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Abstract: Battery degradation is a complex nonlinear problem, and it is crucial to accurately predict
the cycle life of lithium-ion batteries to optimize the usage of battery systems. However, diverse
chemistries, designs, and degradation mechanisms, as well as dynamic cycle conditions, have
remained significant challenges. We created 53 features from discharge voltage curves, 18 of which
were newly developed. The maximum relevance minimum redundancy (MRMR) algorithm was
used for feature selection. Robust linear regression (RLR) and Gaussian process regression (GPR)
algorithms were deployed on three different datasets to estimate battery cycle life. The RLR and GPR
algorithms achieved high performance, with a root-mean-square error of 6.90% and 6.33% in the
worst case, respectively. This work highlights the potential of combining feature engineering and
machine learning modeling based only on discharge voltage curves to estimate battery degradation
and could be applied to onboard applications that require efficient estimation of battery cycle life in
real time.

Keywords: data driven; state of health; lithium-ion batteries; linear regression; Gaussian process
regression; machine learning

1. Introduction

Lithium-ion batteries have been widely used in various applications, such as electric
vehicles, battery energy storage systems (BESSs), and portable electronics, due to their high
energy density, low cost, and low self-discharge rate [1]. However, similar to most complex
mechanical, electrical, and chemical systems, the aging of lithium-ion batteries is inevitable
due to side reactions occurring within their electrolyte and electrodes [2]. This aging
process causes a decline in battery performance. Thus, it is essential to accurately predict
the aging of lithium-ion batteries to ensure long-term stability and reliable operation.

Many approaches have been suggested to accurately predict the lifetime of lithium-ion
batteries, including empirical models [3], equivalent circuit models [4–6], physical mod-
els [7], and data-driven models [2,8–12]. Empirical models assume that cells of the same
chemistry age in the same manner [3], which may not always be the case. Equivalent
circuit models are semiempirical and unable to represent various aging patterns [4], and the
parameters are difficult to identify when considering different usage conditions, ambient
temperatures, and load profiles [13–15]. Physical models consist of complex partial differ-
ential equations and require many parameters that are not easily obtainable [16–18]. While
some studies have provided model parameters that accurately explain observed data, the
accuracy of predictions may rapidly decline in the presence of uncertain mechanisms and
aging rates under future usage conditions [8,18].

In contrast, data-driven models have many advantages, such as the ability to capture
battery degradation mechanisms without complex chemical reaction knowledge. Recently,
many studies [10,16,19,20] have used machine learning or deep learning tools for battery life
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estimation. Feature extraction and selection are essential for machine learning approaches.
Various studies have extracted features using charge voltage curves, raw data from battery
cycle tests (i.e., voltage, current, temperature, and state of charge (SOC) data) [17,21,22],
discharge voltage curves [23], and electrochemical impedance spectroscopy (EIS) [12,24].
Charge and discharge voltage curves can be obtained via the battery management system
(BMS) in real time [23,25], while EIS data can only be measured with an electrochemical
impedance analyzer. Extracting features based on the charge voltage curve is feasible
because most charge protocols are typically constant current (CC) and constant voltage
(CV) [10,11,21,23]. It is challenging to derive features through the discharge voltage curve
because load behaviors vary among batteries. Feature selection typically relies on back-
ground knowledge or Pearson correlation analysis, with the aim of reducing the size of the
input matrix and avoiding overfitting [10,21,26,27]. However, these approaches overlook
the redundancy among features.

To achieve an accurate prediction of battery life, different fitting functions with opti-
mizable parameters have been implemented. One such method is support vector regression
(SVR) [28–30], which has been observed to have high accuracy; however, SVR is time-
consuming for model training. In contrast, linear regression (LR) with an elastic net
requires a much quicker training time [31,32], but its accuracy tends to decline for large
datasets. Neural network (NN) models have also been used, with the performance im-
proving as the number of hidden layers and neurons increases [33,34]; however, neural
network models are hard to train, and it is difficult to choose a network structure. Gaussian
process regression (GPR) has demonstrated promising accuracy and faster training speed
than SVR [10,23,35,36]; however, its complexity remains problematic, hindering onboard
deployment.

This paper proposed an innovative data-driven framework for accurately and promptly
predicting battery cycle lives (as in Figure 1). Using pattern recognition and signal pro-
cessing techniques, battery degradation features were extracted from discharge voltage
curves. Next, using the maximum relevance minimum redundancy (MRMR) algorithm, 20
of 53 features were selected as the feature subset. Three different battery datasets were used
to train and test the GPR and robust linear regression (RLR) algorithms. The test results
suggested that GPR outperforms RLR in most cases, while RLR has a faster prediction
speed than GPR. These results illustrate the power of combining feature extraction and
selection with data-driven modeling based on discharge voltage curves to predict the
degradation of lithium-ion batteries.
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Figure 1. Schematic diagram of battery cycle life prediction based on discharge voltage curves. The
colors of the discharge voltage curves indicate that they belong to different cycles, and the colors of
the curves in the feature extraction and selection box suggest that their values change as the cycle
number increases.
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The main contributions of this article are listed as follows:

1. New features were developed using pattern recognition and signal processing tech-
niques to capture degradation mechanisms using discharge voltage profiles.

2. The MRMR algorithm was proposed for feature selection, reducing the parameter
size of the model and improving the prediction speed.

3. Two algorithms, GPR and RLR, were trained for battery cycle life prediction. GPR was
found to have high accuracy but is time-consuming, making it best suited for battery
pack manufacturing and battery recycling. Conversely, RLR requires less training time,
and its accuracy is suitable for real-time battery management applications, making it
ideal for onboard deployment.

The remainder of this article is organized as follows: Section 2 introduces the details
of three lithium-ion battery datasets, Section 3 describes the machine learning framework,
the results of feature extraction and battery cycle life prediction are presented in Section 4,
and Section 5 discusses the test results. This article is concluded in Section 6.

