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Abstract: Aqueous Zn-ion Batteries (AZIBs) have garnered significant interest in recent years, owing
to their inherent safety, affordability, and eco-friendliness. Recently, substantial research has been
conducted to broaden the application scenarios of AZIBs by regulating the electrode and electrolyte
materials. In this review, we provide a comprehensive analysis of the challenges and solutions
associated with AZIBs to meet extreme conditions, such as low temperatures, high temperatures,
and wide temperature ranges. We also discuss electrolyte optimization strategies for each of these
conditions. Finally, we outline potential avenues for further advancements and offer insights into the
future of this burgeoning field of AZIBs.
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1. Introduction

In today’s society, with the continuous expansion at social and economic scales, peo-
ple’s demand for energy and resources is growing [1–7]. Countries and regions around
the world have prioritized new energy storage technologies to effectively utilize the green,
low-carbon, and environmentally friendly renewable energy sources [8]. In recent years,
batteries based on electrochemical energy storage are one of the most efficient, simple, and
reliable devices available, and they have become the focus of research to improve their
electrochemical performance and to broaden their application scenarios [2,9–13].

The aqueous Zn-based batteries are one of the most promising battery systems for
large-scale storage due to their intrinsic safety and low cost by applying the H2O-based
electrolyte. More importantly, the Zn metal anode could accommodate high theoretical
gravimetric capacity and the volumetric capacity at 820 mAh/g and 5855 mAh/cm3,
respectively, enabling it to deliver high energy and power at full cell level (Figure 1a) [14–19].
Therefore, aqueous Zn-ion batteries (AZIBs) have sparked a lot of enthusiasm in the energy
storage field due to their inherent safety, low cost, and environmental friendliness [20–24].

The demand for energy storage and conversion has become diversified such that the
AZIBs need to operate over a wide temperature range as global temperature extremes in-
tensify to wide ranges [25–28]. The publication of papers on the topic of wide-temperature
AZIBs in the Web of Science database since the last three years was counted (Figure 1b).
The results show that the number of relevant papers published on this topic has increased
year by year since the last three years, and the total number of papers published exceeded
more than 2200 until the preparation of this manuscript, especially from 2020 to 2021. The
growth rate of papers published has reached as much as 81.51%, indicating that many
research workers in this research area have emerged in the fields of energy batteries and
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material preparation. However, AZIBs face significant challenges in Zn electrode and elec-
trolyte performance under wide-temperature operating conditions, resulting in poor battery
stability and inferior electrochemical performance for a wide temperature range [29–31].
Specifically, the solidification of the aqueous electrolytes at sub-zero temperatures would
result in a large decrease in the ionic conductivity of the electrolyte, thus deteriorating the
poor rate capability and the large over-potentials of the working voltages for the AZIBs. In
addition, the intensified protons’ activity of the aqueous electrolyte would trigger severe
side reactions, such as the hydrogen evolution, and accelerate the dendrite/by-products
formation at high temperatures, thus deteriorating the cycling stability of the AZIBs. Con-
sequently, developing AZIBs capable of operating under wide temperature conditions
holds significant scientific and practical importance. Nevertheless, realizing excellent
electrochemical performance for AZIBs under wide temperature conditions remains a
considerable challenge both theoretically and technologically.
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Current studies focus on the failure mechanism and performance optimization of
AZIBs to enhance their practical application under wide temperature conditions [31–38].
At present, according to the division of the working temperature range, AZIB research
is mainly divided into “low temperature condition” and “high temperature condition”
branches [3,39–43]. Unfortunately, few review articles have been published thus far fo-
cusing on the detailed analysis and systematic summary of electrolytes used in AZIBs
operating at wide temperatures. Examining the latest progress and potential guidance
to improve the wide-temperature performance of AZIBs is a compelling and necessary
research frontier.

2. Low Temperature Condition

Energy storage batteries in certain activities, such as high latitude and polar areas,
often face harsh low temperature operating environments. The solvent of AZIBs’ elec-
trolyte is based on water as H2O; however, the physicochemical properties of H2O solvent
at temperatures below 0 ◦C would pose numerous challenges to the stable operation of
AZIBs, including electrolyte solidification, reduced ionic conductivity, and poor electrolyte-
to-electrode wettability. It would inhibit the desolvation and diffusion of Zn2+ at the
electrode/electrolyte phase interface. Preventing electrolyte solidification at subzero condi-
tions and constructing low-temperature AZIBs is a priority [44–48].

