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Abstract: Breast cancer is considered one of the most-common types of cancers among females in
the world, with a high mortality rate. Medical imaging is still one of the most-reliable tools to detect
breast cancer. Unfortunately, manual image detection takes much time. This paper proposes a new
deep learning method based on Convolutional Neural Networks (CNNs). Convolutional Neural
Networks are widely used for image classification. However, the determination process for accurate
hyperparameters and architectures is still a challenging task. In this work, a highly accurate CNN
model to detect breast cancer by mammography was developed. The proposed method is based on
the Particle Swarm Optimization (PSO) algorithm in order to look for suitable hyperparameters and
the architecture for the CNN model. The CNN model using PSO achieved success rates of 98.23%
and 97.98% on the DDSM and MIAS datasets, respectively. The experimental results proved that the
proposed CNN model gave the best accuracy values in comparison with other studies in the field.
As a result, CNN models for mammography classification can now be created automatically. The
proposed method can be considered as a powerful technique for breast cancer prediction.

Keywords: breast cancer; deep learning; image classification; Convolutional Neural Networks;
Particle Swarm Optimization

1. Introduction

Each year, approximately half a million women worldwide die of breast cancer [1]. This
disease can be fatal if it is not detected early. Detection of breast cancer using mammography
has been utilized over the last three decades in numerous nations throughout the world
to reduce the breast cancer death rates. The combination of screening and advances in
treatment has reduced breast cancer mortality by 30% [1]. Death rates have gone down
thanks to improvements in mammography screening and traditional computer-aided
diagnostic (CAD) models [2,3]. Currently, CNNs are used for a variety of tasks due to their
considerable performance. CNNs can automatically be trained using training data, which
has an advantage over conventional feature representation. Recently, the performance of
deep learning and Convolutional Neural Network (CNN) algorithms in image classification
has significantly improved, as has the detection of lesions by mammography and the
evaluation of image quality [4]. A variety of methodologies have been used to increase the
accuracy of deep CNNs [5,6].

Designing a real-world application using CNNs remains challenging due to the diffi-
culty of selecting the optimum parameters [7]. Therefore, optimization methods are used to
adjust the model’s hyperparameters. In the literature, many optimization algorithms have
been presented for various industrial applications, such as Particle Swarm Optimization
(PSO) [8]. The hyperparameter values employed in a deep learning model significantly
affect its performance. The objective of hyperparameter optimization is to look for the
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optimal hyperparameter settings. Since the search area is huge and evaluating every setting
can be costly, hyperparameter optimization is often performed manually.

This paper aimed to solve the problem of finding CNN architectures that achieve a high
classification accuracy for image classification. This is why we present our implementation
of PSO, called PSOCNN, to address such a problem. PSOCNN focuses on fine-tuning the
CNN’s hyperparameters, which can control the design of the CNN and, therefore, impact
its classification accuracy. The main contributions we made are as follows:

1. This study performed, for the first time, the optimization of new hyperparameters (kernel
size, stride, filter number) for CNNs used for mammography image classification.

2. Optimal architectures for deep Convolutional Neural Networks were found using a
unique PSO technique.

3. We developed an improved algorithm for finding relevant CNN designs compared to
existing methods.

4. Compared to default or random settings, the proposed approach reduces the manual
effort required to determine the appropriate configuration for a CNN to achieve peak
performance. The manual search for such dataset-specific setups necessitates much
human time and knowledge. As a result, the proposed approach will encourage
non-experts to efficiently employ neural network architectures.

This article is divided into three sections. Following the Abstract, an introduction and
review of the related works are detailed in Section 1. Section 2 presents the materials and
methods. Section 3 covers the experiments and results. In Section 4, this study is analyzed
and conclusions are drawn, as well as some recommendations for future research.