2. Design of Battery Datasets

We deployed our methods on three different battery datasets due to the varying
degradation mechanisms of lithium-ion batteries. Dataset I [33] incorporates 39 cells, cells
1 to 30 were used as the training set, and cells 31 to 39 served as the test set. The positive
electrode material of the cells is a blend of lithium cobalt oxide (LCO) and ternary nickel
cobalt lithium manganese (NCM), and the negative electrode material is graphite. The
rated capacity is 2.4 Ah, with an upper voltage threshold and a lower voltage threshold
of 4.2 V and 3.0 V, respectively, for all cells in Dataset I. All cells were cycled in two-stage
degradation tests. The first stage included 20 preliminary cycles, with CCCV charging at
a C-rate of 0.5 and CC discharging at a C-rate of 2. The second stage incorporated two
different dynamic cycle profiles. The first profile consisted of a CC charge and discharge
at a rate of 1 C, 2 C, or 3 C. The secondary profile included a CC charge with a random
current of 1 C, 2 C, or 3 C and a CC discharge at a rate of 3 C. Cell 31, cells 33–34, cells
36–37, and cell 39 were cycled with the secondary profile, while cell 32, cell 35, and cell 38
were cycled with the first profile. All tests were conducted at 25 ◦C. The average total cycle
number of the training cells and test cells was 120 cycles.

Dataset II [37] consists of eight commercial cells that were operated in identical dy-
namic cycle tests. The negative electrode material of the cells is graphite, and the positive
electrode material is a blend of lithium cobalt oxide (LCO) and lithium nickel cobalt oxide
(NCO). All cells were cycled using the Artemis urban drive cycle [38] and characterization
cycles, repeated every 100 cycles. The Artemis urban drive cycle consists of dynamic
charging and regenerative charging with a maximum rate of 6.75 C. The charge cycle was
CC at a rate of 2 C. The characterization procedure consisted of low-rate discharge and
charge cycles for OCV. The lower voltage threshold and the upper voltage threshold were
2.7 V and 4.2 V, respectively. All cell tests were conducted in thermal chambers at 40 ◦C.
The average total cycle number of the training cells and test cells was 8100 cycles.

Dataset III [39] incorporates 14 cells under four different discharge profiles. The
positive electrode material of the cells is a blend of lithium cobalt oxide (LCO) and ternary
nickel cobalt lithium aluminate (NCA), and the negative electrode material is graphite. All
cells were charged with the CCCV protocol with an identical rate of 0.75 C during the CC
stage and an identical voltage of 4.2 V, with a cut-off current of 20 mA during the CV stage.
B5, B6, and B7 were discharged at a CC level of 1 C until their cell voltages fell to 2.7 V, 2.5 V,
and 2.2 V, respectively. B33 and B34 were discharged with the CC profile with a rate of 2 C
until their cell voltages fell to 2.0 V and 2.2 V, respectively. B38 and B39 were discharged
under multiple load current rates of 0.5 C, 1 C, and 2 C and stopped at 2.2 V and 2.5 V,
respectively. B41 to B44 used two fixed load current rates of 2 C and 0.5 C, respectively,
and the lower voltage thresholds were 2 V, 2.2 V, 2.5 V, and 2.7 V, respectively. B5-B7 and
B33 and B34 were discharged at a room temperature of 24 ◦C. B38 and B39 were tested at
ambient temperatures of 24 ◦C and 44 ◦C. B41–B44 were cycled at an ambient temperature
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of 4 ◦C. The average total cycle number of the training cells was 119 cycles, and the total
cycle number of the test cells was 131 cycles.

3. Machine Learning Framework
3.1. Feature Development

Lithium-ion battery aging is a complex process that can result in capacity degradation
and reduced power capability. There are many factors that can contribute to battery aging,
such as the formation of a solid electrolyte interphase (SEI) film at the electrode/electrolyte
surface, destruction of the electrode structure, lithium deposition, a phase change of the
electrode material, dissolution of the active material, and electrolyte decomposition [40].
As the cycle number increases, charge/discharge voltage curves, incremental capacity
curves, and electrochemical impedance spectroscopy can all be altered. Many machine
learning algorithms extract features for battery health estimation based on these curves. In
this section, we focus on using signal processing techniques to extract features from the
discharge voltage curves.

For each discharge cycle, we defined the discharge voltage sample values as a signal
x = (v1, v2, . . . , vn)

T . The main equations of the developed features were defined as follows.

3.1.1. Root-Sum-of-Squares Level

The root-sum-of-squares (RSS) level of a vector x is

RSS =

√√√√ N

∑
n=1
|xn|2 (1)

where xn is the element of vector x and the RSS level is also known as the `2 norm. In this
study, we used the discharge voltages as vector x.

3.1.2. Distance between Signals Using Dynamic Time Warping

Two signals were considered:

x = (x1, x2, x3, . . . , xm), y = (y1, y2, y3, . . . , yn) (2)

where x has m samples, y has n samples, and dmn(x, y) is defined as the distance between
the mth sample of x and the nth sample of y. The following equations are four types of
distance definitions.

Here, we define a line as y, and x is the discharge voltage vector per cycle.
The square root of the sum of squared differences is also known as the Euclidean or `2

metric:

dmn(x, y) =

√√√√ K

∑
k=1

(xm − yn) ∗ (xm − yn) (3)

The sum of absolute differences is also known as the Manhattan, city block, taxicab, or
`1 metric:

dmn(x, y) =
K

∑
k=1
|xm − yn| =

K

∑
k=1

√
(xm − yn) ∗ (xm − yn) (4)

The square of the Euclidean metric is composed of the sum of squared differences:

dmn(x, y) =
K

∑
k=1

(xm − yn) ∗ (xm − yn) (5)
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The symmetric Kullback–Leibler metric is only valid for real and positive values of x
and y.

dmn(x, y) =
K

∑
k=1

(xm − yn) ∗ (logxm − logyn) (6)

where xm is the element of x and yn is the element of y, as defined in Equation (2).

3.1.3. Zero-Crossing Rate

The zero-crossing rate refers to the ratio of sign changes in a signal, for instance, a
signal changing from positive to negative or vice versa. This feature has been widely used
in the fields of speech recognition and music information retrieval and is a key feature for
classifying percussion sounds. The ZCR is formally defined as:

zcr =
1

m− 1

m−1

∑
t=1

∏{xtxt−1 < 0} (7)

where x is a signal with a length of M, and the function ∏ {x} is equal to 1 when the
parameter x is true, and 0 otherwise.