Hydrogen bonding is the basic structural and energy storage unit of H2O solvent. The
hydrogen bonding constantly breaks and reorganizes between water molecules, forming a
unique “hydrogen bonding network” structure [49–51]. The freezing process involves a
complex rearrangement of the hydrogen bonding network from disordered water molecules
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to ordered ice, driven by the formation of additional thermodynamic driving force. When
the ambient temperature drops to 0 ◦C, the aqueous solution eventually forms solid ice,
and the electrolyte viscosity increases until it solidifies. The freezing of the electrolyte
not only decreases ionic conductivity but also reduces electrolyte-to-electrode wettability,
hindering desolvation and the diffusion of Zn2+ at the electrode/electrolyte phase interface.
Reducing the freezing point of the electrolyte and inhibiting ice crystal formation are
generally accepted as prerequisites to ensuring AZIB operation at low temperatures [25,26].
The dominant research has focused on reconstructing the hydrogen bonding network of
the aqueous electrolyte by introducing effective additives.

2.1. Optimizing Aqueous Electrolytes

Aqueous electrolytes could serve as a medium for ionic conduction and facilitating elec-
trochemical reactions. The properties of the electrolyte could determine the migration rate
of Zn2+ ions, solvation structure, electrode/electrolyte interface stability, safety, and elec-
trochemical performance of the battery. Various strategies have been employed to design
anti-freeze electrolytes, thereby enhancing AZIBs’ performance at subzero temperatures,
including highly concentrated electrolytes, water/organic hybrid electrolytes, and anti-
freeze hydrogels. These approaches have proven to be both feasible and effective. Table 1
shows the summary of the electrochemical performance in AZIBs at low temperature.

Table 1. The summary of electrochemical performance in AZIBs at low temperature (anode: Zn).

Cathodes Electrolytes Temperature Electrochemical Performance Ref.

polyaniline ZnCl2 −70 ◦C 85 mAh/g after 2000 cycles at 0.2 A/g [52]

tetrachlorobenzoquinone Zn(BF4)2

−60 ◦C
−80 ◦C
−95 ◦C

86.1 mAh/g at 0.1 C
71.8 mAh/g at 0.1 C
63.5 mAh/g at 0.1 C

[40]

polyaniline Zn(ClO4)2 −30 ◦C 64 mAh/g after 2500 cycles at 5 A/g [53]
Pyrene4,5,9,10-tetraone Mg(ClO4)2-Zn(ClO4)2 −70 ◦C 101.5 mAh/g at 0.2 A/g [54]

Phenazine Mg(ClO4)2-Zn(ClO4)2 −70 ◦C 71 mAh/g at 1.2 A/g [54]
V2O5 (Zn(OTf)2)-DOL-H2O a −30 ◦C 131 mAh/g after 300 cycles at 0.1 A/g [55]

PANI-V2O5
b EG-H2O c −20 ◦C 100 mAh/g after 250 cycles at 0.2 A/g [56]

MnO2
polyvinyl alcohol

(PVA)/glycerol gel −35 ◦C 25.8 mWh/cm
732 Wh/cm [57]

NH4V3O8·1.9H2O xanthan-ZnCl2
−20 ◦C
−40 ◦C

201 mAh/g at 0.2 A/g
83 mAh/g at 0.2 A/g [58]

MnO2 EG-waPUA d −20 ◦C 196 mAh/g at 0.3 A/g [59]

(a) Zn(OTf)2 = Zn(CF3SO3)2; DOL = 1,3-dioxolane; (b) PANI = Polyaniline; (c) EG = ethylene glycol;
(d) waPUA = waterborne anionic polyurethane acrylates.

2.1.1. Water-in-Salt Electrolyte

Thermodynamically, pure water freezes at 0 ◦C at standard atmospheric pressure.
Highly concentrated (or saturated) salt solutions, e.g., the salt-in-water electrolytes, can
effectively reduce the freezing point by weakening hydrogen bonding between water
molecules [25,60]. Zhang et al. [52] reported that aqueous ZnCl2 electrolyte with a high
concentration of 7.5 mol/L has a high ionic conductivity (1.79 mS cm−1 at −60 ◦C) and
good compatibility with the Zn anode under low temperature conditions. The solid–liquid
transition temperature of the aqueous electrolyte is suppressed from 0 ◦C to −114 ◦C by
disrupting the initial hydrogen bonding network in the ZnCl2 solution. Based on the
ZnCl2 electrolyte, they created a polyaniline||Zn cell that can function in an extremely
low temperature range. The specific capacity is near 85 mAh/g under the current 0.2 A/g
and the long cycling performance of ~2000 cycles at −70 ◦C (Figure 2a). The interactions
between the ions and the water molecules causes the initial hydrogen bond structure to
be reconstructed, as seen in Figure 2b, and Zn2+ solvation configurations appear. This
electrolyte is mostly made up of Zn(H2O)2Cl42−, ZnCl+, and Zn(H2O)6

2+, as well as water
molecules with weak hydrogen bond interactions. The electrolyte’s freezing point is
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reduced by the high-concentrated ions to weaken the hydrogen bond among the H2O
molecules [52].
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Figure 2. (a) Cycling performance of PANI|LTE|Zn batteries at −70 ◦C at 0.2 A/g. LTE = low-
temperature electrolyte. (b) The schematic of the structure evolutions of water and electrolyte, and
the design of low-Tt solution. Original water network linked by H-bonding can easily transform to
ice network at 0 ◦C. After adding ZnCl2, the H-bond network is broken by the strong interaction
between ions and water, while the ion interactions are enhanced. By balancing the H-bonding and
ion interactions for modulating Tt, the electrolyte at critical CZnCl2 can be operated at extremely low
temperature. © Copyright 2020, The Author(s) [52].

