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Abstract: Most of the relevant technology related to precision agriculture is currently 

controlled by Global Positioning Systems (GPS) and uploaded map data; however, in 

sensitive areas with young or expensive plants, small robots are becoming more widely used 

in exclusive work. These robots must follow the plant lines with centimeter precision to 

protect plant growth. For cases in which GPS fails, a camera-based solution is often used for 

navigation because of the system cost and simplicity. The low-cost plant camera presented 

here generates images in which plants are contrasted against the soil, thus enabling the use 

of simple cross-correlation functions to establish high-resolution navigation control in the 

centimeter range. Based on the foresight provided by images from in front of the vehicle, 

robust vehicle control can be established without any dead time; as a result, off-loading the 

main robot control and overshooting can be avoided. 
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1. Introduction 

In the field of agricultural research, precision farming and bio-farming agricultural robots are 

becoming more important because of the growing availability of robots as well as new and alternative 

applications that robots can provide or will provide in the near future. These alternative applications 

include testing and measurement applications, and research has focused on the placement of small 

chemical or insect bombs at precise infield positions for pest control. When wind from helicopter 

propellers prevents precise application, the payload is too small for deployment using helicopters, or 

views close to the ground [1] or mechanical manipulation are required, infield robots are the right choice. 

However, only robots with small wheels and low weight can be used when young or expensive plants 

need to be protected. Therefore, the vehicle cannot drive over the plant lines, and a method for inter-row 

weeder guidance is required. The typical drilling distance for wheat is 16 cm in Germany; thus, 

navigation precision must be in the centimeter range, which can be accomplished with a  

vision-based system [2–4]. Standard Global Positioning System (GPS) approaches often fail to produce 

high resolution over the entire field because when a satellite is hidden by an obstacle, such as a tree, hill, 

building, or the horizon, the resolution of the calculated position jumps to the meter range. Even a high-

resolution real-time kinematic GPS that uses two GPS devices and a radio connection  

to transfer the correction data faces similar problems when the radio connection is lost. For  

a ground-based radio connection, such a loss of connection can occur without obstacles because  

ground-reflected radio waves experience a 180° phase shift of directly transmitted waves, which results 

in the attenuation of the transmitted wave [5]. Under good satellite and radio conditions, real-time 

kinematic GPS can reach centimeter-scale resolution for slow vehicle speeds [6] or at larger time steps of 

one second [7]. In addition, typical maps uploaded to agricultural machineries have a grid size in the meter 

range [8]. A meter-scale grid is sufficient for large agricultural machines but not for small field robots. 

Accordingly, alternative or complementary techniques are required for precise navigation control. The best 

practice is to use an actual view of the plant lines to determine the correct direction to  

navigate [2,9–11]. For an automobile, navigational laser scanners and camera systems are  

common [12]; however, laser scanners are expensive and optimized for automobile applications; thus, 

they have large and overlapping spots to ensure the safe detection of all potential obstacles instead of 

centimeter-scale resolution [13,14]. Low-cost laser scanners are produced for indoor use and are not 

designed to operate in conditions with high amounts of water, dust and vibration, and they fail when 

exposed to direct sunlight, which is the greatest disadvantage for infield applications. In research 

applications, laser scanners are versatile under good weather conditions for a range of applications, 

including measurements of tree-row crops [15] or corn crops [16]. Although the cost of camera systems 

is decreasing, they lack robust plant detection software, which must be implemented in the system by 

the user. However, a normalized difference vegetation index (NDVI) processing system may be 

implemented along with plant detection software. NDVI is commonly used in agriculture to detect 

chlorophyll activity and separate plants from the soil. Although different formulas can be used to process 

NDVI signals and images, they always result in a grayscale or binary image with an adequate threshold. Both 

types of images can be used for high-resolution navigation control, and most high-resolution navigation 

applications use Hough transformations to detect plant rows [2,9–11,17], the cross-correlation is a 

simpler approach in terms of processing power for a small embedded system. The combination of these 
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images with a mask representing the plant line, for cross-correlation result in a precise position signal, 

which can be used to (lock-in) follow along the plant line. The cross-correlation function has a high 

filtering effect and is thereby good for noise reduction and outlier suppression. Using the binary image 

and mask results in a dramatic reduction of calculation power for microcontrollers/processors and field 

programmable gate arrays (FPGA), because they can use the logical “AND” and a counter for the whole 

math. Additionally, the horizontal use of the images has the grade advantage for parallelizing the 

calculation process, and thereby accelerating the result determination. The foresight provided by the 

image in front of the vehicle provides sufficient calculation time and timely decision support. 