3.1.4. Mid-Reference Level

The mid-reference level in a bilevel waveform with a low state level of S1 and a high
state level of S2 is

y50% = S1 +
1
2
(S2 − S1) (8)

Mid-reference level instant:
We let y50% denote the mid-reference level.
We let t50%− and t50%+ denote the two consecutive sampling instances corresponding

to the waveform values nearest in value to y50%.
We let y50%− and y50%+ denote the waveform values at t50%− and t50%+ , respectively.
The mid-reference level instant is

t50% = t50% +

(
t50%+ − t50%−
y50%+ − y50%−

)(
y50%+ − y50%−

)
(9)

3.1.5. Standard Error

For a finite-length vector x consisting of N scalar observations, the standard deviation
is defined as

S =

√√√√ 1
N − 1

N

∑
i=1
|xi − µ|2 (10)

where µ is the mean of x:

µ =
1
N

N

∑
i=1

xi (11)

The standard deviation is the square root of the variance.

3.1.6. Band Power

Band power is a measure of the amount of energy in a particular frequency band of a
signal x and is calculated as:

Pband =
∫ f2

f1

P( f )d f (12)

P( f ) = 2
∫

[R(τ)cos(2π f τ)]dτ (13)
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where P( f ) is the estimated power spectral density estimate at frequency f ; f1 and f2 are
the lower bound and upper bound, respectively, of the frequency band of interest; and R(τ)
is the autocorrelation function at the time lag τ.

3.1.7. Mean Squared Error

The mean squared error is calculated using the following formula:

loss =
1

2N

N

∑
i=1

(xi − ti)
2 (14)

where xi is the ith element of vector x, ti is the ith element of reference vector t, and N is
the total number of observations in x. In this case, x is defined as the discharge voltage of
each cycle and t is defined as the discharge voltage of the first cycle.

3.1.8. Occupied Bandwidth

The occupied bandwidth is defined as:

B = ∆ f = fH − fL (15)

where fH and fL are the upper frequency limit and lower frequency limit, respectively, of
the band.

In this study, we calculated the 99% bandwidth:

%BF = 99%
∆ f
fC

(16)

where fC is defined as the arithmetic mean of the upper and lower frequencies:

fC =
fH + fL

2
(17)

3.1.9. Structural Similarity Index for a Vector (SSIM)

The SSIM was originally used to assess image quality, but here, we used it to assess
the similarity of two vectors. The SSIM is defined as:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (18)

where µx and µy, σx and σy, and σxy are the local means, standard deviations, and cross-
covariance, respectively, for vectors x and y. In this case, x is defined as the discharge
voltage of each cycle and y is defined as the discharge voltage of the first cycle.

3.2. MRMR Feature Selection

To reduce the size of the model, eliminate redundant features, and reduce model
complexity, we performed feature selection on all extracted features. We used the MRMR
algorithm to search for a subset of features that minimized redundancy while maximizing
relevancy with the response. This algorithm calculated pairwise mutual information
between features and the response variable to quantify redundancy and relevancy [41,42].

Assuming there are m features in total, the MRMR algorithm provides the importance
of a given feature Xi (i ∈ {1, 2, . . . , m}).

f MRMR(Xi) = I(Y, Xi)−
1
|S| ∑

XS∈S
I(XS, Xi) (19)
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where Y represents the response variable, S is the selected feature set, |S| denotes the size
of the feature set (i.e., number of features), XS ∈ S represents a feature in feature set S, Xi
represents a feature not in S : Xi /∈ S, and I(·, ·) represents the mutual information.

I(Y, X) =
∫

ΩY

∫
ΩX

p(x, y)log
(

p(x, y)
p(x)p(y)

)
(20)

In the MRMR feature selection process, at each step, the feature with the highest
importance score max f MRMR(Xi), which is not already in the selected feature set S, is
added to S. For discrete features, the mutual information difference (MID) is the original
feature importance:

f MID(Xi) = I(Y, Xi)−
1
|S| ∑

XS∈S
I(XS, Xi) (21)

The mutual information quotient (MIQ) is defined as:

f MIQ(Xi) =
I(Y, Xi)

1
|S| ∑XS∈S I(XS, Xi)

(22)

For continuous time features, the F-statistic is used to represent the correlation. The
corresponding correlation difference is represented as:

f FCD(Xi) = F(Y, Xi)−
1
|S| ∑

Xs∈S
ρ(XS, Xi) (23)

where ρ(XS, Xi) represents the Pearson correlation and F(Y, Xi) represents the F-statistic.
The Pearson correlation is represented as:

ρ(XS, Xi) =
cov(Xs, Xi)

σXs σXi

(24)

cov(XS, Xi) = E
[(

XS − µXS

)(
Xi − µXi

)]
(25)

ρ(XS, Xi) =
E
[(

XS − µXS

)(
Xi − µXi

)]
σXs σXi

(26)

where ρ(X, Y) is the Pearson correlation coefficient between X and Y, cov(Xs, Xi) represents
the covariance of Xs and Xi, σXs is the standard error of Xs, σXi is the standard error of Xi,
µXS is the mean of Xs, and µXi is the mean of Xi.

Similarly, the correlation quotient is defined as:

f FCQ(Xi) =
F(Y, Xi)

1
|S| ∑Xs∈S ρ(XS, Xi)

(27)

3.3. Robust Linear Regression

Robust linear regression is designed to handle data that contain outliers, an issue
commonly observed in raw data. This method uses iteratively reweighted least squares
(IRLS) to assign a weight to each data point, allowing the algorithm to weigh the influence
of data points based on their distance from the model’s prediction. This iterative approach
produces more accurate regression coefficients than the typical ordinary least squares (OLS)
approach used in standard linear regression.

The IRLS algorithm includes multiple iterations. First, the algorithm assigns equal
weights to all data points and calculates model coefficients using OLS. Second, in each
iteration, the algorithm recalculates the weights for each data point, with those further from
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the model’s prediction receiving lower weights. Using these new weights, the algorithm
then calculates a new set of coefficients using weighted least squares. This process continues,
with the algorithm iterating until the coefficient estimates converge within a specified
tolerance. This iterative, simultaneous approach of fitting data using least squares methods,
while minimizing the effect of outliers, makes IRLS a powerful algorithm.