It is worth mentioning that Sun et al. [40] introduced the BF4
− anions to break the

original hydrogen bonding network between H2O molecules by forming O-H···F hydrogen
bonding and developed a Zn(BF4)2 electrolyte with a low freezing point (−122 ◦C) and
high ionic conductivity. The Zn||tetrachlorobenzoquinone (TCBQ) cell based on the
4 mol/L Zn(BF4)2 electrolyte exhibited excellent electrochemical performance over a low
temperature range from−60 ◦C to−95 ◦C. The Zn/TCBQ battery achieves a high discharge
specific capacity of 86.1 mAh/g, 71.8 mAh/g, and 63.5 mAh/g at −60 ◦C, −80 ◦C, and
−95 ◦C, respectively, at an average voltage of 1.2 V. It has been shown that adding BF4

−

anions could damage the hydrogen bond (HB) network in water molecules and reduce
the freezing point even further. To study the development of HBs in this system from
a basic perspective, molecular dynamics (MD) simulations were used. The pictures in
Figure 3a,b [40] clearly show that following the addition of 4 M Zn(BF4)2 salt, the HBs
of water molecules have rapidly diminished, and a large number of O-H···F HBs among
BF4

− ions and water molecules are generated. Four different forms of HBs among water
molecules and the BF4

- anion have been identified from the outcomes of MD simulations,
and they are shown in Figure 3c–f. The mean number of hydrogen bonding between BF4

−

ions and water molecules is shown in Figure 3g. In Figure 3h, the ratio of the various kinds
of HBs is shown. With an increase in Zn(BF4)2 quantity, the ratio of O-H···O HBs steadily
declines. In contrast, all HB ratios show a trend to decline, and the proportion of O-H···F
HBs gradually rises, demonstrating that the addition of BF4

− ions not only disrupts the HB
network but also decreases the amount of HBs present in the initial water molecules [40].
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(b) Snapshot of the MD simulation of 4 M Zn(BF4)2 electrolyte. (c–f) Different types of O–H···F HBs
from the snapshot. (c) BF4

−-1H2O. (d) BF4
−-2H2O. (e) BF4

−-2H2O. (f) BF4
−-3H2O. (g) Average HB

numbers for each system after 140 ns simulation time. (h) The ratio of different HBs. © Copyright
2021, The Royal Society of Chemistry [40].

The reports above greatly provide an effective strategy to promote low-temperature
AZIBs by adjusting the electrolyte structure with highly concentrated solutions of salt.
Although “water-in-salt” electrolytes have significant advantages, such as lower electrolyte
freezing point and improved electrode materials, it is still a fundamental challenge to over-
come the inherent limitations of “water-in-salt” electrolytes in the future, including high
viscosity caused by strong cation–anion coupling, high cost, and salt precipitation at low
temperature. Therefore, excessive salt concentrations might be optimized when designing
anti-freezing electrolytes, and the development of low-cost salt for highly concentrated
electrolyte is essential to improve market competitiveness.

2.1.2. Organic Additives

Introducing organic additives into the aqueous electrolytes is a key strategy to realize
the low freezing points of the electrolyte. The effectiveness of additives to expand the low-
temperature range of AZIBs largely relies on the capabilities to disturb and reconstruct the
hydrogen bond network to inhibit the regular formation of ice crystals, and thus reduce the
freezing point of the electrolyte. At present, a large number of organic solvents have been
applied to reduce the freezing point of the electrolytes for AZIBs, such as 1,3-Dioxolane
(DOL)) [55], ethylene glycol (EG) [61–64], ethanol [65], and glycerol [66,67].

