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Abstract: State of charge (SOC) estimation is an important part of a battery management system (BMS).
As for small portable devices powered by lithium-ion batteries, no current sensor will be configured
in BMS, which presents a challenge to traditional current-based SOC estimation algorithms. In this
work, an electrochemical model is developed for lithium batteries, and three methods, including the
incremental seeking method, dichotomous method, and extended Kalman filter algorithm (EKF),
are separately developed to establish the framework of current and SOC estimation simultaneously.
The results show that the EKF algorithm performs better than the other two methods in terms of
estimation accuracy and convergence speed. In addition, the estimation error of the EKF algorithm is
within ±2%, which demonstrates its feasibility.

Keywords: Li-ion; SOC; current sensorless; extended Kalman filtering

1. Introduction

In recent years, the sustainable development of the environmental ecosystem has
become a pressing issue due to the increasingly prevalent problems of environmental
pollution. In this case, it is essential to focus on the efficient use of energy and resources.
Lithium-ion batteries are a popular choice as energy storage components for small electron-
ics and large electric vehicles due to their high energy density, long cycle life, no memory
effect, and low self-discharge [1]. However, overcharging or over-discharging a lithium
battery can lead to capacity degradation, shortened battery life, and even explosion.

In order to guarantee the safe and secure use of lithium-ion batteries and to extend their
cycle life, a battery management system (BMS) is critical, which can effectively manage the
performance of lithium-ion batteries in a comprehensive, efficient, and refined manner [2].
It is necessary to ensure optimal battery performance and longevity in various applications.

The reliability of the BMS depends on the precision of the state of charge (SOC)
estimation of lithium-ion batteries. SOC indicates the remaining capacity and provides
an indication of whether the battery needs to be charged or discharged. The variation
characteristics of SOC are a critical performance indicator for assessing the status of lithium-
ion batteries. Therefore, accurate SOC estimation is a core function of BMS [3], and it is a
prerequisite to achieve additional functions such as safety control, battery equalization,
and troubleshooting.

However, SOC is an internal state of the battery and cannot be directly measured. It
can only be estimated based on the relationship between voltage, current, temperature,
and the aging of the battery [4]. Therefore, it is crucial to develop reliable SOC estimation
algorithms that consider all relevant factors to ensure optimal performance and safety of
lithium-ion batteries in various applications.

In automobiles, robots, and energy storage systems, current measurement is usually
achieved using shunt resistors or Hall-effect current sensors. While shunt resistors have
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inherent power losses and require isolation circuitry, Hall-effect sensors are typically
expensive. In low-cost portable applications, such as microphones and hearing aids, the
current sensor is often not equipped, considering the size and cost of the device. Therefore,
it is practical to design a current sensorless SOC estimation method for low-cost portable
applications.

Common SOC estimation algorithms include the open-circuit voltage method, ampere-
hour integral method, electrochemical impedance spectroscopy, adaptive filtering method,
and data-driven neural network method [5]. The open circuit voltage method takes a long
time to collect data and is difficult to apply in practice [6], while the ampere-hour integral
method is affected by the initial charge state and current stability. The electrochemical
impedance spectroscopy method is only used for laboratory research [7]. In addition,
the adaptive filtering method has a complex algorithm and long calculation cycle, which
includes nonlinear Kalman filter, particle filter, specifically including extended Kalman
filter, traceless Kalman filter, and other methods [8–12]. In neural network methods [13–15]
and support vector machine methods [16–19], the SOC estimation of a battery is viewed as
a regression problem, using multiple inputs (e.g., voltage, current, and environmental vari-
ables) to predict the SOC. These methods usually require a large quantity of experimental
data to train the neural network and use various optimization techniques to improve preci-
sion and robustness. Ignoring the internal mechanism of the battery, the model accuracy
depends on the quality of the sample data. In addition, in the field of fast charging, Xuejiao
Xu et al. [20] created their own three-electrode system so as to measure the anode/cathode
potential and estimate the SOC.

A battery model, which includes equivalent circuit models (ECM) [21] and electro-
chemical models, provides high simulation accuracy and reflects the external characteristics
of the battery. The electrochemical model parameters have physical meanings and act as a
bridge between the external characteristics of the battery and the internal electrochemical
reaction mechanism of the battery [22–24]. In order to achieve accurate SOC estimation,
the BMS requires current measurements as input to the estimator.

For the current sensorless SOC estimation method, Cambron and Cramer [25] es-
timated the current by an unknown input observer, and Putra et al. [26] created a new
method to accomplish current estimation on the basis of Thevenin ECM. Chun et al. [27]
obtained the open circuit voltage (OCV) and current information from the terminal voltages
and then calculated the SOC using the ampere-hour integral method. However, these
methods either used a linear relationship between OCV and SOC or utilized an overly
simple battery model that led to a decrease in the accuracy of the model.

To avoid the above problems, Jing Hou et al. [28] used the variational Bayesian
extended Kalman filter method to achieve simultaneous estimation of SOC and current.
Experimental results showed that the mean absolute errors (MAEs) and the root mean
square errors (RMSEs) of the SOC estimations of the proposed variational Bayes-based
unscented Kalman filter (VB-UKF) were less than ±3%.