A simple linear regression model of the form

yi = xT
i β + εi (28)

was proposed, where yI is the predicted cycle life for a battery i, εi is the bias, xi is a
p-dimensional feature vector for battery i, and β is a p-dimensional model coefficient
vector.

The ordinary least squares residual is

ri = yi − xT
i β (29)

The weighted least squares method using the adjusted residuals is expressed as follows:

radj =
ri√

1− hi
(30)

where ri is the ordinary least squares residual and hi is the least squares fit leverage value.
The leverage hi is the value of the ith diagonal term of the hat matrix H. The hat

matrix H is defined in terms of the data matrix X:

H = X
(

XTX
)−1

XT (31)

The standardized adjusted residuals are defined as

u =
radj

Ks
=

ri

Ks
√

1− hi
(32)

where K is a tuning constant and s is an estimate of the standard deviation of the error term
given by s = MAD/0.6745. MAD is the median absolute deviation of the residuals from
their median. The constant 0.6745 ensures that the estimates are unbiased from the normal
distribution.

The robust weights wi are achieved using a bisquare weights function

wi =

{ (
1− u2

i
)2 , |ui| < 1

0 , |ui| ≥ 1
(33)

Then, the weighted least squares estimate the coefficient β

β =
(

XTWX
)−1

XTWy (34)

where W = diag(w1, · · · , wn), X = (x1, · · · , xn)
T , and y = (y1, · · · , yn)

′
.

The estimated weighted least squares error is

e =
n

∑
1

wi

(
yi − xT

i β
)2

=
n

∑
1

wir2
i (35)

where wi are the weights, yi are the observed responses, and ri are the residuals.
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3.4. Gaussian Process Regression

GPR is a nonparametric and Bayesian approach to regression that defines a probability
distribution over functions rather than random variables. Using GPR, the regression
problem is defined as

f (x) = k(x)T(K + λIN)
−1t (36)

where K is the Gram matrix with elements Knm and k(x) is a vector with elements kn(x) =
k(xn, x). Knm is defined by

Knm = k(xn, xm) (37)

and k(x, x′) is the kernel function.
Gaussian process regression methods use kernel functions to determine the covariance.

In this case, we used the Matern covariance functions.
The Matern class of covariance functions is defined as follows:

kMatern(r) =
21−v

Γ(v)

(√
2vr
`

)v

Kv

(√
2vr
`

)
(38)

where v and ` are positive and Kv is the modified Bessel function. The frequency density of
the covariance function is

S(s) =
2Dπ

D
2 Γ
(

v + D
2

)
(2v)v

Γ(v)`2v

(
2v
`2 + 4π2s2

)−(v+ D
2 )

(39)

where D is the dimension.
When v is a half integer, the Matern covariance function is:

kv=p+ 1
2
(r) = exp

(
−
√

2vr
`

)
Γ(p + 1)

Γ(2p + 1)

p

∑
i=0

(p + i)!
i!(p− i)!

(√
8vr
`

)p−i

(40)

Most machine learning methods commonly use v = 3/2 and v = 5/2:

kv= 3
2
(r) =

(
1 +

√
3r
`

)
exp

(
−
√

3r
`

)
(41)

kv= 5
2
(r) =

(
1 +

√
5r
`

+
5r2

3`2

)
exp

(
−
√

5r
`

)
(42)

In this study, we used v = 5/2.
Figure 2 illustrates the main workflow of the proposed method. Figure 2a describes the

feature extraction and selection, as explained in Sections 3.1 and 3.2. Figure 2b,c explain the
main equations of Gaussian process regression (Equation (36)) and robust linear regression
(Equation (34)) algorithms, respectively.

Considering the battery’s early aging process before capacity degradation, we used the
cycle life indicator to describe the battery’s health state. The cycle life indicator is defined as

CI =
C
C0

(43)

where C is the current cycle number and C0 is the total cycle number of the cycle test or the
cycle number given by the battery manufacturers. The range of C0 is from several hundred
cycles to several thousand cycles due to various material and operation conditions.
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Figure 2. The main framework of the proposed method. (a) Schematic of feature extraction and
selection from cycle data consisting of time (t), voltage (v), current (I), and temperature (T). First, each
cycle data matrix is condensed into a vector through feature extraction. Next, a subset is selected out
of the original features using the MRMR algorithm. Finally, the raw cycle data matrix is transformed
into a feature matrix, which is used as the input of the machine learning models. (b) Linear expression
of Gaussian process regression. (c) Visualization of robust linear regression.

As the cycle life of various cells is distinct, we defined the root-mean-square error
(RMSE) and the mean absolute error (MAE) to metric the performance of the RLR and GPR
models. The RMSE and MAE are defined as

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2

C0
× 100% (44)

MAE =
1
n ∑n

i=1|yi − ŷi|
C0

× 100% (45)

where yi is the observed cycle number, ŷi is the predicted cycle number, n is the total
number of samples, and C0 is the total cycle number of the cycle test or the cycle number
given by the battery manufacturers.

4. Results

In this study, we explored two algorithms, robust linear regression (RLR) and Gaussian
process regression (GPR), with three different datasets of lithium-ion batteries. First, we
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extracted 53 features based on raw discharge voltage curves. Second, we used the MRMR
algorithm to select the top 20 features with the highest median scores as the feature subset
to compare with the full feature set (53 features). The GPR algorithm and the RLR algorithm
were deployed on the subset of features and on the full set of features, respectively. The
results showed that all algorithms could accurately predict the battery cycle life with a low
error. Specifically, RLR achieved a maximum average RMSE of 6.90% and a maximum
average MAE of 4.77% for the selected feature subset, whereas the GPR model achieved a
maximum average RMSE of 6.33% and a maximum average MAE of 3.91% for the same
feature subset. The GPR algorithm exhibited greater prediction accuracy than the RLR
algorithm, while the RLR algorithm demonstrated faster prediction speed than the GPR
algorithm for both the full features and the feature subset.