1,3-Dioxolane (DOL), an organic solvent with a low freezing point and a high dielectric
constant, is an exemplified solvent as an additive in aqueous electrolytes. Du et al. [55]
reported a “Zn trifluoromethanesulfonate (Zn(OTf)2)-DOL-H2O” electrolyte to reduce
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the freezing point of the electrolyte to −51.2 ◦C, which enabled the Zn||V2O5 cell to
maintain 131 mA/g−1 at a low temperature of −30 ◦C. This enables the Zn||V2O5 cell to
maintain a stable average capacity of 131 mAh/g for 300 cycles at 0.1 A/g current density
at a low temperature of −30 ◦C (Figure 4a). To further study the interaction between the
components in the mixed electrolyte, the solvation structure of the aqueous electrolyte and
the 1:1 electrolyte was studied by MD simulation. For the 1:1 electrolyte, the snapshot of
the simulated electrolyte structure shows that the DOL molecule is combined with the H2O
molecule by hydrogen bonding (Figure 4b,c). There are two forms of binding between DOL
and H2O. Most DOL interacts with only one H2O molecule, and some DOL binds to two
H2O molecules. The probabilities of DOL-H2O, DOL-2H2O, and H2O-H2O were calculated
by the Density Function Theory (DFT). As shown in Figure 4d, the binding energies of
DOL-H2O and DOL-2H2O are 2.662 kcal/mol and 5.278 kcal/mol, respectively, and the
binding energies of H2O-H2O are 2.542 kcal/mol, respectively. The theoretical calculation
results further prove that H2O is more inclined to combine with DOL than H2O [55].
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H2O molecules obtained from DFT calculations. © Copyright 2021, Elsevier B.V [55].

The “Zn sulfate (ZnSO4)-EG-H2O” electrolyte designed by Chang et al. has high
ionic conductivity at low temperature. The research [56] shows that the Zn2+-EG solvation
effectively reduces the freezing point of the mixed electrolyte, improves the reversibility
of Zn deposition/stripping, and improves the deposition morphology of the Zn anode.
Therefore, the Zn//PANI-V2O5 battery with EG40 (volume ratio of EG to water is 40%)
exhibits high discharge capacity of 100 mAh/g at 0.2 A/g current density and long cycle
life (250 cycles) at −20 ◦C (Figure 5a). To further study the solvation structure of a mixed
electrolyte, MD simulation and DFT calculation were carried out. The snapshots of the
simulated electrolyte structure (Figure 5b,c) show that there are ionic solvation clusters
of Zn2+ coordinated with SO4

2−, H2O, and EG in the electrolyte with EG addition. The
coordination number (CN) analysis of H2O, EG, and SO4

2− around Zn2+ in a series of
hybrid electrolytes is shown in Figure 5d. With the increasing EG-to-water ratio, the CN
of SO4

2− anions around Zn2+ increased slightly. The CN of H2O molecules in the first
hydration layer gradually decreased, while the CN of EG molecules gradually increased,
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indicating that the introduction of EG greatly destroyed the solvation structure of Zn2+

and H2O. With the increasing EG content, the diffusion coefficient of Zn2+ increased first
and then decreased (Figure 5e). When the ratio of EG-to-water is less than 60%, the
diffusion coefficient of the mixed electrolyte is still higher than that of EG0. This indicates
that the solvation structure of Zn2+ coordinated with EG and H2O contributes to the
rapid transport of Zn2+. Nevertheless, when the solvation effect of EG and Zn2+ is more
prominent, the Zn2+ in the mixed electrolyte achieved rapid transport at low temperature.
In addition, the relative binding energies of Zn2+ cations with anions and solvents are in the
order of Zn2+-SO4

2− > Zn2+-EG > Zn2+-H2O. The results show that Zn2+ is preferentially
coordinated with EG rather than H2O, resulting in the rapid exchange of EG around Zn2+,
so that Zn2+ is rapidly conductive in the electrolyte added with EG. In addition, after the
introduction of EG molecules in the system, the electrostatic potential of the solvation state
of Zn2+-5H2O (Figure 5f,g) was significantly reduced. Therefore, the electrostatic repulsion
between Zn2+ cations can be reduced.
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Figure 5. (a) Low-temperature performance of ZnPANI-V2O5 batteries based on EG40 at −20 ◦C
with a current density of 0.2 A/g. (b–g) Optimized structure for the hybrid electrolytes from MD
simulations and DFT calculations. Snapshots of (b) EG0 and (c) EG40 during MD simulations.
(d) Coordinated numbers of H2O, EG, and SO4

2− around Zn2+ and the diffusion coefficient of Zn2+-
indifferent electrolytes calculated from MD simulations. (e) Relative binding energy for Zn2+ with
different species obtained from DFT calculations. Electrostatic potential maps of (f) the original Zn2+-
H2O system and (g) the EG-added system. © Copyright 2020, The Royal Society of Chemistry [56].

In general, organic solvents possessing certain attributes, such as low melting points,
reduced viscosity, and elevated polarity, can effectively decrease electrolyte freezing points
and suppress water-induced side reactions. Although implementing organic electrolyte sys-
tems enhances electrochemical stability at subzero temperatures, capacity or voltage may



Batteries 2023, 9, 386 8 of 22

be compromised [68,69]. Notably, the majority of the organic solvents exhibit flammability
and toxicity, which may pose safety concerns when present in excess within hybrid elec-
trolytes. Consequently, the design of water/organic hybrid electrolytes for low-temperature
applications should judiciously minimize the incorporation of superfluous organic solvents.