In this work, three methods are proposed to estimate SOC in the absence of current
sensors based on the electrochemical model of lithium-ion batteries, which include the
incremental seeking method, the dichotomous method, and the improved extended Kalman
filter algorithm. The remainder of this work is organized as follows: (1) In Section 2, the
electrochemical model of lithium-ion batteries is established to mathematically express
the mechanisms in the charging and discharging process, and the relationship function
between voltage and SOC is obtained. The principles of the three methods are described;
(2) In Section 3, the data test of LCO lithium-ion batteries is conducted to obtain the voltage
and current data under different working conditions; (3) In Section 4, the estimation of SOC
under no current monitoring by three methods is completed compared with the reference
value. In addition, the effects of inaccurate initial values of SOC and different levels of
voltage noise on the accuracy of the estimation results are also explored.
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2. Lithium-Ion Battery Model and Algorithm Principle
2.1. Simplified Electrochemical Model

The structure of a lithium-ion battery is divided into three areas: the positive electrode,
the negative electrode, and the diaphragm. The cathode material typically uses lithium
ferrous phosphate (LFP), lithium cobalt oxide (LCO), lithium-nickel-cobalt-manganese
oxide (LNCM), etc., while the anode material is usually graphite, and the electrolyte is
mostly LiPF6 alkyl carbonate with polymer materials. During the process of charging
and discharging, lithium ions are de-embedded and transferred between the positive and
negative electrodes [29].

The classical electrochemical model of lithium-ion batteries is based on ten control
equations in the form of partial differential equations. These equations describe the solid-
phase diffusion within the particles, liquid-phase diffusion in the electrolyte, solid-phase
potential equilibrium, and liquid-phase potential equilibrium in the positive, diaphragm,
and negative regions. The model structure is shown in Figure 1.

Batteries 2023, 9, x FOR PEER REVIEW 3 of 20 
 

with the reference value. In addition, the effects of inaccurate initial values of SOC and 

different levels of voltage noise on the accuracy of the estimation results are also explored. 

2. Lithium-Ion Battery Model and Algorithm Principle 

2.1. Simplified Electrochemical Model 

The structure of a lithium-ion battery is divided into three areas: the positive elec-

trode, the negative electrode, and the diaphragm. The cathode material typically uses lith-

ium ferrous phosphate (LFP), lithium cobalt oxide (LCO), lithium-nickel-cobalt-manga-

nese oxide (LNCM), etc., while the anode material is usually graphite, and the electrolyte 

is mostly LiPF6 alkyl carbonate with polymer materials. During the process of charging 

and discharging, lithium ions are de-embedded and transferred between the positive and 

negative electrodes [29]. 

The classical electrochemical model of lithium-ion batteries is based on ten control 

equations in the form of partial differential equations. These equations describe the solid-

phase diffusion within the particles, liquid-phase diffusion in the electrolyte, solid-phase 

potential equilibrium, and liquid-phase potential equilibrium in the positive, diaphragm, 

and negative regions. The model structure is shown in Figure 1. 

 

Figure 1. Lithium battery electrochemical model structure. 

In this work, the internal processes of the cell were described using algebraic equa-

tions. These equations encompassed various aspects of the cell’s functioning, such as the 

basic working process, solid-phase diffusion process, concentration polarization effect, re-

action polarization effect, ohmic polarization effect, and the calculation of the terminal 

voltage [30]. The equations involved in the model are presented in Table 1. The meanings 

of the parameters involved in the above model are shown in Table 2. 

Table 1. Electrochemical model equations for lithium batteries. 

Correlation Mechanism Equations 

Terminal voltage Uapp(k) = Eocv(k) - −  η
con

(k) - η
act

(k) - η
ohm

(k) 

Open circuit potential correction Eocv(k) = Eocv
ref

(k) + (T(k) - Tref)
dEocv

dT
 

Basic working principle 

xavg(k) = x0 - ∫ I
tk

t1
dt/Qn, xsurf(k) = xavg(k) - ∆x(k), ∆x(k) = ∆x1(k)+

2

7
τnI(k)/Qn, 

y
avg

(k) = y
0
+ ∫ I

tk
t1

dt/Qp, y
surf

(k) = y
avg

(k) + ∆y(k), ∆y(k) = ∆y
1
(k) + 

2

7
τpI(k)/Qp, 

Eocv(k) = Up [y
surf

(k)]  - Un[xsurf(k)] 

Solid diffusion ∆x1(k+1) = ∆x1(k)+
1

τn
[
12τnI(k)

7Qn

 - ∆x1(k)]∆t, ∆y
1
(k + 1) = ∆y

1
(k)+

1

τp
[
12τpI(k)

7Qp

 - ∆y
1
(k)]∆t 

Liquid-phase diffusion ∆𝑐n(k+1) = ∆𝑐n(k) + 
1

τe

[PconnI(k) - ∆𝑐n(k)]∆t, ∆𝑐p(k + 1) = ∆𝑐p(k) + 
1

τe
[Pconp - ∆𝑐p(k)]∆t,  

Figure 1. Lithium battery electrochemical model structure.