Related Works

From previous research, several studies have been performed to develop a deep CNN
architectures for the classification of both natural and medical images. A few deep-learning-
based methods for classifying breast cancer masses in mammography pictures have been
proposed. In [9], authors created a deep-belief-network (DBN)-based approach for de-
termining whether mammography images are normal or abnormal. A discrete wavelet
transform was used to extract image features, specifically the gray level co-occurrence ma-
trix features from the HL and LL wavelet sub-bands. The authors showed that a deep belief
network (DBN) CAD system could enable automated hierarchical feature extraction to offer
more flexibility for intricate design patterns. Yet, there are several obstacles to overcome in
this approach, including the demand for large and varied datasets for efficient performance,
the need for extensive computer resources during training, and possible issues understand-
ing the learned features. Moreover, to successfully build a DBN-based CAD system, it
is imperative to strike a balance between model complexity and resource requirements.
The results on the MIAS dataset included an accuracy of 91.5%, a specificity of 72.4%, and
a sensitivity of 94.1%. The authors in [10] proposed a CNN approach for automatically
classifying breast cancer from mammography and ultrasound images. The method has five
adjustable convolutional blocks, each composed of four convolutional layers, with a single
fully connected layer, which serves as the classifier. The method uses a few customizable
parameters to automatically extract key features from images. The benefit of using deep
Convolutional Neural Networks (CNNs) and a multi-modal approach is that they allow for
an automated diagnosis and thorough analysis. Nonetheless, some difficulties can occur
due to the CNN model’s interpretability, its reliance on large and high-quality data, the
requirement of strong validation, and moral issues surrounding healthcare automation.
The authors performed many simulations on mammography datasets (DDSM, MIAS, and
INbreast) and ultrasound datasets (BUS-1 and BUS-2) and found that their evaluation met-
rics were better than the current best practices. Furthermore, data augmentation allowed
for less overfitting. Using the DDSM, MIAS, and INbreast datasets, their CNN algorithms
obtained accuracies of 90.68%, 96.55%, and 91.28%, respectively. Additional accuracies of
100% and 89.73% were achieved on the BUS-1 and BUS-2 datasets, respectively. In [11], the
authors began by removing noise, then adding a logarithmic spatial transform to improve
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the images, and finally, deleting the oblique and pectoral muscles and backdrop. Then,
they used a fractional Fourier transform to obtain the coefficients of the time–frequency
spectrum, which were then reduced using the PCA technique. In conclusion, the following
performance results were obtained using the classifiers (k-nearest neighbors and SVM):
in the case of SVM, the sensitivity was 92.22%, the specificity was 92.10%, and the accu-
racy was 92.16%. In addition, in [12], the researchers suggested the use of a multi-scale
all-Convolutional Neural Network (MA-CNN) for the classification of mammography
images. To keep the connections between close pixels, instead of pooling, a long stride
convolution was used. The possible advantages include the multi-scale approach and the
particular emphasis on mammography characteristics. This notwithstanding, there are
some limitations to this method, such as its dependence on varied and high-quality data,
its interpretability, the necessity of a thorough validation, possible computing demands,
and its practical application in a clinical environment. The obtained sensitivity, accuracy,
and AUC on the MIAS dataset were 96%, 96.47%, and 99%, respectively.

In [13], a YOLO-based CAD system utilizing deep learning was introduced to detect
and classify masses related to breast cancer. The methodology comprises four sequential
steps: After completing preprocessing, the model uses a deep convolutional network to ex-
tract the features. Mass detection is then performed, and a fully connected neural network
is used for mass classification. The Digital Database for Screening Mammography (DDSM)
and a pre-trained model from the ImageNet dataset were utilized, with weights assigned
accordingly. Finally, the model was fine-tuned. The YOLO technique was employed in
computer-aided design (CAD) to detect objects in real-time precisely. This enables the
efficient processing of large CAD files. Its versatility and effectiveness make it possible
to identify a wide range of object classes and integrate them into current systems. When
it comes to localizing small objects, the YOLO method may not be as accurate as slower
options. In CAD settings with limited resources, the large and complicated models and
the need for many training data can be a problem. The effectiveness of YOLO depends
on the needs of the particular CAD application, and the tradeoff between speed and
accuracy is a factor. With the help of two different datasets from the DDSM database,
consisting of an original amount of 600 photos and their augmented set of 2400 images, the
researchers evaluated their system’s performance. They achieved an impressive overall
accuracy of 97% and an area under the curve (AUC) of 96.45%. The researchers in [14]
presented a deep-belief-network (DBN)-based CAD system for identifying breast cancer.
This approach involves the extraction of regions of interest (ROIs) utilizing two distinct
methodologies. The initial approach selects four randomly chosen regions of interest (ROIs)
from an identified mass, with each ROI having dimensions of 32 by 32 px. The second
technique makes use of every ROI that has been found. This technique employs morpho-
logical processes and adaptive thresholding to detect masses with an accuracy of 86%. Due
to its limitations in detecting masses in dense regions, many forms of breast tissue pose
difficulties in identification and diagnosis. After the extraction of the ROIs, this technique
provides 347 statistical parameter settings to identify the optimal one. Most of the time,
hyperparameter tuning is performed by hand because the search area is large and it can
be costly to test each setup. They then used deep belief networks (DBNs) to classify the
images. The classification technique achieved an accuracy of 90.86% for malignant tumors
and 92.86% for benign tumors. Additionally, the AUCs for the total mass method and the
ROI mass method were 93.54% and 86.56%, respectively. A technique for identifying and
classifying breast cancer using mammogram images was presented in [15]. The researchers
used a Convolutional Neural Network to classify mammogram images after several pre-
processing procedures to adjust the CNN classifier’s parameters. Using the MIAS dataset,
they achieved a percentage of 82.71% for the accuracy. The authors in [16] developed a
classification system for mammogram images called CNN improvement for breast cancer
classification (CNNI-BCC). The CNNI-BCC model classifies the images of breasts into three
classes: malignant, benign, and normal masses. They had an accuracy rate of 90.50% and a
specificity of 90.71%. Although evolutionary algorithms have been employed to optimize
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CNN parameter values, their use has not received much research. Today, in research, meta-
heuristic algorithms are employed for designing deep learning architecture. For example,
the authors in [17] used both fuzzy logic modeling and a better quantum-behaved Particle
Swarm Optimization method. To evaluate the impact of particular fuzzy variables on
surface degradation, they conducted ball-on-disk tests. They improved the fuzzy model by
making the fuzzy variables’ membership functions more optimal to increase the prediction
accuracy. In [18], the researchers developed a novel method to detect breast cancer in
mammogram images, leveraging feature extraction and reduction techniques. The authors
utilized various pre-trained Convolutional Neural Network (CNN) models to extract the
features. These features were then combined, and the most-useful ones were chosen based
on mutual information. The selected features were then classified using various machine
learning algorithms, including neural networks (NNs), k-nearest neighbors (kNN), random
forest (RF), and support vector machine (SVM). The proposed algorithm was evaluated on
different datasets, including the newly introduced RSNA dataset, MIAS, and DDSM. The
authors in [19] conducted research to assess the effectiveness of genetic algorithms in the
context of neural network classifiers for categorizing land cover in multispectral remote
sensing data. A genetic algorithm analysis was performed in a hybrid environment with
backpropagation, but the network properties and how they affect categorization were not
specifically thought about.