2.1.3. Hydrogel Electrolyte

The hydrogels emerge as a promising solution to enable the working capability for
AZIBs to work at sub-zero temperatures. Hydrogels are cross-linked hydrated polymer
chains rich in hydrophilic functional groups, such as -OH, -COOH, -SO3, and -NH2. The
formation of intra- or intermolecular hydrogen bonding within hydrogels, as well as the
competition between water molecules across different chemical functional groups, regulates
their anti-freeze properties.

Hydrogel electrolytes offer enhanced electrode interface stabilization compared to
liquid electrolytes [70] and are frequently utilized in conjunction with co-solvents, addi-
tives, or highly concentrated salts to extend their low-temperature performance [71]. Chen
et al. [57] developed a frost-resistant borax cross-linked polyvinyl alcohol (PVA)/glycerol
gel electrolyte capable of withstanding temperatures below −60 ◦C. Employing this anti-
freeze gel electrolyte, they constructed a stretchable quasi-solid-state Zn-MnO2 battery
with an energy density of 46.8 mWh/cm3 (1330 Wh/cm2) at 25 ◦C and a power density of
96 mW/cm3 (2.7 mW/cm2), surpassing nearly all reported AZIBs (Figure 6a,b). More im-
portantly, even at −35 ◦C, it can still reach a relatively high energy density (25.8 mWh/cm3,
732 Wh/cm2). When the power density increases by about 10 times, it can maintain 53.3%
of the energy density.
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our PVA-B-G battery, in comparison with previously reported energy storage devices. © Copyright
2020, The Royal Society of Chemistry [57].

Wang et al. [58] devised a concentrated hydrogel electrolyte by combining xanthan
gum with a ZnCl2 aqueous solution, forming a hydrogel electrolyte. At −20 ◦C and
−40 ◦C, the discharge-specific capacities were 201 mAh/g and 83 mAh/g, respectively,
when the current density was 0.2 A/g (Figure 7a,b). An ethylene glycol (EG)-based aque-
ous anionic polyurethane acrylate (EG-waPUA) hydrogel electrolyte was employed in a
flexible Zn/MnO2 battery. H2O molecules are confined through effective hydrogen bond
interactions with EG and polymer molecules, enabling the freezing point to be controlled
by adjusting the EG content. The hydrogel remains unfrozen at −20 ◦C when the EG
content reaches a certain threshold. The optimized hydrogel retains an ionic conduc-
tivity of 14.6 mS/cm and exhibits robust mechanical properties at −20 ◦C. Furthermore,
the Zn-MnO2 battery assembled with this gel electrolyte demonstrates exceptional low-
temperature performance, retaining over 80% of its capacity when transitioning from room
temperature to −20 ◦C. No significant capacity degradation was observed after several
alternating cycles between high and low temperatures (Figure 7c) [59].
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Figure 7. (a) Rate of electrochemical performance of the batteries based on the electrolytes prepared
using 0.8 g, 1.2 g, and 1.6 g of xanthan gum combined with 4 m ZnCl2 at −20 ◦C. © Copyright 2021,
Elsevier Ltd. [58]. (b) Rate performance of the battery with the optimized electrolyte at −40 ◦C.
© Copyright 2021, Elsevier Ltd. [58]. (c) Cyclic testing of PAM-battery and AF-battery under 20, 0,
−20 ◦C at 0.3 A/g. PAM = polyacrylamide; AF = anti-freezing. © Copyright 2019, The Royal Society
of Chemistry [59].

Huang et al. [53] form ternary and weak hydrogen bonding by introducing the
chaotropic ClO4

− polymer chains into the H2O molecule network, which can reduce
the freezing point of the electrolyte. Firstly, density functional theory (DFT) was used to
examine how the chaotropic ClO4

− anions, water, and polymer chains interacted. The
strong retaining capacity of the hydrogel is confirmed by Figure 8a, which shows that the
binding energy of PAM to water is significantly greater than that of water to water. To
test the effectiveness of the Zn(ClO4)2 salts on gel electrolyte anti-freezing, a dual-network
hydrogel (designated as CSAM) composed of modified polysaccharides carboxymethyl
chitosan (CMCS) and polyacrylamide (PAM) was created and used as an example system.
It proves that the ClO4

− anion has a potent interaction with PAM chains, allowing it to
enter the polymer chains, break the HB in PAM-PAM and PAM-CSAM, and control the
hydrogel’s mechanical flexibility. This increases the hydrophilic property of the hydrogel
and improves its mechanical characteristics by forming a ternary HB reciprocity between
the ClO4

− anion, water, and polymer chains, as shown in Figure 8b. Ref. [53] At −30 ◦C,
the Zn//polyaniline battery is composed of the electrolyte with an ionic conductivity of
7.8 mS/cm and a reversible capacity of 70 mAh/g after 2500 cycles at a current density of
5 A/g (Figure 8c).
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The performance of AZIBs at low temperatures significantly impacts their practical ap-
plications. Currently, research in this area remains in its nascent stages. Efforts to enhance
the subzero temperature performance of AZIBs predominantly focus on the meticulous
design of electrolytes. It is crucial to recognize that both electrode and non-active materials
influence the low-temperature performance of AZIBs. Consequently, the development of
anti-freezing electrolytes must consider the electrochemical stability window and ensure
compatibility with both electrode and non-active materials. Additionally, the enhancement
of electrolytes would generally necessitate the utilization of high-concentration salt solu-
tions and organic electrolytes. To maintain the competitiveness of AZIBs in the market, it is
essential to prioritize their cost effectiveness and their safety advantages.