In this work, the internal processes of the cell were described using algebraic equations.
These equations encompassed various aspects of the cell’s functioning, such as the basic
working process, solid-phase diffusion process, concentration polarization effect, reaction
polarization effect, ohmic polarization effect, and the calculation of the terminal voltage [30].
The equations involved in the model are presented in Table 1. The meanings of the
parameters involved in the above model are shown in Table 2.

2.2. Identification of Model Parameters

The intrinsic characteristics of the battery parameters remain constant and can be
obtained by consulting the manufacturer or references. However, the variables to be
identified in the electrochemical model include the initial lithium intercalation in the
cathode, cathode capacity, offset of the lithium intercalation, and more [31]. The parameters
involved can be obtained by analyzing the intrinsic connection between the cell terminal
voltage change, the open-circuit voltage, and each part of the overpotential under the
designed identification conditions with different forms of current excitation.

The parameter identification method referred to an excitation response analysis devel-
oped in [30]. Based on the simplified electrochemical model, using the input data of current
and the corresponding response data of voltage, the relationship between the internal
mechanisms and external behaviors was established quantitatively, and the parameters in
the model were fitted during this process.

The parameters obtained by identification are shown in Table 3.
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Table 1. Electrochemical model equations for lithium batteries.

Correlation Mechanism Equations

Terminal voltage Uapp(k) = Eocv(k) − ηcon(k) − ηact(k) − ηohm(k)
Open circuit potential correction Eocv(k) = Eref

ocv(k) + (T(k) − Tref)
dEocv
dT

Basic working principle

xavg(k) = x0 −
∫ tk

t1
Idt/Qn, xsurf(k) = xavg(k) − ∆x(k), ∆x(k) = ∆x1(k) + 2

7 τn I(k)/Qn,

yavg(k) = y0 +
∫ tk

t1
Idt/Qp, ysurf(k) = yavg(k) + ∆y(k), ∆y(k) = ∆y1(k) + 2

7 τp I(k)/Qp,

Eocv(k) = Up

[
ysurf(k)

]
− Un

[
xsurf(k)

]
Solid diffusion ∆x1(k + 1) = ∆x1(k) + 1

τn
[ 12τn I(k)

7Qn
− ∆x1(k)]∆t, ∆y1(k + 1) = ∆y1(k) + 1

τp
[

12τp I(k)
7Qp

− ∆y1(k)]∆t

Liquid-phase diffusion
∆cn(k + 1) = ∆cn(k) + 1

τe
[Pconn I(k) − ∆cn(k)]∆t, ∆cp(k + 1) = ∆cp(k) + 1

τe

[
Pconp − ∆cp(k)

]
∆t,

ηcon(k) =
2RT(k)

F (1 − t+)ln
[

c0 + ∆cp(k)
c0 − ∆cn(k)

]
Reactive polarization

ηact(k) =
2RT(k)

F [ln (
√

m2
n(k) + 1 + mn(k)) − ln(

√
m2

p(k) + 1 + mp(k))]

mp(k) = 1
6Qpc0.5

0

1
(1 − ysurf(k))

0.5(ysurf(k))
0.5 Pact I(k),mn = 1

6Qnc0.5
0

1
(1 − xsurf(k))

0.5(xsurf(k))
0.5 Pact I(k)

Ohmic polarization ηohm = Rohm I (k)
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Table 2. Meaning of related parameters.

Parameters Physical Meaning

Uapp Terminal voltage (V)
Eocv Electromotive force (V)
ηcon Concentration polarization overpotential (V)
ηact Reaction polarization overpotential (V)
ηohm Ohmic polarization overpotential (V)

yavg, xavg
Solid-phase average stoichiometric number of positive and negative

electrodes (-)

ysurf, xsurf
Solid-phase surface stoichiometric number of positive and negative

electrodes (-)
∆y Deviations between ysurf and yavg (-)
∆x Deviations between xsurf and xavg (-)
∆y1 Intermediate variable of ∆y (-)
∆x1 Intermediate variable of ∆x (-)

T Battery internal temperature (K)
R Ideal gas constant (J mol−1 K−1)

y0, x0
Initial lithium intercalation concentration fraction of positive and

negative electrodes (-)
c0 Initial lithium ion concentration in electrolyte (mol m−3)

Qp, Qn Total capacity of positive and negative electrodes (A s)
Qall Total capacity of the battery (A s)

τp, τn Solid diffusion time constants of positive and negative electrodes (s)
Dx, Dy Lithium embedding rate of positive and negative electrodes (-)

Pact Reaction polarization coefficient (m−1.5 mol0.5 s)
Pcon Proportional coefficient of liquid phase diffusion (mol m−3 A−1)
Rohm Ohm internal resistance (Ω)
yofs Embedded lithium offset (-)
τe Liquid phase diffusion time constant (s)

Table 3. Battery parameters.