Lorenzo et al. utilized Particle Swarm Optimization (PSO) to select the deepening
parameters, as described in their study [20]. The algorithm is based on natural behavior and
imitates flocks of birds or fish. It was initially proposed by Eberhart and Kennedy in their
publication [21]. Based on the experiment results using the LeNet-4 network, it was shown
that PSO can significantly improve the accuracy of classification on the MNIST dataset.
However, their approach and methodology were not suitable for the CIFAR-10 datasets.

To be more precise, the large number of hyperparameters is an obstacle to achieving
better results, despite the positive findings reached by CNN architectures in the detection
of breast cancer. As a result, optimizing the hyperparameters for CNN design is crucial to
enhancing CNN performance. This study developed an enhanced Convolutional Neural
Network (CNN) structure for classifying mammography datasets. The architecture was
refined using the Particle Swarm Optimization (PSO) approach to determine new hyper-
parameters. This might potentially be advantageous for healthcare professionals in the
diagnosis of breast cancer.

2. Materials and Methods
2.1. Datasets

Two different standard mammography image datasets were used to create and assess
the proposed algorithm. These datasets, the Digital Database for Screening Mammography
(DDSM) and the Mammographic Image Analysis Society (MIAS), were already prepro-
cessed in [22]. Mammography images containing both benign and malignant masses are
included in this dataset. The authors of [22] used three original sets of images from other
datasets to make this dataset: 106 masses from INbreast, 53 masses from MIAS [23], and
2188 masses from DDSM [24]. DDSM comprises both normal and abnormal examples,
making it ideal for examining the performance of computer-aided detection (CAD) sys-
tems. Masses and microcalcifications are examples of abnormalities. DDSM has been
widely employed in the creation and testing of computer-aided diagnosis (CADx) systems,
image-processing methods, and other breast cancer detection applications.

MIAS is best suited for tasks involving breast cancer detection since it concentrates on
instances with worrisome lesions. Digitized film mammograms are included in the database.

MIAS, like DDSM, has annotations that indicate the presence of anomalies such as masses
and calcifications. These annotations are critical for algorithm training and assessment.

After the researchers preprocessed their images, they next employed data augmenta-
tion and contrast-limited adaptive histogram equalization. Following data augmentation,
the INbreast dataset has 7632 pictures, the MIAS dataset has 3816 images, and the DDSM
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dataset has 13,128 images. In addition to that, they combined DDSM, MIAS, and INbreast.
The new size for each picture was 227 × 227 px. In this experiment, the DDSM and MIAS
datasets were employed. Figures 1 and 2 present the samples of the DDSM and MIAS
datasets used in this study. Table 1 shows the details of the entire dataset.

Table 1. Mammogram dataset specifications used in the classification stage.

Database Number of Benign
Pictures

Number of
Malignant Pictures

Number of Total
Pictures

DDSM 5970 7158 13,128
MIAS 2376 1440 3816

(a) Benign (b) Benign (c) Benign

(d) Malignant (e) Malignant (f) Malignant

Figure 1. Samples of breast mammography from DDSM dataset [22].

(a) Benign (b) Benign

(c) Malignant (d) Malignant (e) Malignant

Figure 2. Samples of breast mammography from MIAS dataset [22].