Accordingly, vehicle control can be established without any dead time, and overshooting of the control 

output can be avoided. The calculating power costs in a small embedded system are low and will continue 

to decrease in the future, thereby enabling effective image-based navigation control systems for infield 

robot applications. 

2. Methods 

The plant-based navigation described in this article is a combination of two robust concepts: the image 

of a known scene with a known plant camera system and the cross-correlation mathematical operation 

that determines the degree of similarity of two functions. In this case, the cross-correlation determines 

the degree of similarity of a pixel line from both an image and mask, which corresponds to the periodic 

plant line structure. 

2.1. Plant Camera and Imaging 

The plant camera should be mounted as high as possible on the field robot. The mounting angle should 

provide a good compromise between foresight and high-resolution views close to the robot, which also 

depends on the viewing angle of the objective. A typical arrangement is shown in Figure 1. 

 

Figure 1. Mounting position of the plant camera on top of the field robot. 

With respect to costs, any color complementary metal-oxide-semiconductor (CMOS) charge-coupled 

device (CCD) cameras with near infrared (NIR) sensitivity (~800 nm to 900 nm) can be used. The  

IR-cutoff filter must be removed, and a low-pass filter from approximately 645 nm to 950 nm (RG645, 

SCHOTT AG, 55122 Mainz, Germany) should be used. Better results can be achieved with an adapted 

double band-pass filter [18], although this configuration has a higher cost. An adequate CMOS chip is 
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the Aptina MT9V032STC (Aptina Imaging Corporation, San Jose, CA, USA), which has high NIR 

sensitivity at 850 nm (Figure 2) and provides an image with 752 × 480 pixels. 

 

Figure 2. Spectral distribution of the RGB color chip MT9V032STC. Additional spectral 

range of the low pass filter (a) and optimized double band-pass filter (b) [18]. 

Figure 2 shows the usable spectral range of the camera chip after implementing an optical filter. The green 

and blue channels are only sensitive in the NIR range, and the red channel is sensitive to red and NIR light. 

Figure 3 shows the spectral characteristics of a plant, and the highest amplitude of spectral response is 

between the red and NIR range. Therefore, these spectral components are often used for the NDVI. 

 

Figure 3. Characteristic spectral distribution of plants and soil. Measured 2012 at a 

campaign by Gebbers et al. with a spectrophotometer (400 to 1000 nm, build of MMS1 NIR 

enhanced optical modules (Zeiss, Jena Germany) and LOE-USB controller (tec5, Oberursel, 

Germany)) [19]. 

The formula for the NDVI must be adapted to the spectral composition of the new “RGB” channels 

of the color chip. 
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(NIR − R) / (NIR + R)  ((Bchannel + Gchannel) − Rchannel) / Rchannel (1) 

Several optimizations can be used improve the contrast between plants and soil in the images [18], 

but the most important are debayering control and white balancing termination in custom cameras. These 

algorithms are usually optimized for RGB images and do not operate properly for new channel 

configurations. With optimized NDVI images, enhanced binary images can be produced [18], and they 

simplify the subsequent image processing applications [20]. 

Images of winter wheat were taken at the early growth state, and they were not optimal in terms of 

quality and viewing direction compared with images from fixed-mounted camera on a field robot 

platform. Although the images were not optimal, they demonstrate the robustness of the  

cross-correlation algorithm. 

2.2. Cross-Correlation 

The discrete form of the cross-correlation is shown in Equation (2). The calculation width from −N 

to N corresponds to the search window width of the cross-correlation, which will be subsequently used 

for tracking the position of the resulting maximum. 

ሺ݇ሻܥܥ ൌ ෍ ሺ݊ሻܤ ∙ ሺ݊ܣ ൅ ݇ሻே
௡ୀିே  (2)

The cross-correlation algorithm describes the identity of two functions, with one discrete function 

moved over the other and each data point (pixel) then multiplied. Finally, all of the results are summed, 

and the position of this sum is then stored or displayed (Figure 4). 