Parameters Value

y0, x0 0.7941, 0.4538
c0 1000

Qp, Qn 19,859.04, 11,888.64
τp, τn 184.7533, 2.5501
Dx, Dy 0.7922, 0.4743

Pact 271,780
Pcon 955.1863
Rohm 0.0686
yofs 0.0708
τe 62.2686

2.3. Principle of SOC Estimation Algorithm under No Current Monitoring

The three SOC estimation algorithms utilized in this study were based on the simplified
electrochemical model. However, the model function inputs did not take into account the
temperature of the battery. The inputs solely consisted of the SOC and current, while the
output was limited to the cell terminal voltage.

2.3.1. Incremental Seeking Method

This solution was based on the idea of enumeration to achieve current estimation
and SOC prediction. The approach involves gradually increasing the current within fixed
boundary conditions and then inputting the current into the model to calculate the voltage
to identify the current values that meet the necessary requirements. Once the appropriate
current value is determined, the SOC can be estimated using the ampere-hour integral
method. The corresponding flowchart illustrating this method is depicted in Figure 2.
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Figure 2. Flow chart of incremental seeking method.

The specific scheme was as follows: Firstly, the measured voltage was compared with
the previous second’s voltage to determine whether the battery was being charged or
discharged. Then, the current sign was initialized, and upper and lower search boundaries
were set. An initial current value of 0 was assumed. A voltage simulation was carried
out using the assumed current, and the simulated voltage was compared to the measured
voltage. If the error between the measured voltage and simulated voltage exceeded an
acceptable range, the current value was increased based on the error until the error was
within an acceptable range. The current corresponding to the simulated voltage was
considered the current, and the SOC was predicted using the ampere-hour integration
method.

2.3.2. Dichotomous Method

As shown in Figure 3, this scheme used the dichotomy method for current estimation
and SOC prediction. The basic principle of the dichotomy method involved continuously
dividing the search range into two parts within fixed boundary conditions to find the
number that meets certain requirements.
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The specific scheme is as follows: firstly, the measured voltage was compared with that
of the previous second to determine the charging and discharging state at this time. Then,
the current was initialized, and the upper and lower search boundaries were assumed. The
voltage simulation was carried out based on the assumed current, and the corresponding
simulation voltage was compared with the measured voltage. If the error is greater than
the acceptable range, the current value is adjusted according to the error until the error
between the measured voltage and the simulated voltage is in the acceptable range. At this
point, the current corresponding to the simulated voltage was considered as the current at
that moment. Finally, the SOC prediction was carried out by the ampere-hour integration
method.

2.3.3. Extended Kalman Filter

The solution utilized a modified extended Kalman filter to achieve SOC estimation.
Based on the simplified electrochemical model, the load current was taken as the unknown
input, and the system state equation and the measurement equation were established. In
addition, the current estimation was achieved using the modified extended Kalman filter
method. Finally, the SOC estimation was completed by the ampere-hour integral method.
The flow chart is shown in Figure 4.
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To implement this solution, an update of state variables and observation updates
was required, which meant that the priori SOC estimation, succession of current values,
and covariance matrix calculations were carried out. The gain matrix was then calculated,
and the currents were corrected according to voltage errors. Finally, the accurate SOC
estimation for a single cell was obtained by the ampere-hour integration method.

3. Battery Testing Process and Results

Different lithium cobaltate battery monoblocks from the same batch with a standard
capacity of 800 mAh were selected. Charging and discharging tests were performed using
Neware’s battery test system to simulate the battery operating conditions at different
charge and discharge multipliers. The data sampling frequency was 1 s. The specific
current configurations were as follows:

The specific current configuration for the DST operating conditions test is described as
follows:

(1) The lithium-ion battery was fully charged by constant current and constant voltage
charging.

(2) The battery was rested in a constant temperature chamber for 1 h.
(3) The battery was discharged at a constant discharge rate of 0.25 C for 30 s, discharged

at 0.5 C for 12 s, and charged at 0.25 C for 10 s.
(4) Step (3) was repeated three times.
(5) The battery was charged successively at a constant charge rate of 0.25 C for 35 s, 2 C

for 10 s, and 1.25 C for 25 s.
(6) The battery was charged at a constant charge rate of 0.5 C for 10 s, discharged at 0.5 C

for 30 s, and charged at 1 C for 10 s.
(7) The battery was rested for 50 s.
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(8) Steps (3)–(7) were repeated until the voltage decreased to 3.7 V. Then, the battery was
discharged at a constant discharge rate of 0.5 C until the voltage was 2.5 V to stop the
experiment.

The HPPC condition test with the specific current configuration was conducted as
follows:

(1) The lithium-ion battery was fully charged by constant current and constant voltage
charging.

(2) The battery was rested in a constant temperature chamber for 1 h.
(3) The battery was discharged at 1 C for 8 min and was rested for 30 min.
(4) The battery was discharged at 3 C for 10 s and rested for 3 min.
(5) The battery was charged at 1.5 C for 10 s and rested for 2 min.
(6) Steps (3)–(5) were repeated once.
(7) The current in (4) and (5) was modified to 1.875 C. Steps (3)–(5) were repeated until

the resting voltage dropped to 3.6 V.
(8) The battery was discharged at 0.9 C until the voltage was 2.5 V to stop the experiment.