2.2. CNN Hyperparameters’ Optimization

The optimization of Convolutional Neural Networks’ parameters involves determin-
ing the suitable parameters that result in significant accuracy for each task. Nevertheless,
the task of enhancing a large number of parameters is extremely difficult, with a high
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computational cost. Therefore, it is necessary to implement optimization algorithms that
lead to a reduced number of iterations. The present study was based on the Particle Swarm
Optimization (PSO) technique to look for the CNN model with the highest accuracy for
breast cancer detection. Developing a Convolutional Neural Network (CNN) involves
the optimization of several parameters and the careful selection of the architecture. The
selection of optimal parameters is crucial for obtaining accurate results when using Con-
volutional Neural Networks (CNNs). Therefore, it is a challenging task that requires a
considerable level of expertise.

The effectiveness of a CNN model depends on its hyperparameters, therefore driving
certain researchers to advocate for the indispensability of fine-tuning these hyperparameters
to obtain positive results. Hence, it is a challenging task that requires a substantial degree of
proficiency. The hyperparameters of the CNN architecture, together with their descriptions,
are provided in Table 2. As previously mentioned in Section 1, metaheuristic algorithms
are widely acknowledged as effective techniques for enhancing the performance of CNN
architectures by optimizing their hyperparameters.

Table 2. CNN hyperparameters.

Hyperparameters Description

Kernel (filter) size Kernel size in the convolutional layer
Feature map number Size of the convolutional layer’s kernel

Stride Number of pixels moved within the kernel
during convolution

Padding Hyperparameters to obtain the boundary
region features of the training data

Pooling type Value calculation of each feature patch
(average, maximum)

Number of epochs Number of iterations

Number of layers Number of layers that make up the
entire network

Number of neurons Number of neurons in the fully connected layer

Batch size Group size is used to divide the training data
into multiple groups

Weight initialization Weight initialization with a small random
number (Xavier initialization, He initialization)

Loss function This function calculates the error including the
cross-entropy and MSE

Optimizer The argument needed to compile the model
(SGD, Adam, RMSprop, Adadelta, etc.)

Dropout rate
Depending on the desired probability,
the algorithm removes units from the

neural network

Activation function Activation function of neurons (ReLU,
Sigmoid, etc.)

2.3. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) approach is widely used as a metaheuristic
tool for solving discrete, continuous, and combinatorial optimization problems. In 2001,
Kennedy and Eberhart created the original version [25]. It took its cue from a flock of birds’
flight pattern. A single solution is referred to as a particle in PSO, while the collection of all
solutions is referred to as a swarm. Particles and swarms are terms used in the context of
PSO to refer to both individual solutions and collective ones. PSO’s fundamental tenet is
that each particle only knows its current velocity, its best configuration to date (pBest), and
the particle in the swarm that is now the best in the world (gBest). In every iteration, every



J. Imaging 2024, 10, 30 7 of 17

particle modifies its velocity to obtain its new location closer to both its pBest and gBest.
The equation below modifies each particle’s velocity v:

vi,j(t + 1) = w × vi,j(t) + cp × rp ×
(

gBesti,j − xi,j(t)
)
+ cg × rg ×

(
gBestj − xi,j(t)

)
(1)

where vi,j is the particle’s velocity in the j-th dimension, x is the particle’s current location,
and w is a constant called momentum that regulates how much the velocity from the
previous time step will influence the velocity at the present step. cp and cg are predefined
constants, whereas rp and rg are random values in the range [0, 1]. Additionally, by
changing the variables cp and cg, respectively, the algorithm’s capacity for exploration and
exploitation may be adjusted. Finally, the following changes are made to the i-th particle’s
location in the j-th dimension:

xi,j(t + 1) = xi,j(t) + vi,j(t + 1) (2)

The PSO algorithm’s major steps are:

1. Initialize the population values of the particles.
2. Determine the population’s fitness.
3. Recall the best solution.
4. Repetition:

(a) Each particle’s position and velocity should be updated in line with Equations
(1) and (2).

(b) Determine the fitness value of every particle in the population.
(c) Refresh the best solution.

5. Continue until a final criterion is met.

The PSO process is shown in Figure 3.

Figure 3. The basic process of PSO.

One of the most-advantageous features of PSO is that it converges quicker than
GAs [26,27]. Because a single CNN training run might take many days even on the most-
powerful computers, this property can be advantageous when looking for optimum CNN
structures.

Due to the large number of parameters in even simple CNNs, the training procedure
can only be accomplished with graphic processing units (GPUs). The duration of a single
training run can vary from days to weeks, depending on the complexity of the CNN
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architecture. Consequently, experimenting with many CNN designs through trial and error
can be extremely time consuming. As a result, it is critical to create algorithms capable of
autonomously building and assessing CNN designs as quickly as is feasible.

2.4. Proposed Method
2.4.1. CNN Architecture Design

We built our own CNN in this part to train the Convolutional Neural Network (CNN)
from scratch (a new model). It consists of three convolutional layers with three max-pooling
layers, one dropout, a flattening layer, and two FC layers. The activation function for each
layer is the ReLU function, except for the last one for the output, which is the Sigmoid
function. The output layer uses a Sigmoid function, which maps the output value to the
range of [0, 1].

