û3 −2.77 × 105 û1 + 2.472 × 106 û2 + 22.2 × 105 û3

S8 →
→
C8 −2.44 × 104û1 + 1.979×105 û2 + 177608 û3 −3.05 × 105 û1 + 2.474 × 106 û2 + 22.2 × 105 û3

S9 →
→
C9 −2.65 × 104 û1 + 2.02×105 û2 + 177608 û3 −3.32 × 105 û1 + 2.529 × 106 û2 + 22.2 × 105û3

S10 →
→
C10 −2.97 × 104 û1 + 2.04×105 û2 + 177608 û3 −3.72 × 105 û1 + 2.562 × 106 û2 + 22.2 × 105û3

Considering Figure 7 and Table 1, the digital image Sc is represented in the texture

space through a radius vector
→
Cc, whose components are dependent on the texture charac-

teristics of the image and on the parametrization value λ. During the transformation, the

texture characteristics of the image render the
→
Cc vector unique in the texture space, while

the parameter λ operates as a scale factor.
To verify the uniqueness of each vector in Table 1, the similarity between these is

measured employing the scalar product in Equation (25). The results are displayed in a
confusion matrix, where the elements of the main diagonal correspond to the similarity

measurements of the same vector
(→

Cc y
→
Cc

)
; hence, its value is the unit (marked in

blue). Otherwise, the elements outside of the main diagonal correspond to the similarity

measurement between two different vectors
(→

Cc y
→
Cm

)
; consequently, such elements have

a value lower than the unit. Tables 2 and 3 present these results:

Table 2. Similarity measurement between vectors in the texture space, cosφ when λ = 2.

Experimental Results for λ = 2 (First Confusion Matrix)

Tree stem images (prototypes)

Tr
ee

st
em

im
ag

es
(t

es
t)

1 2 3 4 5 6 7 8 9 10
1 1.0000 0.9919 0.9453 0.9997 0.9985 0.9583 0.9923 0.9915 0.9898 0.9880
2 0.9919 1.0000 0.9759 0.9916 0.9970 0.9868 0.9999 0.9999 0.9998 0.9996
3 0.9453 0.9759 1.0000 0.9424 0.9576 0.9938 0.9745 0.9764 0.9780 0.9803
4 0.9997 0.9916 0.9424 1.0000 0.9986 0.9577 0.9922 0.9912 0.9896 0.9878
5 0.9985 0.9970 0.9576 0.9986 1.0000 0.9714 0.9973 0.9968 0.9958 0.9945
6 0.9583 0.9868 0.9938 0.9577 0.9714 1.0000 0.9861 0.9872 0.9890 0.9908
7 0.9923 0.9999 0.9745 0.9922 0.9973 0.9861 1.0000 0.9999 0.9998 0.9995
8 0.9915 0.9999 0.9764 0.9912 0.9968 0.9872 0.9999 1.0000 0.9999 0.9996
9 0.9898 0.9998 0.9780 0.9896 0.9958 0.9890 0.9998 0.9999 1.0000 0.9999
10 0.9880 0.9996 0.9803 0.9878 0.9945 0.9908 0.9995 0.9996 0.9999 1.0000
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Table 3. Similarity measurement between vectors in the texture space, cosφ when λ = 25.

Experimental Results for λ = 25 (Second Confusion Matrix)

Tree stem images (prototypes)

Tr
ee

st
em

im
ag

es
(t

es
t)

1 2 3 4 5 6 7 8 9 10
1 1.0000 0.9919 0.9453 0.9997 0.9985 0.9583 0.9923 0.9915 0.9898 0.9880
2 0.9919 1.0000 0.9759 0.9916 0.9970 0.9868 0.9999 0.9999 0.9998 0.9996
3 0.9453 0.9759 1.0000 0.9424 0.9576 0.9938 0.9745 0.9764 0.9780 0.9803
4 0.9997 0.9916 0.9424 1.0000 0.9986 0.9577 0.9922 0.9912 0.9896 0.9878
5 0.9985 0.9970 0.9576 0.9986 1.0000 0.9714 0.9973 0.9968 0.9958 0.9945
6 0.9583 0.9868 0.9938 0.9577 0.9714 1.0000 0.9861 0.9872 0.9890 0.9908
7 0.9923 0.9999 0.9745 0.9922 0.9973 0.9861 1.0000 0.9999 0.9998 0.9995
8 0.9915 0.9999 0.9764 0.9912 0.9968 0.9872 0.9999 1.0000 0.9999 0.9996
9 0.9898 0.9998 0.9780 0.9896 0.9958 0.9890 0.9998 0.9999 1.0000 0.9999
10 0.9880 0.9996 0.9803 0.9878 0.9945 0.9908 0.9995 0.9996 0.9999 1.0000