4. Results and Discussion

It is worth noting that all three methods of SOC estimation without current monitor-
ing include the ampere-hour integration method, and the estimation accuracy is greatly
influenced by the initial SOC accuracy and noise. The effects of different initial SOCs and
random voltage noise on the algorithm estimation results were shown and discussed as
follows, respectively.

4.1. Effect of Different Initial SOC on Estimation Results

The initial SOC of the test data was set as 100%, 70%, and 90%, respectively. The
estimated results were as follows.

4.1.1. Incremental Seeking Method

The estimation results using the incremental seeking method for different initial SOC
states are shown in Figures 5 and 6.
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The estimated trend obtained by the incremental seeking method was consistent with
the actual reference value, and the estimated results varied with the battery charge and
discharge state. For example, under DST conditions, SOC decreased along a wave line until
12,500 s and then decreased along a straight line. Under HPPC conditions, SOC decreased
along a step.

However, the difference between the estimation results with initial SOC values of
100%, 90%, and 70% was significant under the HPPC condition. The error was largest
when the initial SOC was accurate, illustrating the instability of the algorithm. When the
initial SOC state was inaccurate, the incremental seeking method converged when the SOC
dropped to nearly 80%, and the convergence process was often accompanied by a large
abrupt change. After convergence was completed, the initial SOC value had a large impact
on the estimation results.

4.1.2. Dichotomous Method

The estimation results using the dichotomous method for different initial SOC states
are shown in Figures 7 and 8.
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Figure 8. Estimation results of dichotomous method under HPPC conditions and different initial SOC.

When applying the dichotomy method, the overall estimation trend was consistent
with the actual reference value, and the algorithmic estimation results captured the same
change phenomenon as the charging and discharging state of the battery varied.

From the overall viewpoint, the dichotomous SOC estimation error was large, espe-
cially under HPPC conditions, and significant estimation bias could be seen in Figure 8.
When the initial SOC state was inaccurate, if the initial SOC was 90%, it completed conver-
gence when the SOC decreased to around 85%. In addition, if the initial SOC was 70%, it
completed convergence when the SOC decreased to around 75%. The convergence process
had a great degree of abrupt change, but it was less than the incremental seeking method.
Inaccurate initial SOC had a small impact on the estimation results after the convergence of
the algorithm.

4.1.3. EKF

The estimation results using the EKF algorithm for different initial SOC states are
shown in Figures 9 and 10.

Batteries 2023, 9, x FOR PEER REVIEW 11 of 20 
 

 

Figure 8. Estimation results of dichotomous method under HPPC conditions and different initial 

SOC. 

When applying the dichotomy method, the overall estimation trend was consistent 

with the actual reference value, and the algorithmic estimation results captured the same 

change phenomenon as the charging and discharging state of the battery varied. 

From the overall viewpoint, the dichotomous SOC estimation error was large, espe-

cially under HPPC conditions, and significant estimation bias could be seen in Figure 8. 

When the initial SOC state was inaccurate, if the initial SOC was 90%, it completed con-

vergence when the SOC decreased to around 85%. In addition, if the initial SOC was 70%, 

it completed convergence when the SOC decreased to around 75%. The convergence pro-

cess had a great degree of abrupt change, but it was less than the incremental seeking 

method. Inaccurate initial SOC had a small impact on the estimation results after the con-

vergence of the algorithm. 

4.1.3. EKF 

The estimation results using the EKF algorithm for different initial SOC states are 

shown in Figures 9 and 10. 

 

Figure 9. Estimation results of EKF algorithm for DST conditions and different initial SOC. Figure 9. Estimation results of EKF algorithm for DST conditions and different initial SOC.



Batteries 2023, 9, 442 12 of 20Batteries 2023, 9, x FOR PEER REVIEW 12 of 20 
 

 

Figure 10. Estimation results of EKF algorithm for HPPC conditions and different initial SOC. 

The overall estimation trend obtained using the EKF algorithm was consistent with 

the actual reference value, and the algorithm estimation results reflected the same varia-

tion phenomenon as the battery charge and discharge state change. 

As a whole, the SOC estimation error of the EKF algorithm was small, and the aver-

age errors for the two operating conditions when the initial SOC was accurate were 1.94% 

and 1.13%, respectively. When the initial SOC was inaccurate, the algorithm converged 

quickly except for the DST condition where the initial SOC is 70%. Convergence was 

achieved when the SOC decreased to about 85~90%. The convergence process was smooth, 

and the convergence estimates were largely consistent with the reference values and al-

most independent of the initial SOC. 

The estimation errors of the three methods for different initial SOC states are shown 

in Table 4. 

Table 4. Estimation error at different initial SOC states. 