2.4.2. The PSOCNN Algorithm Overview

Using the PSO algorithm, which is defined in Figure 3, the proposed PSOCNN ap-
proach creates CNN structures. The detailed processes of the implementation of the
PSOCNN algorithm to optimize the CNN architecture are shown in Algorithm 1 and
summarized as follows:

First, specify all of the algorithm’s input parameters that are relevant to the problem at
hand, such as the dataset that is needed for training and the settings for the CNN structures
that need to be created.

Second, initialize the population. The Popsize particles are given during this phase.
Each particle has several hyperparameters, and the particle positions, best personal position,
and best global position are all initialized.

Third, at each iteration, each particle changes its position based on its own best position
in the search space, called pBest, and the best position in the entire population, called gBest,
using the update approach provided in Section 2.3. The procedure is continued, assessing
all particles until the stopping criterion is met (in this paper, the number of iterations).

Each particle is compensated in a CNN architecture for evaluating the particles,
trained, and tested against the dataset. The classification accuracy attained is then saved as
the particle’s fitness. Then, update the best personal position (pBest) and the best global
position (gBest).

If the maximum number of iterations is achieved, gBest is the best answer for our
algorithm. Otherwise, we return to the third stage. This algorithm determines the optimal
solution, which is the particle represented by gBest, which is the best CNN architecture for
this dataset.

2.4.3. The PSOCNN Process

This section outlines an optimization method that uses the Particle Swarm Optimiza-
tion (PSO) metaheuristic algorithm to find the most-suitable parameters for the Convolu-
tional Neural Network (CNN) architecture. The main objective is to determine the crucial
parameters necessary for obtaining optimal performance in CNNs and, thereafter, employ
the PSO methodology to attain these desired values. The following parameters were chosen
for optimization in this work:

• Kernel Size (ks)
• Stride (s)
• Filter number (convolution layer) (nf)

The particles were created in this procedure by initializing the PSO by the execution
parameters (detailed below). Every particle is a possible solution, and because every
position contains a parameter that may be tuned, every solution is a finished CNN training.

The procedures for optimizing the hyperparameters of the Convolutional Neural
Network (CNN) using the Particle Swarm Optimization (PSO) approach are illustrated in
Figure 4 and explained in detail in Figure 5:
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Algorithm 1: The proposed PSOCNN model.
1: Initialize PSO parameters (population size, maximum iterations, etc.)
2: Initialize particles randomly within the search space
3: Initialize particle velocities randomly
4: Initialize best particle positions and fitness values
5: while Not converged and maximum iterations not reached do
6: for each particle in the population do
7: Update particle velocity using PSO equations
8: Update particle position
9: Evaluate the fitness of the particle using the CNN

10: if Current fitness is better than personal best then
11: Update personal best position and fitness
12: end if
13: if Current fitness is better than global best then
14: Update global best position and fitness
15: end if
16: end for
17: end while
18: Use the global best position as the optimized CNN architecture
19: Train the CNN with the optimized architecture on the dataset
20: Test the trained CNN on a test dataset

Figure 4. The process of the proposed system for classifying benign from malignant tumors.

1. This work selected the DDSM and MIAS datasets for analysis and classification.
2. Generate the particle population for the Particle Swarm Optimization (PSO) method.

The experiment’s parameters are listed in Table 3. The components of Particle Swarm
Optimization (PSO) include particles, the number of iterations, the inertial weight (w),
the social constant (c2), and the cognitive constant (c1).

3. Initialize the architecture of the CNN. Using the PSO parameters (filter number, filter
size (convolution layer), and stride), the CNN hyperparameters are initialized, and
they use other parameters listed in Table 4. The CNN is now prepared to train on the
input images.

4. Model training and validation: The Convolutional Neural Network (CNN) processes
and analyses the input data while splitting the images into training, validation, and
testing sets. The accuracy of the model is evaluated during the testing phase. The
PSO receives these values as a part of the objective function.

5. Examine the objective function: To obtain the ideal value, the PSO method examines
the objective function.
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6. Update the PSO parameters: Each velocity and position of the particle is updated
during each iteration based on its particle’s best position (pBest) in the search range
and the global best position of the entire swarm (gBestp).

7. The process is iterated, analyzing all particles until the stop conditions are met (the
iteration number).

8. In the end, the best solution is chosen. The best particle for the CNN model is the one
that gBestp represents in this procedure.

Figure 5. Flowchart illustrating how CNN is improved using PSO.

Table 3. CNN static parameters.

CNN Static Parameters

Activation function (classifying layer) Sigmoid
The function of nonlinearity activation ReLU

Table 4. PSO static parameters.