 

Figure 4. Correlation between simplified signals A and B. 

The maximum of the correlation result provides the highest identity position of the two functions. For 

a periodic function, the result will have a periodic maximum. With respect to the round shape of the 

maxima peak, the center of the peak can be calculated by the distance between the −3 dB (1/√2) and  

−6 dB (0.5) points or displayed in a small search window for peak tracking of the median position width. 

Navigation control must follow the peak signal; therefore, the mask function does not have to be moved 

over the entire pixel line of the image, which reduces the amount of calculation cycles to the number of 

pixels from the mask function (−N to N). During perfect navigation control, the peak signal of the 

correlation is always in the middle of the results (Figure 5), and the input signals for the control loop to 
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follow the specific plant line represent deviations from optimal conditions. Therefore, the search window 

for tracking can be even smaller than the mask window. For example, the window size for the  

cross-correlation is four or five periods wide, and the window size for the tracking search is one period. 

 

Figure 5. Application of the discrete cross-correlation between a 50-line averaged image 

signal and three-pulse rectangular shape mask. The center point of the correlation result is 

marked with a yellow and red point. 

Because the middle range of the image is optimal for this application, an inexpensive objective for 

the camera system can be used. Optical distortions caused by the objective affect the outer part of the 

image, although they can be ignored for this application. The image will also be used for additional 

image processing applications [21], with a higher quality lens used in practice. 

3. Strategies 

Several strategies can be used to obtain adequate results for this navigation approach, including mask 

design, average number of image line determination, error correction establishment, and embedded 

system design. 

3.1. Mask 

The mask function can be estimated or calculated by different functions or methods. With a fixed 

camera mount and known drilling distance, an empirical mask can be used in most cases. At the starting 

point in front of the field, the robot system can calculate the actual mask. These calculations do not affect 

the control loop because the mask will be calculated only once at the initializing/starting phase after each 

turnaround at field ends. After stretching out the perspective in the image, a fast Fourier transform (FFT) 
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function can be used to determine the basic frequency of the plant line distance, which should be the 

frequency for the periodic mask function. Based on the stretched image, the maximum peak intensities 

of the cross-correlation can be used by varying the periodicity of the rectangular-shaped mask from the 

expected nearby lower periodicity to higher periodicity. Alternatively, a low-pass filter, such as a 

Gaussian-shaped filter, can be applied to the image lines in the x-direction. The threshold based binary 

result can be used to obtain a rectangular signal; in this case, a median duty cycle is a good choice for 

the mask function. 

In addition, the mask function length, or the number of periods to be used for the correlation, must be 

set. A short mask produces a small number of calculations, whereas a large mask provides a better 

filtering effect and is more robust against outliers. For this application, a very large mask must be adapted 

at the border side because the perspective image causes changes in both the periodicity and duty cycle 

(Figure 5). For the same camera mounting position, a correction function or lookup table can be used to 

adapt the mask limb. However, with respect to calculation power, a medium-size mask is a good 

compromise. One rectangle is too sensitive and can lead to frequent missing plants in the line. Four 

rectangles are robust as long as four plants are not missed; this exception will be discussed later. Image 

stretching evens the linear mask correction function for the y position, with the mask decreasing in size 

from the bottom to the top y lines. In addition, small variations of mask scaling can be used to calculate 

results with the highest minimum-to-maximum distance or the best fit. Increasing differences from the 

best mask scale to expected scale provide additional terrain information. Larger scales indicate that a 

hill is coming, whereas smaller scales indicate that a hill has passed. For a field robot with an integrated 

hybrid power system, this information can be used to direct the robot to provide a higher amount of 

power, such as by increasing the generator turns per minutes. 