4.1. Feature Extraction and Selection

Features were created on Datasets I through III. Figure 3 illustrates the typical features
that were created on Dataset II. To the best of our knowledge, all features in Figure 3, except
for skewness and kurtosis coefficients, were developed by us for the first time to predict the
battery cycle life using machine learning methods. Most features in Figure 3 show some
correlation with the cycle number. For instance, certain features, such as the zero-crossing
rate, standard error, and mean frequency, increased as the cycle life increased. Conversely,
features such as the root-sum-of-squares (RSS) level, Euclidean metric, absolute metric, and
peak signal-to-noise ratio (PSNR) decreased as the cycle number increased. Furthermore,
specific features, including the coefficient of skewness, root-mean-square (RMS) level, and
band power, fluctuated over cycles during the first 100 cycles. However, despite most of the
proposed features exhibiting a correlation with the cycle number, their values can greatly
differ, varying by orders of magnitude, as illustrated in Figure 3.

Feature selection simplifies machine learning models, reduces overfitting, and im-
proves model interpretability. The MRMR algorithm was selected to search for the optimal
feature subset among the 53 pre-extracted features. The ranking of the features, arranged
in descending order based on their median scores computed with the MRMR algorithm, is
shown in Figure 4. Some of the new features from Figure 3, such as the mean frequency of
the discharge voltage curve (dsgMeanFreq), the squared metric, and the Euclidean metric
between the discharge voltage curve and the reference line (dsgDistSqr and dsgDistEucl),
were among the top 20 features in the correlation ranking (as shown in Figure 4), indicating
that the proposed features in Section 3 can serve as optimal inputs for machine learning
models. Traditional features, such as total discharge capacity (dsgTotalAh), discharge
voltage at the start (dsgVbegin), total discharge energy (dsgTotalWh), and discharge time
(dsgTime), also had high scores, which is not unexpected, given their physical meaning
associated with battery degradation. Additionally, numerical partial derivatives of voltage
concerning the SOC (dsgDeltaV_dSOC80, dsgDeltaV_dSOC50, and dsgDeltaV_dSOC90 in
Figure 4) were also found to be significant, confirming prior studies.

The remaining features in Figure 4 are the kurtosis coefficient of the discharge voltage
(dsgKurt), the discharge capacity (dsgQ), the occupied bandwidth of the discharge voltage
curve (dsgOccupiedband), the symmetric Kullback–Leibler metric between the discharge
voltage curve of cycle i and the reference line (dsgDistSym), the structural similarity index
for the discharge voltage (dsgSsim), the mean square error between the discharge voltage
of cycle i and the discharge voltage of the first cycle (dsgMse), the zero-crossing rate of
the discharge voltage of cycle i (dsgZerorate), the band power of the discharge voltage
of cycle i (dsgPowerband), the middle reference level for the discharge voltage of cycle i
(dsgMidcross), the standard error between the discharge voltage of cycle i and the discharge
voltage of the first cycle (dsgStd), and the Euclidean metric between the discharge voltage
curve of cycle i and the reference line (dsgDistEucl).
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Figure 4. Top 20 features ranked by the median of their scores according to the MRMR algorithm.
The mark of “+” indicates an outlier.

The MRMR algorithm computes relevance scores for all features, while attempting
to reduce redundancy. This study presented the use of the first 20 features as an example.
However, determining the optimal number of features to use in practice depends on the
requirements of accuracy in prediction and efficiency in computation for a particular field.
Notably, the features based on discharge voltage proposed in this study are statistical
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analyses of the variations in the battery discharge voltage curve and may not have any
practical physical significance.

4.2. Performance of Models Based on Full Features

To further evaluate the performance of our proposed method, we conducted a 5-fold
cross-validation using two algorithms: Gaussian process regression (GPR) and robust
linear regression (RLR). To validate the models’ performance on various load profiles and
operating conditions, we assigned secondary test sets for all datasets. The training/testing
partitions for Datasets I to III are summarized in Table 1. We tested the models using two
feature sets: 53 features, which we named the full features, and a subset of the top 20 features
selected using the maximum relevance minimum redundancy (MRMR) algorithm, which
we referred to as the feature subset. The results demonstrated that both algorithms can
accurately predict the battery cycle life with an error margin that is small compared to the
actual cycle life, indicating that our proposed approach can yield reliable results and be
used in applications that require accurate predictions of battery cycle life.

Table 1. Selection and allocation of training and test datasets, including the charge protocols and
discharge profiles.

Dataset Number of
Cells Charge Discharge Positive

Electrode
Negative
Electrode Training Set Test Set

I 72 CC CC with 3C rate or
random NCM Graphite Cells 1–30 Cells 31–39

II 8 CCCV
ARTEMIS dynamic

driving profile or CC
with 1 C rate

NCO Graphite Cells 1–2 Cells 3–8

III 11 CCCV CC or random NCA Graphite
B5, B6, B33,

B34, B38, B39,
B41, B42, B43

B7, B40, B36,
B18, B44

The performance of the GPR and RLR algorithms on the full features of Datasets
I-III is summarized in Tables 2–4. Both algorithms demonstrated promising performance
across all datasets. The RLR algorithm achieved an average RMSE (ARMSE) of 6.90% and
an average MAE (AMAE) of 4.77% on the test set of Dataset III, which was the model’s
worst-case scenario. The GPR model’s worst performance was also observed on the test set
of Dataset III, with an average RMSE and an average MAE of 6.33% and 3.91%, respectively.
Figures 5–7 provide a comparison between the predicted cycle life and the actual cycle life
for the test batteries from Datasets I-III on the GPR and RLR algorithms.

Table 2. Test results for the RLR and GPR models trained on the full feature set of Dataset I.

Model Metric
Battery ID Average

RMSE/MAE#31 #32 #33 #33 #34 #35 #36 #37 #38 #39

RLR
RMSE 2.06% 6.65% 1.62% 1.47% 6.56% 1.97% 2.92% 6.70% 2.42% 1.48% 3.60%
MAE 1.31% 5.36% 1.24% 1.20% 5.28% 1.37% 1.48% 5.50% 1.74% 1.21% 2.57%

GPR
RMSE 0.82% 5.78% 0.89% 1.03% 5.94% 0.78% 3.24% 6.91% 1.14% 0.85% 2.95%
MAE 0.59% 4.04% 0.63% 0.80% 4.25% 0.54% 0.98% 4.92% 0.78% 0.70% 1.82%
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Table 3. Test results for the RLR and GPR models trained on the full feature set of Dataset II.