 Accurate Initial SOC Initial SOC 0.9 Initial SOC 0.7 

Incremental seeking method soc Voltage soc Voltage soc Voltage 

DST 
Average value 3.58% 0.042 V 3.60% 0.035 V 5.08% 0.043 V 

Maximum value 12.76% 0.300 V 11.42% 0.450 V 30% 0.659 V 

HPPC 
Average value 7.62% 0.025 V 7.80% 0.028 V 9.10% 0.035 V 

Maximum value 15.13% 0.373 V 15.20% 0.372 V 30% 0.669 V 

Dichotomous method soc Voltage soc Voltage soc Voltage 

DST 
Average value 1.87% 0.014 V 2.58% 0.016 V 4.17% 0.084 V 

Maximum value 5.02% 0.416 V 10.00% 0.416 V 30% 0.495 V 

HPPC 
Average value 4.51% 0.028 V 4.43% 0.030 V 6.37% 0.044 V 

Maximum value 8.82% 0.352 V 10.00% 0.296 V 30% 0.288 V 

EKF soc Voltage soc Voltage soc Voltage 

DST 
Average value 1.94% 0.034 V 2.36% 0.035 V 3.82% 0.036 V 

Maximum value 5.27% 0.414 V 10.21% 0.414 V 30.15% 0.414 V 

HPPC 
Average value 1.13% 0.0098 V 1.41% 0.010 V 2.33% 0.011 V 

Maximum value 3.69% 0.3872 V 10.20% 0.387 V 30.14% 0.387 V 

In terms of overall SOC estimation performance, the EKF algorithm performed the 

best and met the actual demand. The dichotomy method was the second-best and could 

accurately estimate SOC when the initial state was reliable. However, the incremental 

Figure 10. Estimation results of EKF algorithm for HPPC conditions and different initial SOC.

The overall estimation trend obtained using the EKF algorithm was consistent with
the actual reference value, and the algorithm estimation results reflected the same variation
phenomenon as the battery charge and discharge state change.

As a whole, the SOC estimation error of the EKF algorithm was small, and the average
errors for the two operating conditions when the initial SOC was accurate were 1.94% and
1.13%, respectively. When the initial SOC was inaccurate, the algorithm converged quickly
except for the DST condition where the initial SOC is 70%. Convergence was achieved
when the SOC decreased to about 85~90%. The convergence process was smooth, and
the convergence estimates were largely consistent with the reference values and almost
independent of the initial SOC.

The estimation errors of the three methods for different initial SOC states are shown in
Table 4.

Table 4. Estimation error at different initial SOC states.

Accurate Initial SOC Initial SOC 0.9 Initial SOC 0.7

Incremental seeking method soc Voltage soc Voltage soc Voltage

DST
Average value 3.58% 0.042 V 3.60% 0.035 V 5.08% 0.043 V

Maximum value 12.76% 0.300 V 11.42% 0.450 V 30% 0.659 V

HPPC
Average value 7.62% 0.025 V 7.80% 0.028 V 9.10% 0.035 V

Maximum value 15.13% 0.373 V 15.20% 0.372 V 30% 0.669 V

Dichotomous method soc Voltage soc Voltage soc Voltage

DST
Average value 1.87% 0.014 V 2.58% 0.016 V 4.17% 0.084 V

Maximum value 5.02% 0.416 V 10.00% 0.416 V 30% 0.495 V

HPPC
Average value 4.51% 0.028 V 4.43% 0.030 V 6.37% 0.044 V

Maximum value 8.82% 0.352 V 10.00% 0.296 V 30% 0.288 V

EKF soc Voltage soc Voltage soc Voltage

DST
Average value 1.94% 0.034 V 2.36% 0.035 V 3.82% 0.036 V

Maximum value 5.27% 0.414 V 10.21% 0.414 V 30.15% 0.414 V

HPPC
Average value 1.13% 0.0098 V 1.41% 0.010 V 2.33% 0.011 V

Maximum value 3.69% 0.3872 V 10.20% 0.387 V 30.14% 0.387 V

In terms of overall SOC estimation performance, the EKF algorithm performed the
best and met the actual demand. The dichotomy method was the second-best and could
accurately estimate SOC when the initial state was reliable. However, the incremental
seeking method had the worst performance, with the highest error, failing to meet the
actual demand and requiring further improvement.
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Regarding the impact of different initial SOC states on algorithm estimation, the EKF al-
gorithm was highly resistant to interference and almost unaffected. The dichotomy method
was less affected, while the incremental seeking method was the most unstable. Inaccurate
initial states had a significant impact on the results of the incremental seeking method.

Concerning the convergence of algorithms under different initial SOC states, the EKF
converged fast and seamlessly, while the dichotomy method converged slightly slower
than the EKF. In contrast, the incremental seeking method had the slowest convergence
rate, with a sudden change in the convergence process caused by the algorithm’s principle.

If the initial SOC error was too large, there was a significant increase in the error for
all three methods. This indicates that the error correction capability of the three methods
is limited due to the lack of current input. However, it is worth noting that the initial
SOC error is usually not so large in portable devices. Furthermore, the SOC error can be
calibrated gradually during the rest mode.