3.2. Number of Tracking Points and Averaged Image Lines 

In natural scenes, the field arrangement is never perfect. Therefore, an individual image line in the x 

direction can appear as noise, which is useless for a tracking result or point and may be caused by drilling 

errors or animal interference at the specific area. Significant effort is required to write a program that 

can manage all of the existing or possible exceptions, and a more effective solution is to reduce the 

number of tracking points and calculate them with an averaged image line. Due to the perspective 

distortion in the image, a limited number of lines is available for averaging in the y direction because 

the result is approaching an increasingly flat line. Depending on the mounting position and camera 

resolution, each setup will have its own optimal compromise for the number of tracking points and 

averaged image lines, which can be performed by averaging 10 or 50 lines or using a certain percentage 

of lines above and below the actual y position, such as 20 lines combined with an additional 20 lines 

above and below. This process results in a high degree of filtering, but the average of each 20-line 

package must be calculated only once. These packages can be weighted by 0.25, 0.5 and 0.25, which 

results in a Gaussian filter response. Thousands of combinations of filter types and lengths are possible. 

With respect to calculation power, simple algorithms are preferable because the cross-correlation can 

filter as well. 

Figure 6 demonstrates that the differences at the center region are minimal as long as plants are not 

missing in the line. 
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The number of calculated tracking points is not constrained because the averaged regions can overlap. 

A larger overlap results in smaller potential movements of the tracking points, although it requires 

additional calculation power to perform averaging and has an additional disadvantage of reduced 

tracking at small curve radius. 

 

Figure 6. Four plotted lines showing the normalized average result at the same y position. 

Line A is an average of 20 lines, line B is an average of 40 lines, line C is an average of  

60 lines, and line D is the Gaussian result (20 × 0.25 + 20 × 0.5 + 20 × 0.25). 

3.3. Error Correction 

Because of the imperfect field situation, the cross-correlation can produce higher maxima to the left 

and right of our tracking maximum. Therefore, the search window size should be reduced to one 

maximum. Determining the field conditions can reduce the window size [22]. If the maximum jump is 

towards the window corner or the distance between minimal and maximal values is too small, then a 

warning or error signal is indicated. If the error signal is missing for results at higher y positions, then 

certain errors can be ignored and compensated by a linear regression as described below. Figure 7 shows 

a typical search window result with the recused width during a normal operation cycle, and the gray 

areas indicate the warning region for the center point. The warning region is an example and can be 

adapted to the camera resolution and view field. 

Larger field areas may not be in the correct order, which might be caused by animals or drilling errors. 

Drilling errors are not frequent in gardening, but such errors occur more frequently during grain 

cultivation. At the drilling machine stopping position for grain refilling, islands of excessive or missing 

plants can occur, and the cross-correlation cannot find a tracking point in such areas; as a result, the 

entire solution will be adapted with a spline or linear regression calculation for the expected driving 

direction. This function helps to find outliers and can bridge gaps in an image. Possible tracking points 

in line and close to the spline position will be used in the algorithm, and the robot can follow the spline 

interpolation over the gap areas. This process is the correct procedure for use in an area with excessive 
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numbers of plants, which is determined by the NDIV information. For missing plants, this strategy is 

justified if the gap is smaller than the robot. For larger gaps, the robot should ask the supervisor to drive 

around the gap or use additional image analysis techniques to ensure that holes in the ground are not 

present. Due to the reduced curve-driving capability of drilling machines, the interpolation function 

requires only several terms for fitting the curve shape. The main driving direction is the y direction in 

the image; therefore, the function depends on the y coordinate: 

f(y) = a + by + cy² + dy³ (3)

 

Figure 7. Search window at the center position of the cross-correlation result. The median 

is used to detect the nearest thickness points of the peak function, and the middle position is 

marked. Both plots were obtained from the results of a binary image. The gray areas indicate 

the warning regions for tracking point quality. 

If the regression coefficient is inadequate, then historical tracking points from previous images can 

be used to strengthen the interpolation function. Therefore, the movement should be stored in memory, 

with at least the last image saved.  

Additional error corrections can be implemented by using alternative information sources [17], such 

as gyroscopes, accelerators, magnetic compasses, barometers and GPS. This process is called “sensor 

fusion”, and in combination with calculated information from the sensor signals, it helps to resolve 

critical issues. 

All needed parameters and functions for the cross correlation are summarized in the workflow 

diagram in Figure 8. 