Based on the results of Tables 2 and 3, both confusion matrixes are identical, given that
the elements in their respective diagonals are the unit, and the elements outside of their
diagonals are fewer than the unit. This corroborates that a digital image Sc is represented in

the texture space through a unique vector
→
Cc, and that the parameter λ, operated as a scale

factor and its value, does not affect the results. Furthermore, the similarity measurements
between images above 0.94 are attributed to the parametrization of the homogeneous
equation system due to its resolution. This causes the third component of all of the vectors
to bear the same value λ, and the remaining two components (first and second) are the
only components scaled by the value of λ (see Equation (8)).

3.2. Image Recognition in the Texture Space

Knowing that each digital image can be represented in the texture space through a
vector, the goal of this section is to prove that the digital images can be classified in the
texture space. As previously presented in Figure 7, the database consists of 10 digital
images with a size of M × N = 3120 × 4160 pixels; these images show the bark of tree
stems and were acquired under natural lighting and controlled scale and rotation. The
classifier employed for image recognition was described in Section 4. In both phases,
the same images are employed for both learning and recognition, along with the same
observation window size of W = 3 × 3 pixels. The similarity measurement in the texture

space is performed considering the maximal likeness between the
→
CTest and

→
Cc vectors

(Equations (25) and (26)). To conclude, the classification results are presented through two
confusion matrixes: Table 4 displays the confusion matrix for λ = 2, and Table 5 presents
the confusion matrix for λ = 25.

Table 4. Confusion matrix obtained for the image classification when λ = 2.

Experimental Results for λ = 2

Tree stem images (prototypes)

Tr
ee

st
em

im
ag

es
(t

es
t)

1 2 3 4 5 6 7 8 9 10
1 1 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 0 1 0 0
9 0 0 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 0 1
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Table 5. Confusion matrix obtained for the image classification when λ = 25.

Experimental Results for λ = 25

Tree stem images (prototypes)

Tr
ee

st
em

im
ag

es
(t

es
t)

1 2 3 4 5 6 7 8 9 10
1 1 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 0 1 0 0
9 0 0 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 0 1

It is worth recalling that the elements of the main diagonal in these matrixes represent
the correct classification hits, and the elements outside of the main diagonal are the identifi-
cation errors. In this manner, based on Equation (27) and Tables 4 and 5, the classification
is:

E fλ=2% = 1+1+1+1+1+1+1+1+1+1
10 = 100% (Table 4)

E fλ=25% = 1+1+1+1+1+1+1+1+1+1
10 = 100% (Table 5)

(28)

where E fλ=2% is the image classification efficiency in terms of percentage for λ =
2, and E fλ=25% is the image classification efficiency for λ = 25. The efficiency is 100% in
both cases. This further confirms that the proposed transformation in Section 2, along with
the classifier described in Section 4, entertain a high efficiency and that the recognition of
the images can be performed in the texture space. The high efficiency is attributed to the
following points:

1. In the S →
→
C transformation, image S is completely characterized through its local

texture characteristics, and these are represented by the texture vector
→
C.

2. The digital image is essentially a field of randomness, given the nature of the light
source and the noise detected by the system; henceforth, for each image Sc, a unique

vector
→
Cc is generated in the texture space with a particular direction and magnitude

that differ for each class.

Nonetheless, the efficiency of our proposal can be reduced if the digital images are
classified dynamically (in real time). This is due to the fluctuation in the light source
temporarily and spatially. Consequently, for each instant of time, the pixels of the digital
camera vary in intensity. In other words, the noise during the acquisition of the image

increases; thus, the texture vector
→
C changes, causing recognition errors.

4. Discussion

In this paper, the S →
→
C transformation is proposed where S is a grayscale image

and
→
C is a vector in a new space, which is denominated texture space. Essentially, the

transformation consists of representing the image S through a series of radius vectors in

the texture space, with each radius vector a texture unit
→
T , and this is calculated by solving

a homogeneous equation system. Afterward, the vector
→
C is calculated by the sum of all

of the radius vectors and, subsequently, all of the local texture characteristics of the image
under study are considered in it. Its direction and magnitude are in agreement with the

randomness in the digital image and, for each image Sc, a unique vector
→
Cc is generated.