Jing Hou et al. [24] conducted pulse discharge experiments to validate their proposed
VB-UKF method. The average absolute errors of the two methods, VB-UKF and the
unscented recursive three-step filter (URTSF), were 1.52% and 2.65% when the initial SOC
was accurate. When the initial SOC was 80%, the errors of the two methods were 1.67%
and 2.28%, respectively. When the initial SOC was 60%, the errors of the two methods were
2.16% and 2.58%, respectively. It can be seen that the estimation effect of the EKF algorithm
is perfectly acceptable.

4.2. Effect of Different Voltage Noise on Algorithm Estimation Results

The test data was free of voltage noise, and random Gaussian noise with the mean
of 0 and 3σ of 10 mV, 50 mV, and 100 mV was superimposed, respectively. The estimated
results are shown below.

4.2.1. Incremental Seeking Method

The SOC estimation results under different voltage noise using the incremental seeking
method are shown in Figures 11 and 12.
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Figure 12. Estimation results of incremental seeking method under HPPC conditions and different
voltage noise.

When applying the incremental seeking method under voltage noise, the estimation
trend was consistent with the actual reference value, and the estimation results reflected
the same changes as the battery charging and discharging states.

However, the presence of voltage noise caused more irregular fluctuations in the
algorithm’s estimation accuracy, resulting in large errors. This suggests that the incremental
seeking method is susceptible to noise.

4.2.2. Dichotomous Method

The SOC estimation results using the dichotomous method with different voltage
noises are shown in Figures 13 and 14.
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Figure 14. Estimation results of dichotomous method under HPPC conditions and different voltage
noise.

When using the dichotomous method under voltage noise, the estimation trend was
consistent with the actual reference value, and the estimation result reflected the same
changes as the battery charging and discharging states.

The mean error of SOC estimation is small when using the dichotomous method.
However, appropriate voltage noise could improve the estimation accuracy of the algorithm,
while excessive noise led to significant deviations in the results under the DST condition.
This shows the poor stability of the dichotomous method.

4.2.3. EKF

The SOC estimation results using the EKF algorithm with different voltage noise are
shown in Figures 15 and 16.
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When using the EKF method under voltage noise, the estimation trend remained
consistent with the actual reference value, and the estimation results could keep the same
change when the charge and discharge state of the battery changed.

Overall, the EKF algorithm demonstrated a high estimation accuracy even under
voltage noise, and the SOC estimation results were consistently reliable despite the presence
of different levels of voltage noise.

The estimation errors of the three methods under different voltage noise are shown in
Table 5.

Table 5. Estimation error under different voltage noise.

No Noise 10 mV Noise 50 mV Noise 100 mV Noise

Incremental seeking method soc Voltage soc Voltage soc Voltage soc Voltage

DST
Average value 3.58% 0.042 V 5.92% 0.044 V 5.81% 0.051 V 5.01% 0.060 V

Maximum value 12.76% 0.300 V 11.99% 0.422 V 11.31% 0.342 V 11.14% 0.418 V

HPPC
Average value 7.62% 0.025 V 6.63% 0.026 V 6.63% 0.033 V 7.27% 0.056 V

Maximum value 15.13% 0.373 V 14.78% 0.411 V 14.86% 0.374 V 15.58% 0.406 V

Dichotomous method soc Voltage soc Voltage soc Voltage soc Voltage

DST
Average value 1.87% 0.014 V 3.66% 0.077 V 1.83% 0.074 V 1.56% 0.082 V

Maximum value 5.02% 0.416 V 7.34% 1.020 V 5.09% 0.685 V 7.19% 0.732 V

HPPC
Average value 4.51% 0.028 V 1.38% 0.024 V 1.54% 0.040 V 1.58% 0.057 V

Maximum value 8.82% 0.352 V 5.74% 0.937 V 7.18% 0.520 V 6.96% 0.539 V

EKF soc Voltage soc Voltage soc Voltage soc Voltage

DST
Average value 1.94% 0.034 V 1.94% 0.034 V 1.96% 0.037 V 1.90% 0.045 V

Maximum value 5.27% 0.414 V 5.30% 0.420 V 5.42% 0.448 V 4.98% 0.415 V

HPPC
Average value 1.13% 0.0098 V 1.13% 0.011 V 1.11% 0.020 V 1.11% 0.032 V

Maximum value 3.69% 0.3872 V 3.67% 0.384 V 3.69% 0.375 V 3.76% 0.359 V

From the experimental results, we can see that the error of the EKF algorithm under
different noises was within 2%, which would meet the practical requirements. The dichoto-
mous method was the second-best and had a certain ability to fight against noise. However,
the incremental seeking method exhibited the poorest performance, with the highest error,
failing to meet practical requirements and requiring further improvements.

With regard to the impact of voltage noise on the algorithm’s estimation performance,
the EKF algorithm effectively filtered out the noise and was almost unaffected. In contrast,
both the incremental seeking and dichotomous methods were more susceptible to voltage
noise, resulting in lower stability and accuracy.



Batteries 2023, 9, 442 17 of 20

4.3. Algorithm Computational Efficiency

Because the process of completing the overall battery SOC estimation was long, the
computational efficiency of the three algorithms was considered by comparing the time
required to perform a single SOC estimation among them.