3.4. Embedded System 

To offload the main computer of the robot system, the direction correction data should be calculated 

by an independent system. Many semiconductor chips can be used to perform such calculations at low 

cost and low power consumption. For simple solutions, it is impractical for the robot to transport a large 

computer workstation because of the increased power consumption and payload, although the advantage 

of this solution is the high degree of potential parallelization. XMOS has developed an  

XS1-L16A-128-QF124 microprocessor with 16 processor cores for $20, and FPGAs are available from 

multiple companies at prices ranging from $2 to $10,000. The NVIDIA Tegra K1 chip has quad ARM 
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processors and 192 graphics processing units (GPUs), and a computer-like evaluation kit (Jetson TK1) 

costs €170. However, a more optimized solution is to use modern software to design and evaluate 

application specific optimized processors.  

 

Figure 8. Simplified workflow diagram for the main path.  

The required processing architecture for robot applications must be heterogeneous because both 

robotics control applications as well as dataflow-oriented applications are used. Robot control is clearly 

part of the application, which is more control-flow oriented. Therefore, the most suitable target 

architecture is a standard central processing unit (CPU) and varies according to the algorithm used for 

image processing. Here, a clear data-flow orientation is most suitable; therefore, hardware with maximal 

parallelization would be most beneficial to host this part of the application and specific processor 

architectures, such as very long instruction word (VLIW) processors, GPUs and FPGAs, are most 

suitable. Because the FPGA architecture can combine control- and data-flow oriented processors, this 

hardware is most suitable for the target application described in this paper. Promising FPGA architecture 

is found in the Zynq platform by Xilinx, which combines a dual core ARM 9 processor with 

reconfigurable hardware and a number of standard interfaces, such as the controller area network (CAN), 

Peripheral Component Interconnect Express (PCI Express), Serial Peripheral Interface (SPI), analogue, 

and a high number of digital I/Os [23]. More suitable architecture, Zynq Ultrascale, will be available in 

future and will include an ARM Mali GPU, quad core ARM A53, dual core R5 and many more features.  

The aforementioned architectures exhibits the trends of current and future embedded system 

platforms, which clearly follow the trend of heterogeneity in terms of their processing units because of 
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applications that have different requirements, particularly for embedded applications. These 

requirements can be either functional or non-functional. Functional requirements include specific 

algorithms that deliver results according to a quality of service request (e.g., image resolution, frame 

rate), whereas nonfunctional requirements include real-time operation, high throughput, high reliability, 

and availability; these functions are crucial because real-time requirements are essential for the proper 

and safe operation of a system. Most of the recent achievements have enabled embedded platforms to 

measure and control themselves to adapt to these requirements, even during run-time operations. [24]. 

Here, a specific adaptation of the processing element is used to self-tune the complete architecture 

according to the current status of the processor and environment [25] to resolve the issue of a static 

computing architecture that cannot be optimized for a specific and dynamic application. These 

architectures are able to self-tune the processor, accelerator and specific interface cores using the 

reconfigurable portion of the chip by exploiting dynamic and partial reconfigurations. Here, a chip 

component is updated during run-time operations, whereas the rest of the chip remains in operation. This 

feature enables chip configurations according to the changing requirements of an application, thus 

increasing the flexibility of an embedded system tremendously. 

4. Results 

Figures 9–11 illustrate the cross-correlation algorithms implemented on plant images with real  

in-field conditions. Figures 9 and 10 use the average of 20 lines and were calculated every 10 lines. 

Figure 9 shows two scenes with small angles and middle position errors, and the mounting height and 

viewing direction provide an adequate foresight that is typically 20 m. 

Figure 9. Two winter wheat scenes photographed using the low-cost plant camera. The left 

side shows a gray-scale NDVI image, and the right side shows a binary image. Both sides 

are overlain with the individually calculated tracking points.  
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Figure 9 shows that the tracking points exhibit small variations from a straight line. The differences 

from a linear regression line and between grayscale and binary images are discussed later. For this 

camera perspective, the tracking point presents excellent following of the plant lines, and variations from 

the linear regression are small (see Table 1). Figure 10 shows a similar field scene but with different 

mounting angles. The resulting images include the horizon and have a maximum field of view, although 

with higher restrictions for pixel resolutions in the upper 30% of the images. 

Figure 10 demonstrates the enormous potential foresight of this plant-based navigation solution, with 

the algorithm losing tracking at several pixel lines before the horizon. Nevertheless, tracking is possible 

for over 50 m using a low-resolution camera. Figure 11 shows two field scenes with curves in the plant line. 