Additionally, a multiclass classifier is proposed and applied within the texture space where

the vector
→
Cc is employed as a characteristics vector, demonstrating its potential application

for image classification. Based on these results, the following points are worth mentioning:
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1. The image S is fully characterized in the transformation
(

S →
→
C
)

, where the texture

space is represented by the texture vector
→
C. The new transformation can be termed

Vectorial Image Representation on the Texture Space (VIR-TS) because, in the image

transformation, the image S comes to be represented by the vector
→
C.

2. Due to the irregular nature of the light source and the noise during the photodetection
process, the image S is considered a field of randomness; consequently, a unique

vector
→
C is generated for each digital image (see Table 1).

3. The vector
→
C withholds all local texture characteristics of the image under study, given

that the vector is calculated by the sum of all of the radius vectors, where a radius

vector is defined as texture unit
→
T .

4. The texture unit
→
T possesses a vectorial character because it is calculated by solving a

homogeneous equation system of 3 × 3.

5. The texture vector
→
C can be employed as a characteristics vector in classifiers with a

high efficiency (see Tables 3 and 4).
6. The value λ employed for the solution of the homogeneous equation system does not

affect the results of the image recognition.

7. The S →
→
C transformation has a potential application in the development of artificial

vision systems focused on the recognition of digital images.
8. In the experimental work, the number of classes does not affect the results of the clas-

sification efficiency, given that each digital image is represented by its own vector
→
C in

the texture space (see point 2).
9. Because medical images contain local textural features that can be extracted through

local analysis [3,4,26,27], and knowing that the technique reported in this work also
extracts texture features based on local analysis, then the VIR-TS transform and the
classifier described in Section 2.3 can be applied in medical image recognition. The
benefit would be the development of medical diagnostic systems with high efficiency,
easy to implement because the definition of the texture unit is based on a linear
transformation and not on pattern encoding [21,28], where the overflow of physical
memory of the computer is possible [29].

10. Comparing the statistical texture extraction techniques reported in reference [21]
with the VIR-TS technique based on linear transformations, both texture extraction
techniques are very different. In statistical techniques, the texture unit is calculated
based on the encoding of discrete random patterns located on the digital image,
its texture unit is considered a random event and the texture characteristics are
represented through a discrete histogram. In our technique called VIR-TS, the texture
unit is calculated based on a linear transformation, its texture unit is a radius vector,
and the texture features are represented in a texture space through a random vector.

The Vector Image Representation on the Texture Space (VIR-TS) transformation is
very different from the statistical techniques reported in reference [21]. In the VIR-TS
transformation, the texture unit is a radius vector, the vector is calculated by solving a
homogeneous system of equations, and its graph can be visualized in the texture space.
With the transformation, the digital image S is expressed in the texture space by the

random vector
→
C, which consists of three components, a1, a2, a3, and whose addresses

are û1, û2, û3. Because the image is vector-represented, image classification in texture space
is performed by measuring the similarity between the prototype vectors and the test vector.
Their similarity is calculated through the projection between both vectors. Finally, the
test image is assigned to the most similar class. Based on the experimental work, the VIR-
TS transformation has high classification efficiency because its texture feature extraction
efficiency is very high. Furthermore, its implementation is very easy because the digital
image is represented through a three-component random vector.
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With the knowledge that our proposal has potential application in image recognition,
our future lines of research will include rendering the VIR-TS transform invariant to
rotation and scale; proposing the VIR-TS transform for color image classification; applying
the VIR-TS transform in the recognition of biomedical images; and performing an efficiency
study of classification in images with noise.

5. Conclusions

In this paper, the Vectorial Image Representation on the Texture Space (VIR-TS) trans-
form is proposed and applied. The VIR-TS transform is based on the extraction of local

texture characters in the image S and represents these through the vector
→
C in the texture

space. Each radius vector is a texture unit
→
T , which is estimated by solving a homogeneous

equation system of 3 × 3. In the texture space, each image has a corresponding unique

vector, given that the image is a random field of pixels. Experimentally, the vector
→
C was

employed as a characteristics vector in a new multiclass classifier; thus, the high efficiency
of the VIR-TS transform was corroborated through the classification of tree stem digital
images. The efficiency reached 100%; however, in applications under natural environments,
its efficiency may be significantly less due to the noise in photodetections and the random
nature of light.

The VIR-TS transform has potential application in locating missing persons and
classifying medical images.
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