Model Metric
Battery ID Average

RMSE/MAE#3 #4 #5 #6 #7 #8

RLR
RMSE 1.31% 0.71% 0.47% 0.79% 1.26% 1.44% 1.00%
MAE 1.25% 0.61% 0.35% 0.68% 1.16% 1.36% 0.90%

GPR
RMSE 0.50% 2.22% 0.47% 1.19% 0.96% 0.86% 1.03%
MAE 0.44% 1.98% 0.34% 1.03% 0.76% 0.74% 0.88%

Table 4. Test results for the RLR and GPR models trained on the full feature set of Dataset III.

Model Metric
Battery ID Average

RMSE/MAE#7 #18 #36 #40 #44

RLR
RMSE 2.34% 3.52% 5.06% 8.45% 17.06% 7.29%
MAE 1.76% 3.13% 4.51% 7.75% 10.63% 4.76%

GPR
RMSE 3.82% 2.64% 13.52% 6.80% 4.23% 6.20%
MAE 3.01% 2.51% 11.90% 5.79% 2.78% 4.45%
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An interesting observation in the test set of Dataset I, as depicted in Figure 5, is
the sudden fluctuation of predictions at approximately cycle 20. This notable rise can
be attributed to the finding that the initial 20 cycles were characterized by a constant
current discharge, whereas subsequent cycles were characterized by a random current
discharge, resulting in considerable fluctuations in the prediction. Nevertheless, the GPR
algorithm showed a gradual decrease in the residuals, eventually confining them to a small
range. In contrast, RLR’s prediction diverged from the real cycle life after reaching a point
of convergence, due to its limited ability to capture the nonlinearity of the degradation
mechanisms. The predictions of cell 31 in Dataset I did not show any fluctuations near
cycle 20, regardless of the analyzed GPR or RLR model, as cell 31 was cycled using the
same constant current discharge profile.

It was evident that the RLR and GPR models achieved the best predictions in Dataset
II, which contains cycle data from multiple batteries across all datasets. The average RMSE
was 1.00% for the RLR algorithm and 1.03% for the GPR algorithm. Figure 6 illustrates
that most predictions were near the diagonal, indicating a perfect match between the
actual value and the predicted value. This result can largely be attributed to the finding
that cells in Dataset II were cycled using the identical discharge profile. However, the
distributions of residuals for GPR and RLR were distinct. As illustrated by the residual
histograms in Figure 6, RLR exhibited a multimodal distribution, with all errors being
negative, indicating that there may be several underlying sources of errors contributing
to its overall performance. GPR had a moderately skewed distribution with a long rail to
the right, and the largest peak was centered at zero, indicating that it was more prone to
making large positive errors.

The predictions of the GPR and RLR models had a few outliers after cycle 50 during
secondary testing in Dataset III, while the errors at primary testing were lower and did not
present any outliers, as depicted in Figure 7.

The residual histograms of RLR in the secondary tests showed a few instances of large
residuals at the tails of the distributions, suggesting that the model has difficulty handling
certain extreme cases. The GPR model had a roughly bell-shaped distribution with a high
peak at approximately zero, indicating that the model is better at capturing than RLR.

Overall, the GPR algorithm trained on Datasets I, II, and III is suggested to be more
accurate in the tests, as it achieved lower relative MAE values and, in most cases, lower
RMSE values compared to those of the RLR algorithm. However, there was an exception in
the primary test of Dataset II, where RLR achieved an average RMSE of 1.00%, which was
lower than GPR’s RMSE of 1.03%. This result may be attributed to the discharge profile of
cells in Dataset II being the same during the cycle test.
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4.3. Performance of Models Based on Feature Subsets

We also explored GPR and RLR algorithms using 20 selected features (as shown
in Figure 4). Tables 5–7 summarize the test results of the GPR and RLR algorithms.
Figures 8–10 illustrate the battery cycle life predictions versus observations and the residual
histograms based on 20 features from Datasets I-III. Both GPR and RLR exhibited lower pre-
diction errors on all datasets. Specifically, RLR achieved an average RMSE of 0.75% and an
average MAE of 0.52% on Dataset II. In contrast, GPR achieved an average RMSE and MAE
of 0.67% and 0.54%, respectively, on the same dataset, indicating that GPR outperforms
RLR on Dataset II. GPR also performed better than RLR on the other two datasets.

Table 5. Test results for the RLR and GPR models trained on the feature subset of Dataset I.

Model Metric
Battery ID Average

RMSE/MAE#31 #32 #33 #33 #34 #35 #36 #37 #38 #39

RLR
RMSE 2.01% 6.25% 1.69% 1.44% 6.69% 1.55% 2.25% 6.26% 1.69% 0.80% 3.31%
MAE 1.25% 4.58% 1.28% 1.21% 4.92% 1.18% 1.13% 4.55% 1.28% 0.65% 2.20%

GPR
RMSE 0.57% 2.96% 0.86% 1.56% 1.93% 0.97% 0.70% 2.66% 1.51% 0.82% 1.52%
MAE 0.38% 1.95% 0.53% 0.98% 1.29% 0.64% 0.48% 1.87% 0.93% 0.56% 0.96%

Table 6. Test results for the RLR and GPR models trained on the feature subset of Dataset II.

Model Metric
Battery ID Average

RMSE/MAE#3 #4 #5 #6 #7 #8

RLR
RMSE 0.38% 0.65% 0.89% 0.31% 0.56% 0.64% 0.75%
MAE 0.32% 0.87% 0.56% 0.40% 0.42% 0.55% 0.52%

GPR
RMSE 0.45% 0.67% 0.20% 0.35% 0.76% 0.89% 0.67%
MAE 0.39% 0.81% 0.27% 0.43% 0.63% 0.75% 0.54%

Table 7. Test results for the RLR and GPR models trained on the feature subset of Dataset III.