The algorithms were run in the following environment: under PC conditions using
processor: Intel (R) Core (TM) i5-10200H CPU @ 2.40 GHz, RAM configuration:16.00 GB,
and MATLAB software.

The time consumption of all algorithms is shown in Table 6. The incremental pathfind-
ing method took 0.024 s and 0.025 s to complete a single SOC estimation without a current
sensor under the two operating conditions. The dichotomous method took 0.018 s and
0.02 s. The EKF algorithm took 0.012 s and 0.007 s. The ratio of the calculated efficiencies of
the three methods at DST conditions is about 2:3:4.

Table 6. Algorithm operation schedule.

Work Conditions
Algorithm Incremental Seeking Method Dichotomous Method EKF

DST
Total time 331 s 250 s 171 s

Average data estimation time
per frame 0.024 s 0.018 s 0.012 s

HPPC
Total time 636 s 498 s 191.0 s

Average data estimation time
per frame 0.025 s 0.020 s 0.007 s

4.4. Repeatability Verification

In order to avoid the chance of single battery data, more test data of LCO lithium-ion
batteries were used to verify the reliability of the algorithm. The HPPC operation data of
more batches of batteries were used to verify the algorithm. The average error is shown in
Table 7.

Table 7. Estimation error at different initial SOC states in HPPC conditions.

Accurate Initial SOC Initial SOC 0.9 Initial SOC 0.7

Incremental
seeking method soc Voltage soc Voltage soc Voltage

Average value 7.59% 0.026 V 7.74% 0.030 V 9.16% 0.041 V
Maximum value 15.72% 0.336 V 15.21% 0.339 V 30% 0.697 V

Dichotomous
method soc Voltage soc Voltage soc Voltage

Average value 3.23% 0.026 V 3.41% 0.029 V 5.42% 0.037 V
Maximum value 7.73% 0.336 V 10.00% 0.287 V 30% 0.276 V

EKF soc Voltage soc Voltage soc Voltage
Average value 3.06% 0.010 V 3.67% 0.010 V 4.73% 0.011 V

Maximum value 9.07% 0.308 V 11.22% 0.4003 V 30.16% 0.4003 V

In order to ensure the reliability of the algorithm, the simulation results of constant
current charge-discharge test data of the LFP lithium-ion battery are also presented. When
the initial SOC is accurate, the average error results of the EKF algorithm are shown in
Table 8.
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Table 8. Average error of EKF algorithm for eight batteries.

Battery Number A B C D E F G H

SOC 1.99% 1.67% 1.08% 1.76% 1.73% 1.52% 1.46% 1.56%

Voltage 0.0185 V 0.0168 V 0.0203 V 0.0189 V 0.0177 V 0.173 V 0.0180 V 0.0180 V

The SOC estimation results of the battery numbered A are shown in Figure 17.
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When using different battery test data, the EKF algorithm can still maintain a good
estimation effect.

5. Conclusions

It is important to obtain current information for accurate SOC estimation of lithium-ion
batteries. However, due to concerns about cost, size, and power consumption, current
sensors are sometimes not equipped in portable devices.

In this work, three methods were developed for lithium battery SOC estimation that
provide new solutions for SOC estimation for small portable devices in the absence of
current monitoring and fill the gap in existing studies. The dichotomous and incremental
seeking methods were found to be sensitive to initial SOC accuracy, and estimation errors
exceeded the allowed range. For instance, using the dichotomous method led to a 6.37% er-
ror at an initial SOC of 70% under HPPC conditions. The incremental seeking method was
also more susceptible to voltage noise than the other two methods, with a 10 mV noise
causing an estimation error of 5.92% in DST conditions.

The dichotomous method and the extended Kalman filter method demonstrated
superior accuracy in the presence of certain measurement noises, with estimation errors
under 100 mV noise controlled within ±2%. The extended Kalman filter algorithm was
particularly effective in filtering out the noise, with error variation following noise addition
not exceeding 0.04%. Additionally, the extended Kalman filter method outperformed the
other two methods in terms of estimation speed, with an average time of 0.01 s per frame
of data estimated.

In addition, it is worth noting that the estimation error of SOC will be larger when the
initial SOC error is large due to the absence of current input. However, measures can be
taken to avoid excessive errors. For example, the battery is left for a period of time, and the
battery is calibrated by OCV after it is fully charged. In that case, this weakness does not
affect the usefulness and sophistication of the algorithms used.

Considering the aging process of the battery, the battery model parameters will change,
leading to an increase in SOC estimation error. In order to solve this problem, a possible
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approach is to use an improved extended Kalman filter (IEKF) algorithm [32] or a model
adaptive EKF (MAEKF) [33] algorithm. The general idea is to select the parameters of the
electrical model with high sensitivity. In view of the fact that the battery voltage derivative
changes abruptly twice with time when the discharge current is constant, the parameters
are updated using IEKF or MAEKF. Thus, the excellent accuracy of the model is maintained
during the aging process of the battery.
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