 

Figure 10. Three winter wheat scenes photographed using the low-cost plant camera. The 

left side shows a gray-scaled NDVI image, and the right side shows a binary image. Both 

sides are overlain with the individually calculated tracking points. Scenes one and two in the 

grayscale images show two and four red tracking points, respectively, which indicate 

exceedance of the warning level and an excessively small difference between the maximum 

and minimum. 

The results in Figure 11 demonstrate that the algorithm can find tracking points without requiring 

straight lines in the image. The fitting curves demonstrate the good predictive potential of future 
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directions, even with poor quality images in which the bright-sky pixel intensities reduce the dynamic 

range for infield pixels. Figure 12 shows two extreme situations for which the field of view is inadequate 

for this application. 

Figure 11. Two winter wheat scenes with a curved path. The left side shows the  

gray-scaled NDVI image, and the right side shows the binary image. Both sides are overlain 

with the individual calculated tracking points. Scene 1 uses an average of over 11 lines for 

the gray-scale image, over 15 lines for the binary image and a three period mask. Scene 2 

uses an average of over seven lines for both the gray-scale and binary image and a four period 

mask. Scene 2 is overlain with a third-order fit.  

Figure 12 demonstrates the robustness of the algorithm, even under the worst image quality 

conditions. Here, the viewing angle is too flat and the image contrast is reduced by the bright-sky pixels. 

In addition, the size of the plants is highly variable, and larger gaps with missing plants are observed. 

Under these extreme conditions, it is important to determine if the mask is appropriate for the actual 

scene or image. The width of the mask can be analyzed with additional loops that vary the width. The 

median level in Figure 7 is caused by the maximum and minimum values in the search window, and this 

difference also indicates the quality of the tracking point, is used as a warning signal and can be used to 

manipulate the mask size for the cross-correlation calculation. Figure 13 shows the position of the 

maximum difference for the calculations using masks varying from −2 to +2 pixel widths per period. 

Multiple points at the +2 level indicate that the mask should be wider, and multiple points at the −2 level 

indicate that the mask should be narrower. 

As shown in Figure 11, a third-order fit is a simple but adequate function for interpolating or 

evaluating individual tracking points. Table 1 presents the R² and root mean square error (RMSE) 

statistics for the third-order regression for the demonstrated scenes. 
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A stability index with values greater than 0.9 demonstrates accuracy in the tracking points determined 

with the cross-correlation application. The binary results exhibit nearly the same stability as long as the 

image quality is adequate. For low-quality images from Scenes 6 to 9, the binary results differ from the 

gray-scale results. Therefore, the faster binary approach requires an adequate camera mounting and good 

plant camera system with efficient binary results independent of lighting [18]. The first scene shows an 

orthogonal tracking line, for which the R2 value is useless for typical straight driving directions; as a 

result, the RMSE value should be used as the quality indicator. With respect to the different viewing 

angles and view fields, the RMSE values at the starting point can be compared after normalization to the 

given plant line distance of 160 mm. This line distance is equivalent to the mask periodicity. 

 

 

Figure 12. Two winter wheat scenes with both curved and flat viewing directions. The left 

side shows the gray-scaled NDVI images, and the right side shows the binary images. Both 

sides are overlain with the individual calculated tracking points.  

 

Figure 13. The quality of the mask size is indicated by the maximum difference between the 

maximum and minimum values in the search window for each tracking point. The mask size 

varies from +2 to −2 additional pixels for the periodic structure of the mask. This example 

plot was produced from the first image in Figure 10. 
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Table 1. Results for the third-order regressions. 

 R² RMSE  Normalized RMSE in mm 

Scene Gray Binary Gray Binary Pixel/Row Gray Binary 

1 0.3362 0.1477 1.508 2.299 64 3.77 5.75 

2 0.9962 0.9909 0.9015 0.9328 47 3.07 3.18 

3 0.9984 0.9935 0.8452 1.345 64 2.11 3.36 

4 0.9904 0.9753 0.870 1.071 59 2.36 2.90 

5 0.9728 0.9205 1.758 1.210 77 3.65 2.51 

6 0.9303 0.5164 2.844 4.820 80 5.69 9.64 

7 0.9968 0.9866 0.8468 1.029 38 3.57 4.33 

8 0.9463 0.9744 2.726 1.957 58 7.52 5.40 

9 0.9644 0.6476 2.365 4.021 114 3.32 5.64 

Binary Results 

The binary images should be processed by appropriate algorithms in the plant camera system; 

however, this processing is beyond the scope of this paper. Regardless of how the binary images are 

obtained, proper binary image processing improves the performance of the cross-correlation because the 

resulting binary images exhibit sharper peaks as shown in Figure 14. 