PSO Static Parameters

Particles 4
Iterations 3

Cognitive weight (W) 2
Social constant (W2 2

3. Experiments and Results
3.1. Experimental Studies

This section presents the training and test results for the CNN models created with PSO.
The obtained values were compared with previous studies in the literature. Additionally,
the initial parameter values used in PSO are also given, as are the values of the parameters
used to create the CNN model.

The Python programming language was used in our tests. We ran our trials on
Kaggle, which was used for the implementation, connected to Python 3 with a maximum
of 30 GB of RAM, a 70 GB disk, and a CPU.

Parameters Involved in the Experiment

Some examples of static parameters in CNN parameter designs are the learning
function, the classifying layer activation function, the nonlinearity activation function, and
the number of epochs. The PSO configuration considers predetermined factors such as
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the number of particles, the number of iterations, and the social and cognitive coefficients.
Tables 3 and 4 illustrate the defined configurations for PSO and the CNN, respectively.

The hyperparameters for optimization, including the filter size, stride, and filter
number, are initialized and, then, optimized using Particle Swarm Optimization (PSO).
We define a particle as having three distinct positions, each corresponding to an ideal
parameter value. This particle is generated using a technique known as PSOCNN. Figure 6
illustrates the particle composition, where the position (X1) represents the number of filters
in the convolutional layer and the range is between [16, 64]. The position (X2) represents
the filter size, and [4, 8] is the search space. The third position represents the stride (X3),
which is set with the search space ranging from 2 to 4.

Figure 6. Structure of the PSOCNN approach’s particles.

3.2. Findings and Analysis

This section presents our results and compares our approach to previous studies using
two datasets: the MIAS dataset from [22] and the DDSM dataset from [22]. Furthermore,
we demonstrate the optimal configurations achieved by our methodology. Given that
our methodology employs a metaheuristic algorithm, executing multiple iterations of an
experiment and performing a statistical analysis are necessary to attain the optimal solution.

To deploy the PSOCNN, 70% of the total images in the breast cancer database were
used in the training and 30% in the testing phase. The experimental results are presented
in the subsection below for each dataset.

3.2.1. Analysis of PSOCNN Model for Digital Database for Screening
Mammography Dataset

The following subsection presents the results of the proposed Convolutional Neural
Network (CNN) model, which was trained using the hyperparameters determined by the
Particle Swarm Optimization (PSO) algorithm on the DDSM dataset. Moreover, it offers
a comparison with other studies and related endeavors. In addition, we demonstrate the
effectiveness of Particle Swarm Optimization (PSO) in determining the best hyperparam-
eter configurations for Convolutional Neural Networks (CNNs) to achieve interesting
accuracy. This was performed by comparing the results of PSO with other methods such
as a CNN [10], a YOLO-based CAD [13], an NN-based classifier [18], and a DBN-based
CAD system [14]. The proposed approach achieved an accuracy of 98.23% on the test set.
The CNN model developed in [10] and the proposed PSOCNN model are contrasted on the
DDSM dataset in Table 5. The PSOCNN model that is proposed outperformed the CNN
model without hyperparameter optimization, according to the findings shown in Table 5,
whereas the most-recent one had an accuracy rate of 90.68%. The proposed PSOCNN
significantly outperformed the CNN design with an accuracy of 98.23%.

Table 5. Comparison between the proposed PSOCNN and CNN models on the DDSM dataset.

Model Dataset Accuracy

CNN [10] DDSM 90.68%
Our proposed method

(PSOCNN) DDSM 98.23%

Improvement (%) - 8%
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Additionally, the developed PSOCNN model’s performance was contrasted with that
of existing distributed research on mammography image classification utilizing the DDSM
dataset shown in Table 6. These works [10,13,14,18] were chosen for comparison since they
were trained using the same data. The proposed PSOCNN model is compared to previous
studies in Table 6 in terms of many evaluation metrics such as the accuracy, specificity,
sensitivity, precision, F1-score, and AUC. The - sign mentioned in the table indicates that
the comparison approach lacks an equivalent metric. In [10], the researchers developed
a CNN method for automatically classifying breast tumors using three datasets. For the
DSSM dataset, the model produced an accuracy of 90.68%. In [13], the authors proposed a
YOLO-CNN method for categorizing 2400 images from the DDSM dataset, achieving 97.0%
accuracy, 93.20% sensitivity, and 94.00% specificity, respectively. The researchers in [14]
evaluated the potential of the proposed DBN-based CAD system for the diagnosis of breast
cancer using a shared digital mammography database. They used both comprehensive
mass ROIs and several mass-ROI-extraction techniques. This method’s accuracy was
evaluated using the DDSM dataset, and it was 92.86%. In [18], the researchers developed
a novel method that involves the extraction and selection of features from multiple pre-
trained CNN models, followed by classification using various machine learning algorithms:
neural network (NN), k-nearest neighbors (kNN), random forest (RF), and support vector
machine (SVM). This method demonstrated its superiority, particularly in terms of accuracy
and sensitivity. For the DDSM dataset, an accuracy of 96% was attained. Table 6 shows
that the suggested PSOCNN model performed better than the alternative classification
techniques. In terms of a variety of evaluation matrices, it outperformed all comparison
methods. In addition, the confusion matrix for the two classes on the DDSM dataset of the
model is visualized in Figure 9.