3. High Temperature Condition

In addition to low-temperature conditions, AZIBs often encounter elevated tempera-
tures exceeding 40 ◦C in various applications, such as geological exploration and deploy-
ment in tropical regions. Current research indicates that high-temperature environments
can accelerate the internal chemical reaction rates, enhancing the charge transfer kinetics
to a degree. At these elevated internal temperatures, solvent evaporation and solute pre-
cipitation from the electrolyte may occur, subsequently degrading the high-temperature
electrochemical performance of AZIBs and potentially resulting in battery failure [72].
The issues are located at the Zn anode side corresponding to irreversible dendrites and
the hydrogen evolution at high temperatures, which could be ascribed to the enhanced
proton/H2O activity in the aqueous electrolyte. It would not only promote the hydrogen
evolution but also accelerate the Zn dendrite formation. Furthermore, the cathode mate-
rial may exhibit substantial dissolution phenomena under high-temperature conditions,
leading to rapid battery capacity degradation [73]. Considering the boiling point of the
aqueous solution, current research posits that increasing the electrolyte’s boiling point and
developing high-temperature-resistant cathode materials are fundamental requirements to
ensure AZIBs’ operational stability under high-temperature conditions. In this review, we
specifically emphasize optimization strategies for electrolytes in AZIBs to improve their
performance at elevated temperatures. Table 2 shows the summary of electrochemical
performance in AZIBs at high temperature.
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Table 2. The summary of electrochemical performance in AZIBs at high temperature (anode: Zn).

Cathodes Electrolytes Temperature Electrochemical Performance Ref.

MnO2 bentonite-colloidal 55 ◦C 114.9 mAh/g after 300 cycles at 2 A/g [74]

LVO-250 a ZnSO4 50 ◦C 232 mAh/g after 500 cycles at 5 A/g
192 mAh/g after 1000 cycles at 10 A/g [75]

Te Zn(OTf)2−H2O/PD b 100 ◦C 195.7 mAh/gTe after 100 cycles at 2 C
(850 mA/gTe) [43]

CuVO c PNMT d 60 ◦C 200 mAh/g after 1200 cycles at 5A/g [76]
phenanthrenequinone

macrocyclic trimer ZnSO4/H2O-50% EG 60 ◦C 88 mAh/g after 900 cycles at 0.2 A/g [77]

polytriphenylamine Zn-TFMS/
(TEP:PC = 1:2) e 60 ◦C 300 cycles at 2 A/g [78]

(a) LVO = LixV2O5·nH2O; 250 = 250 ◦C; (b) Zn(OTf)2 = Zn(CF3SO3)2; PD = 1,5-pentanediol; (c) CuVO = copper
vanadate; (d) PNMT hydrogel is synthesized by free radical polymerization. Radical polymerization was used
to synthesize the hydrogel with a semi-interpenetrating network with acrylamide (AM) as the monomer, TCCP
with the main role of thermochromism, CNF and CMC as additives, APS as an initiator, and NNMBA as a
cross-linking agent. TCCP = thermochromic capsule powder; CNF = cellulose nanofibrils; CMC = carboxymethyl
cellulose IV; APS = ammonium persulfate; NNMBA = N,N’-methylenebis (acrylamide); (e) Zn-TFMS = Zn
trifluoromethanesulfonate; TEP = triethyl phosphate; PC = propylene carbonate.

3.1. Optimizing Aqueous Electrolytes

The current AZIBs encounter various side reactions caused by water on the anode side,
such as hydrogen evolution reaction, Zn corrosion, and dissolution of cathode materials,
which could be ascribed to the enhanced activity of H+ and H2O at high temperatures [79–83].
Consequently, inhibiting the H2O activity at high temperature could enable the stable
performance of AZIBs. Recent studies have demonstrated that employing polymer and
cosolvent electrolytes can suppress these undesirable side reactions [84–89]. However, to
satisfy more stringent application demands, it is essential to explore further possibilities for
AZIBs at elevated temperatures, potentially reaching the boiling point of water.