Model Metric
Battery ID Average

RMSE/MAE#7 #18 #36 #40 #44

RLR RMSE 4.04% 2.37% 4.14% 2.87% 20.98% 6.90%
MAE 3.45% 1.85% 4.08% 2.03% 16.45% 4.77%

GPR RMSE 3.40% 1.29% 8.40% 5.32% 13.17% 6.33%
MAE 2.69% 1.08% 6.03% 4.80% 8.21% 3.91%
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Figure 10. Test results of the full feature models of Dataset III. The left plot shows the predictions
of the GPR algorithm, and the right plot shows the predictions of the RLR algorithm. Cell 7 is the
primary test set, and cell 44 is the secondary test set.

Both GPR and RLR achieved an average RMSE and MAE of less than 3.4%. Comparing
the residual histograms of the two algorithms on feature subsets of Dataset I, we discovered
that GPR has a more negatively skewed distribution with a right tail, indicating that
GPR is more likely to have positive errors. Conversely, the residual histogram of RLR
showed a positively skewed distribution with a left tail, indicating that RLR is prone to
having negative errors. Comparing the test results of the full features on the same dataset,
we discovered that both GPR and RLR based on feature subsets output more accurate
predictions than those based on full features (Table 2).

Cells in Dataset II were cycled with the ARTEMIS dynamic driving profile, followed
by characterization cycles. It is evident from Figures 6 and 9 that the performance of tests
in Dataset II was dominated by RLR, according to both RMSE and MAE. The largest RMSE
achieved by both models was 0.89%, which is less than that of Dataset I. The cells in Dataset
II had been cycled up to 8000 cycles, and both GPR and RLR achieved an average RMSE
and MAE of less than 0.75% of the entire cycle life. Tables 3 and 6 show that both models
based on feature subsets outperformed the models based on the full features of Dataset II,
indicating that feature selection by MRMR could improve the prediction accuracy on the
dataset. The high performance achieved by GPR and RLR in Dataset II may be attributed
to the low variability in the charge and discharge conditions.

Both GPR and RLR based on feature subsets of Dataset III achieved the highest RMSE
and MAE across all datasets. Both histograms of the residuals of GPR in Figures 7 and 10
show skewed distributions. Specifically, GPR on full features showed a negatively skewed
distribution with a long tail to the right, and the peak center was approximately zero,
indicating that it is prone to outputting positive errors. Conversely, GPR on feature subsets
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exhibited a positively skewed distribution with a long tail to the left, and the peak center
was also approximately zero, indicating that it is prone to having negative errors. The
residuals of RLR exhibited a multimodal distribution on the feature subset, indicating that
there may be several underlying sources of errors contributing to its overall performance.
The residual histogram of RLR on full features also showed two peaks, but the second
peak was lower than that of RLR on the feature subset. GPR and RLR on the feature subset
achieved a lower average RMSE and MAE than those on full features, suggesting that the
feature selection could avoid overfitting.

The prediction speed of the two algorithms on both full features and feature subsets
of Datasets I to III are summarized in Table 8. All models were trained and tested on a
computer with two Intel Xeon 2666 V3 CPUs and an Nvidia 2080Ti GPU.

Table 8. Training time and prediction speed of the full feature models and feature subset models.

Algorithms

Full Feature Models Feature Subset Models

Training Time (s) Prediction Speed (obs/s) Training Time (s) Prediction Speed (obs/s)

I II III I II III I II III I II III

Robust linear 1.905 1.640 1.365 58,075 3782 27,870 1.400 1.161 1.738 78,441 6939 44,937
Matern 5/2

GPR 372.840 1.313 20.478 22,750 5575 26,299 160.290 2.390 20.834 31,785 4022 31,797

As expected, the feature subset models showed a significantly higher prediction speed
than the full feature models, primarily due to a reduction of more than half of the variables.
RLR particularly emphasized this point, demonstrating a minimum of twice the prediction
speed of the full feature set models, except for Dataset I, which showed an almost 50%
faster prediction speed. For GPR, all three datasets showed an increase in the prediction
speed of less than 50%, except for Dataset II. This discrepancy is attributed to the complex
random process of the GPR algorithm, which impacts the overall prediction speed.

The results of using feature subsets, instead of full features, in GPR for Dataset I
yielded considerable reductions in training time. Conversely, for Datasets II and III, the
difference in training time between the models using feature subsets and full features was
limited to 2 s. As Table 1 describes, Dataset I consists of most cells of the three datasets, so
the training time of GPR was the largest, with a maximum of 372.840 s. The training time
of GPR for Datasets II and III was smaller than that of GPR for Dataset I, and the training
speed of the two algorithms did was not significantly improve.

5. Discussion

The proposed battery cycle life prediction approach promises to enhance battery
management systems, allowing for highly accurate estimation of battery degradation.
This proposed method is distinct in that it can estimate cycle life using only discharge
voltage curves and can accommodate various operational conditions, such as random or
high discharge rates. Future work could be extended to random partial discharge/charge
scenarios and batteries with different designs and chemistries.

The algorithms based on full features had strong performance, as they achieved a low
RMSE and MAE, but the large feature set was too complicated for onboard application
and likely contained some redundancies. To address this issue, we used the MRMR
algorithm for feature selection. The score distribution of each feature indicated that the
importance of features is not consistent across the different datasets. This lack of consistency
could be attributed to the various aging mechanisms and modes present in the different
battery datasets, which were caused by the varying cycle conditions and charge/discharge
protocols. Therefore, it is essential to select features using the MRMR algorithm for each
respective battery dataset prior to model training to achieve a satisfactory trade-off between
accuracy and computational efficiency.
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To meet real-time requirements, a subset of 20 features was selected from 53 features as
a paradigm of feature selection; these features could be extracted from every cycle discharge
profile. The aim of the proposed method was to optimize a process suitable for on-board
applications that emphasize computation efficiency and real-time accuracy over precision.
Therefore, multicycle features were excluded, as they require the extraction of multiple
cycle data, and we used only features that can be calculated for each cycle.