Table 6. Comparison between the proposed PSOCNN model and the related works on the
DDSM dataset.

Model Dataset Accuracy Sensitivity Specificity

CNN [10] DDSM 90.68% - -
YOLO-based CAD [13] DDSM 97% 93.20% 94.00%
NN-based classifier [18] DDSM 96% 94.70% -

DBN-based CAD system [14] DDSM 92.86% - -
Our proposed method (PSOCNN) DDSM 98.23% - -

3.2.2. Analysis of PSOCNN Model for Mammographic Image Analysis Society Dataset

This section presents the results of the developed Convolutional Neural Network
(CNN) model, which utilized Particle Swarm Optimization (PSO) for hyperparameter
tuning, on the MIAS dataset. On the other hand, it provides a comparison with other
works and comparable publications. In addition, we compared the PSOCNN to previous
research to show how well PSO works at finding the best hyperparameter settings for
the CNN model, which leads to much higher accuracy: CNN [9–11], MA-CNN [12], NN-
based classifier [18]. The PSOCNN approach achieved an accuracy of 97.98% on the
MIAS dataset. In addition, the performance of the PSOCNN model was compared to
previous research on breast cancer detection using the MIAS dataset. The used studies for
comparison [9], CNN [10], MA-CNN [12], NN-Based classifier [18], and [11], were chosen
since they utilized the same dataset and were based on CNN architectures. Refs. [11,12]
were both picked. As shown in Table 7, the techniques were contrasted in terms of a
range of evaluation metrics such as the precision, specificity, F1-score, sensitivity, AUC,
and accuracy. A missing equivalent measure is indicated in the table by the minus sign
(−). In [9], the researchers created a method based on a deep belief network (DBN) for
classifying mammography images. On the MIAS dataset, they yielded 91.5% accuracy,
72.4% specificity, and 94.1% sensitivity. The authors of [10] designed a CNN method for
automatically classifying breast cancer using three datasets. The model’s accuracy on the
MIAS dataset and DSSM dataset was 96.55%. Also in this case, the authors in [16] suggested
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a better CNN model that correctly categorized the MIAS breast cancer dataset with 89.47%
sensitivity, 90.71% specificity, and 90.50% accuracy. In [18], the researchers developed a
novel method, as explained in Section 3.2.1. They achieved an impressive accuracy of 94.5%
on the MIAS dataset. In addition, in [11], the researchers developed a new technique for
the CAD of unusual breasts in mammography images by combining three components:
SVM, WFRFT, and PCA. In the instance of SVM, this resulted in a sensitivity of 92.22%, a
specificity of 92.10%, and an accuracy of 92.16%. For classifying the mammography images.
Referring to Table 7, the proposed PSOCNN technique outperformed the alternatives.
In terms of all evaluation metrics, it exceeded all comparison approaches.

Since our method uses a metaheuristic algorithm, statistical analysis and numerous
iterations of the experiment are needed to obtain results and study convergence to the
best outcome.

Table 7. Comparison of the developed PSOCNN model against other relevant studies on the
MIAS dataset.

Model Dataset Accuracy Sensitivity Specificity

DBN [9] MIAS 91.5% - -
CNN [10] MIAS 96.55% 93.20% 94.00%

MA-CNN [12] MIAS 96.47% - -
[16] MIAS 90.50% 90.71% -

WFRFT + PCA + SVM [11] MIAS 92.16%. 92.10% -
NN-based classifier [18] MIAS 94.5% 96.32% -

Our proposed method (PSOCNN) MIAS 97.98% - -

3.3. Discussion

One of the most-difficult issues in breast cancer diagnosis is distinguishing between
malignant and nonmalignant patients. This work contributes by classifying mammography
datasets by building a CNN architecture from scratch and evaluating its capacity to classify
benign and malignant cases using the CNN hyperparameter optimization technique. As
previously stated, the results of the comparison of the PSO algorithm with other optimiza-
tion algorithms revealed that the PSO efficiently selects the optimal hyperparameter values
for the CNN architecture to achieve high accuracy. It was contrasted with [9–14]. Tables 6
and 7 present a comparison between the proposed PSOCNN model and other competing
models across different datasets. According to the compared results, PSO was more suitable
for working with the CNN architecture to classify breast imaging data. The optimal values
for the CNN hyperparameters were successfully determined, leading to the maximum
accuracy achieved.