3.1.1. Cosolvent Electrolytes

Introducing a crowding agent into the electrolyte can enhance the battery stability
by suppressing parasitic reactions of the Zn metal anode at high temperatures. Wang
et al. [43] achieved uniform Zn deposition at elevated temperatures using an eco-friendly
crowding agent, 1,5-pentanediol (PD), which effectively reduced water reactivity and
diminished H2O content in the Zn2+ dissolution sheath, thereby significantly inhibiting
water-induced parasitic reactions. After 100 cycles at 100 ◦C, the Zn//Te battery retained a
discharge capacity of 195.7 mAh/gTe at 2 C (850 mA/gTe), exhibiting remarkable cycling
stability under exceptionally high temperatures (Figure 9a). MD simulation can provide a
more in-depth understanding of the solvation structure and intermolecular interactions
of electrolytes. The basis distribution functions (RDF) of different electrolytes at 25 ◦C
(Figure 9b,c) show that PD emits a large amount of H2O in the Zn2+ solvation sheath of the
Zn(OTf)2-H2O/PD electrolyte, and the Zn-O (H2O) coordination number of the Zn(OTf)2-
H2O electrolyte is significantly reduced from 5.0 (83.7%) to 1.8 (29.2%) (Figure 9d), which
is beneficial to suppress the parasitic side reactions caused by H2O molecules in the Zn2+

solvation sheath. In addition, the change of RDF at 100 ◦C (Figure 9e,f) is consistent with
that at 25 ◦C. In addition, the hydroxyl distribution of the PD isomer 1,2-pentanediol (1,2-
PD) on the carbon chain is completely different (Figure 10a,b), and its application potential
in high-temperature ZMBs is also studied. The H2O/1,2-PD cosolvent electrolyte was
simulated by MD (Figure 10c,d). The results show that in H2O/1,2-PD, the amount of H2O
in the Zn2+ solvation shell is larger than that in H2O/PD, which may be due to the larger
steric hindrance of the coordination between the hydroxyl group and Zn2+, thus hindering
the inhibition of side reactions on the Zn anode. In addition, at 100 ◦C, the coulombic
efficiency (CE) of the Zn/Ti battery based on H2O/1,2-PD is lower than that of the similar
battery based on H2O/PD (Figure 10e), which is consistent with the MD simulation results,
indicating the importance of the solvent molecular structure to the electrolyte performance.
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Wang et al. reported a Zn-organic battery with ZnSO4/H2O-50% EG as the electrolyte
and phenanthrenequinone macrocyclic trimer (PQ-MCT) as the cathode, which showed
that the discharge capacities at 0.2 A/g still maintained 88 mAh/g after 900 cycles at 60 ◦C.
In Ref. [77], Qiu et al. also reported a Zn//polytriphenylamine composite (PTPAn) battery
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using Zn trifluoromethanesulfonate (Zn-TFMS) salt-mixed solvent of propylene carbonate
(PC) and triethyl phosphate (TEP) as the electrolyte, which maintained 300 cycles at 2 A/g
at the same temperature, 60 ◦C. In Ref. [78], the rate performance of the PTPAn cathode
at a high temperature of 60 ◦C and the cyclic stability of Zn//PTPAn cells at 60 ◦C are
shown in Figure 11a,b. According to the scheme (Figure 11c), during the charging process,
one of the TPA units (containing a C-N bond) at first gives up one p-electron of the C=N
bond and then becomes positively charged, producing the corresponding radical cation
(C=N+) and anion TDMS- and attracting p-electrons from the benzene ring under the
connection of intermolecular forces, while the second adjacent TPA loses another electron
of C=N bond at higher potential. Therefore, the reaction at the PTPAn cathode includes
the oxidation/reduction of the TPA units (i.e., C-N� C=N+) and is accompanied by the
combination/release of the TFMS into the polymer chains.
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3.1.2. Colloidal Electrolytes

Colloidal electrolytes have been reported to enhance the high-temperature electro-
chemical performance of AZIBs positively. Xie et al. [74] proposed a high-temperature-
resistant “Ben-colloid” colloidal electrolyte, prepared by mixing liquid electrolyte (2 M
ZnSO4 and 0.1 M MnSO4) with bentonite. AZIBs assembled using this colloidal electrolyte
maintained a capacity of 114.9 mAh/g after 300 cycles at a current density of 2 A g−1 at
55 ◦C (Figure 12a). Yang et al. reported that a cotton-like LVO-250 battery using ZnSO4
electrolyte showed excellent electrochemical performance with 232 mAh/g after 500 cycles
at 5 A/g, and 192 mAh/g after 1000 cycles at 10 A/gat 50 ◦C [75].
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3.1.3. Hydrogel Electrolytes