Our investigation of two algorithms, GPR and RLR, for three datasets revealed that
feature selection has a positive effect on the performance of both algorithms for Datasets I
and III, except for Dataset II. Specifically, both algorithms achieved relatively low average
RMSEs and MAEs for all datasets, and GPR outperformed RLR in terms of RMSE and MAE
for both feature subsets and full features of Datasets I and III, indicating that GPR is the
optimal algorithm for large battery datasets with complex discharge profiles. Conversely,
RLR output accurate predictions with a lower RMSE and MAE for Dataset II compared to
GPR, owing to identical discharge profiles. As discussed in Section 3, lithium-ion battery
aging is a nonlinear process with a multitude of potential factors. It can be seen from
Figure 4 that almost all features demonstrate nonlinear correlations with the cycle number.
The GPR model incorporates a nonlinear kernel function, which is used to fit the correlation
between input and target. This kernel function makes GPR perform better than RLR for
battery cycle life prediction, especially under dynamic load profiles.

Table 9 compared the proposed method and 10 different data-driven methods for
battery degradation estimation. Compared to previous methods, we developed some
new features, such as the warp distance of discharge voltages, which makes it possible
to extract useful information from dynamic discharge profiles. The main reason for the
discrepancy in results between our methods and those of other literature can be attributed
to the difference in targets of machine learning models. As seen in Table 9, our model
uses the cycle life index (CI) as the target, the denominator of which is the total cycle
number of the cycle tests. In contrast, the equation of the remaining useful life (RUL)
reported by other literature has a different denominator, namely the cycle life given by
the manufacturer. For instance, in Dataset III, the total cycle number of tests averages
131 cycles, while the cycle life given by the manufacturer ranges between 300 and 500
cycles. The difference in denominators of the targets thus affects the RMSE of the two
methods. Another reason for the discrepancy in the results between our methods and other
methods is the use of a linear regression model, which is less accurate than other machine
learning algorithms in dynamic load profiles. Training linear regression models requires less
computational resources than most machine learning models, and it is simple to implement
linear regression models, which makes it possible to apply machine learning algorithms
to onboard battery management systems in electric vehicles. Many studies [1,8,31,32]
have demonstrated that linear regression is good at fitting simple battery degradation
with minimal variance in charge and discharge conditions. After considering both the
prediction speed and the training cost, we determined that the RLR algorithm is optimal
for battery life estimation in onboard applications with inadequate computing resources
and high real-time requirements, whereas the GPR algorithm is better suited for battery
pack manufacturing and recycling, due to the high prediction accuracy requirements and
sufficient computational power.

Table 9. Comparison of various data-driven methods for battery degradation estimation.

Method Positive
Electrode Target Main Features Precision

RNN [33] NMC, LFP RUL Capacity–voltage matrix RMSE ≤ 2.4%

BRR, GPR, RF, dNNe [1] LCO, NCA SOH
Energy ratio, entropy, skewness,
kurtosis, Hausdorff distance of
the CCCV curve

dNNe: RMSPE ≤ 4.26%
RF: RMSPE ≤ 2.70%
GPR: RMSPE ≤ 3.70%
BRR: RMSPE ≤ 5.54%
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Table 9. Cont.

Method Positive
Electrode Target Main Features Precision

Linear regression with
lasso and elastic net
regularization [8]

LFP Cycle life dV/dQ, dQ/dV, ∆Q(V)
‘Full’ model: mean
percentage error: 9.1%

RBF [43] NCA SOH

KL distance based on the hidden
Markov model, KL distance
based on kernel density
estimation

RMSE ≤ 1.13%
MAE ≤ 1.05%

Deep transfer
learning [34] LFP Capacity, RUL

Difference in the charge voltage
curve between each cycle and
the 10th cycle, difference in the
charge capacity curve between
each cycle and the 10th cycle

Capacity: RMSE ≤ 0.328%
RUL: RMSE ≤ 9.90%

Elastic net, SVR, transfer
learning model [11] NCM, NCA Capacity Variance, skewness, excess

kurtosis of relaxation voltage RMSE ≤ 1.7%

SVM, GPR [23] LFP SOH Discharge capacity differences of
two cycles

MAE ≤ 1%
RMSE ≤ 1.3%

AdaBoost–PSO–SVM [30] NCA SOH SOC, time, voltage RMSE ≤ 2.316%

Multivariate regularized
linear regression [44] NMC Lifetime

Low-SOC resistance, capacity
variance between each cycle and
the 10th cycle

Mean standard deviations:
≤15.2 cycles

Extratrees, NuSVR [26] NMC Cycle life OCV, dQ/dV, dV/dQ, resistance MAE ≤ 102 cycles

Proposed method NMC, NCA,
NCO CI

Distance between discharge
voltage curve and reference
curve using time warping,
entropy, SSIM

RMSE ≤ 6.33%
MAE ≤ 3.91%

RNN, recurrent neural network; BRR, Bayesian ridge regression; RF, random forest; dNNe, deep neural network;
RBF, radiant-based function; PSO, particle swarm optimization; NuSVR, Nu support vector regression.

6. Conclusions

Data-driven models are widely adopted for diagnosing and prognosticating the be-
havior of lithium-ion batteries. In this study, we proposed a data-driven framework to
accurately predict battery cycle life using various discharge profiles. This method offers
several advantages over conventional methods, including adaptability to random and high
discharge rates, robustness to changes in discharge mode, and prediction based solely on
discharge profiles.

We extracted 53 features from battery discharge profiles, 18 of which were newly
proposed for battery cycle life prediction models. The MRMR algorithm was used for
feature selection. We explored two machine learning models: GPR and RLR. All models
were evaluated using the error metrics RMSE and MAE. GPR achieved a maximum RMSE
of 6.33% and a maximum MAE of 3.91%, while RLR attained a maximum RMSE of 6.90%
and a maximum MAE of 4.77%. GPR was preferred for battery pack manufacturing and
recycling, while RLR was preferred for on-board battery cycle life prediction.

Overall, our work highlights the value of combining machine learning techniques
with discharge profiles for battery cycle life estimation. Moreover, although the estimation
accuracy is not always improved, the algorithm should be subjected to feature selection
before being deployed in the field. We demonstrate that feature selection can improve
the prediction accuracy and reduce the computational cost. We infer that this framework
should also be effective with charge profiles. In future work, it would be beneficial to
combine features extracted from both charge profiles and discharge profiles and to use this
method to prognosticate batteries with different materials.
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