Finally, the following outcomes from the existing experiments are interesting:

• According to the accuracy, the suggested PSOCNN model outperformed the other
models, indicating that the PSO outperformed the other methods when the PSO
optimized new hyperparameters. The PSOCNN model reached 98.23% accuracy
for the DDSM dataset and 97.98% accuracy for the MIAS dataset. Furthermore,
the PSOCNN model beat all other examined models.

• Figures 7a and 8a show the training curves of the optimal model, as determined by
PSOCNN, on the DSSM and MIAS datasets. These figures allowed us to evaluate the
performance of the CNN model generated by our proposed method. The graph of
the learning curves displays a good fit. In Figures 7b and 8b, the training loss curve
exhibits a gradual decrease until it reaches a state of stability. As the validation loss
curve reaches a state of stability, it becomes distinct from the training loss curve with
a small gap.

• The optimal solution detection is one of our most-significant achievements, which is
supported by the confusion matrix in Figure 9.
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(a) Training & validation (MIAS). (b) Training & validation (MIAS).

Figure 7. (a) Accuracy (b) Loss.

(a) Training & validation (DDSM). (b) Training & validation (DDSM).

Figure 8. (a) Accuracy (b) Loss.

Figure 9. The confusion matrix for the two classes on the DDSM dataset.

Limits of the PSOCNN

This research presented a significant breast cancer classification technique that uses
a customizable Convolutional Neural Network (CNN) architecture and a metaheuristic
optimization algorithm. Future research should investigate other limitations, even if the
suggested PSOCNN model provides great classification performance in the classification of
mammography pictures. The following examples demonstrate the constraints of the PSO
algorithm and the proposed PSOCNN models:

The PSOCNN was exclusively used to classify mammography datasets. These results
may not generalize to other datasets because they are limited to the MIAS dataset and the
DDSM dataset.
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The PSO technique is only successful in detecting the hyperparameter values of the
CNN architecture, and we cannot generalize it to other pre-trained CNN designs.

PSO has hyperparameters (such as inertia weight and acceleration coefficients) that
require careful adjustment. The selection of these hyperparameters can have an impact
on PSOCNN’s performance. Dependence on initialization: The initializing positions of
particles can impact the performance of PSO. Random initialization can produce a variety
of solutions, and determining a suitable initializing technique can be difficult.

When using the PSOCNN, researchers must often carefully analyze the characteris-
tics of their specific task, dataset, and neural network design to achieve successful and
robust optimization.

4. Conclusions and Future Challenges

DL is one of the key methods for classifying medical images. Layerwise automatic
feature extraction is a typical characteristic of DL methods used for biomedical image classi-
fication, such as Convolutional Neural Networks. Knowing how to tune hyperparameters
is necessary for preparing CNNs for classification goals. Each layer has its own set of
hyperparameters. To obtain exceptional results, these hyperparameters must be adjusted
because they affect how well a CNN model performs. Choosing hyperparameters is not
a good idea because it is a time-consuming and challenging task. In several disciplines,
hyperparameter optimization has been profoundly influenced by metaheuristic methods.
This paper proposed a new breast cancer classification technique based on the CNN archi-
tecture and an optimization algorithm. The most-popular optimization approach is called
Particle Swarm Optimization (PSO). The hyperparameters of the CNN architecture are
optimized using the swarm optimization (PSO) technique, which results in the PSOCNN
model. The four stages of this PSOCNN model are: (1) developing the CNN’s architecture;
(2) optimizing hyperparameters; (3) learning; and (4) performance evaluation. Different
studies and CNN methodologies were contrasted with the PSOCNN. The comparison
results showed how well the proposed approach detected breast cancer. The evaluation
utilized two datasets: DDSM and MIAS. We compared the PSOCNN model to other models
to show how useful PSO is for finding the best CNN model hyperparameter settings that
can obtain good results. The experiment results validated the importance of the suggested
method. Accuracy, specificity, sensitivity, F-score, and precision were used as the metrics
for measuring the performance of the recommended algorithm. The results showed that
our proposed algorithm performed better than the other competitive algorithms, indicating
that it is possible to improve the performance of classification models for breast cancer
diagnostics by utilizing PSO as a metaheuristic algorithm of optimization to select the
CNN hyperparameters. Future research will assess the suggested model using multiple
datasets with additional images. Along with the suggested PSO technique, pre-trained
models like DensNet201, ResNet, Inception, and DensNet121 will be utilized for breast
cancer detection. For hyperparameter adjustment, multiple metaheuristic techniques will
also be used. Additionally, we will evaluate the performance of the suggested approach in
dealing with various medical image classification challenges and diagnostic applications,
utilizing the PSO method to handle further medical and other issues. The classification
accuracy will be further increased by combining the CNN architecture with a variety of
feature-extraction techniques. The effectiveness may be improved through transfer learning
with other models. In the future, studies will examine the use of PSO to optimize other deep
learning parameters, such as activation functions, epochs, and a number of convolutional
layers. As a result, additional optimization approaches and CNN designs must be tested to
assess the efficacy of computational cost and complexity.
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