Figure 15 shows a small terrain effect in the image. Variations from the perspective function used to 

shrink the masks width indicate changes in the terrain. 

 

Figure 14. Cross-correlation results from one averaged pixel line over a window size with 

three periods. The left side shows the gray-scale results, and the right side shows the  

binary results. 

 

Figure 15. Terrain effect is indicated by a difference between the linear mask shrinking by 

the perspective in the image, and the mask size with highest maximum. Below zero indicates 

a valley and above zero indicates a hill. 
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The diagram in Figure 15 demonstrates the possibility for detecting terrain features. For a more difficult 

situation with a curve, the mask shrinking factor caused by the curve must be additionally considered. 

5. Conclusions 

The combination of a plant camera and cross-correlation algorithm results in a robust in-field navigation 

solution for robots working with sensitive plants. This solution uses the plant lines themselves to follow 

precise tramlines. The results of this study demonstrate that the proposed approach avoids driving over 

plants and provides accurate navigation control in the centimeter range. In addition, the proposed approach 

overcomes the issue of jumps that hinder GPS-driven solutions. Because plant lines were drilled with large 

agricultural machinery, the minimum curve radius is restricted, which provides a number of possibilities 

for reducing the power required to calculate the algorithms. 

1. Image lines in the x direction can be concentrated by averaging in the y direction. 
2. The cross-correlation function does not have to move over the entire pixel line. 
3. The moving mask of the cross-correlation can be reduced to a few periodic replications with a 

rectangular shape, thereby reducing the length of the used pixels and number of multiplications. 
4. The reduced mask must only move over a length smaller than one period to have only one 

maximum peak of the cross-correlation in the inspection window. 
5. Missing tracking points can be interpolated using a simple linear regression function. 

In addition, the required calculation power can be reduced using the binary result from the plant 

camera. The multiplied binary image line and a binary mask can be replaced by the logical conjunction 

“AND”, which can be performed in parallel during one clock cycle in a FPGA. 

All of the algorithms required for this application are reduced to multiplications and summations, which 

is an important point for implementing algorithms in a small embedded system with restricted resources. All 

line averaging can be performed in parallel, and for reduced packages, even the cross-correlation can be 

performed in parallel. The inspection window for the cross-correlation must follow shifts in the tracking 

points and is therefore a cascaded operation. After two or three parallel correlations, the shift must be 

added and then the new run starts with the shifted window position. Using this window provides a 

substantial advantage in potential error detection. If the calculated tracking points fall in the edge region 

of the window or if the difference between the maximum and minimum value in the window is too small, 

then these tracking points can be ignored. A simple linear regression can be used to calculate a tracking 

function, and outlier tracking points can be overbridged, which also illustrates the robustness of this 

navigation solution. The detailed description of this application and its resulting simplicity are significant 

advantages in the establishment of steering control in small embedded systems that offload the main 

system of the field robot. The steering command is not the only output of the solution, and the foresight 

provides additional information on field conditions, such as direction, hills and valleys, assumed 

obstacles, and the field ends. Such additional information is important for providing correct overall field 

driving plans or management. When this information is combined with sensor signals, such as gyros and 

accelerators, the main system can determine if the approaching hill has too great of an ascending slope 

for the robot. 

The next step in this line of study will be changing the correlation direction from the x axis to the 

orthogonal axes of the fitted line. This modification could enable the application to follow sharper curves 
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in the image because the averaging of lines in the y direction can filter out the plant lines, while the 

averaging in the expected direction cannot perform this filtering. Figure 16 shows the difference between 

the averaging directions. In addition, the cross-correlation will output higher peaks in the expected 

direction, thus improving the quality of the tracking points. 

 

Figure 16. Different averaging directions determining different resulting input functions for 

the cross correlation. Upper plot is the result of the averaging in y-direction. Lower plot is 

the result of the 33° direction. 
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