For flexible energy storage systems, a gel electrolyte is particularly appealing com-
pared to liquid electrolytes because of the following benefits [84]: (1) A gel electrolyte
can stop liquid electrolytes from escaping (Ref. [90]); (2) A gel electrolyte may function
as a separator by itself, making the construction of zinc-ion batteries simpler; (3) The
sticky interface of the gel electrolyte may improve the electrodes’ interfacial suitability
and guarantee steady electrochemical performances; gel electrolytes with smart flexibil-
ity, self-healing properties, and stretchability might provide devices additional cutting-
edge features (Ref. [91]); (4) A gel electrolyte might inhibit the creation of zinc dendrites
(Ref. [92]); and (5) Gel electrolytes with smart responsiveness, a self-healing nature, and
stretchability could give devices more innovative functions (Refs. [93–95]). To stabilize the
H2O molecular network in the electrolyte, Liu et al. [76] developed a hydrogel electrolyte
PNMT with a semi-interpenetrating cross-linked network structure based on polyacry-
lamide (PAM), cotton cellulose nanofibers (CNF), and carboxymethyl cellulose IV (CMC).
This electrolyte displayed excellent mechanical properties, high sulfur conductivity, ther-
mochemical cycling stability, and exceptional electrochemical performance. The battery
utilizing this electrolyte demonstrated outstanding cycling stability at 25 ◦C, 40 ◦C, and
60 ◦C after 120 charge/discharge cycles, with capacity retention of 99%, 97%, and 96%,
respectively. Moreover, the long-term cycling capacity retention of Zn//CuVO exceeded
200 mAh/g after 1200 cycles under high-temperature conditions (60 ◦C), and the corre-
sponding coulombic efficiency of the Zn//CuVO-code cell remained close to 99% at 5A/g
current (Figure 12b).

The aforementioned electrolyte strategies can enhance the electrochemical perfor-
mance of AZIBs under specific temperature conditions (high or low temperature). However,
to meet practical requirements, it is crucial to develop a wide-temperature-range electrolyte
that can accommodate both high and low temperatures.



Batteries 2023, 9, 386 15 of 22

4. Wide Temperature Condition

AZIBs encounter significant Zn cathode and electrolyte challenges at wide temper-
ature operating conditions, leading to poor battery operability and suboptimal electro-
chemical performance. Consequently, understanding the failure mechanisms of AZIBs at
various operating temperatures and developing AZIBs with stable operation under wide-
temperature conditions are essential. In recent years, numerous studies have addressed
wide-temperature AZIBs to advance both theoretical research and practical applications,
where the major efforts have been devoted to regulating the hydrogen bonding network,
simultaneously enabling the anti-freezing for low temperature and the inhibited H2O
activity for high temperature. Table 3 shows the summary of electrochemical performance
in AZIBs at wide temperature.

Table 3. The summary of electrochemical performance in AZIBs at wide temperature (anode: Zn).

Cathodes Electrolytes Temperature Electrochemical Performance Ref.

CuVO-300 a ZnSO4
50 ◦C

to 0 ◦C
410 mAh/g at 0.5 A/g at 50 ◦C
320 mAh/g at 0.5 A/g at 0 ◦C [96]

δ-MgVO b polyvinyl alcohol/glycerol
gel-Zn(CF3SO3)2

60 ◦C
to −30 ◦C

308.7 mAh/g
153 mAh/g after 5000 cycles at 2A/g [97]

Zn3V2O8 PAAm/DMSO/Zn(CF3SO3)2
c 60 ◦C

to −40 ◦C 265.2 mAh/g after 3000 cycles at 0.2 A/g [98]

Cu Zn(BF4)2/EG 40 ◦C
to −30 ◦C

CE of 97.3%, 96.9% and 95.7% with good
cycling stability (over 135, 100 and 100 cycles) [99]

LiMn2O4 BM-gel d 80 ◦C
to −20 ◦C

105 mAh/g after 150 cycles at 2.0 A/g at 80 ◦C
165 mAh/g at 0.2 A/g at −20 ◦C [21]

(a) CuVO = CuxV2O5·nH2O; 300 = 300 ◦C; (b) δ-MgVO = Mg0.19V2O5·0.99H2O; (c) PAAm = polyacrylamide;
DMSO = dimethyl sulfoxide; (d) BM-gel = biomimetic organohydrogel.

4.1. Quasi-Solid-State Electrolytes

Zhou et al. [97] synthesized Mg0.19V2O5·0.99H2O (δ-MgVO) with large interlayer
spacing using a pre-intercalation strategy and assembled a quasi-solid-state battery by
pairing Zn//δ-MgVO as a cathode with a polyvinyl alcohol/glycerol gel electrolyte. This
quasi-solid-state battery demonstrates satisfactory performance across a wide temperature
range of −30 ◦C to 60 ◦C, making it suitable for environmentally adaptive aqueous energy
storage devices. High capacities of 308.7, 269.7, 227, and 153 mAh/g are sustained at 60, 25,
0, and −30 ◦C, from high temperature to low temperature, respectively, after a cycle life
test of 5000 cycles at 2 A/g (Figure 13a). The PVA/G battery can nevertheless offer high
reversible capacities of 246.3, 226.4, 204.9, 176.1, and 136.7 mAh/g at current densities of 0.2,
0.5, 1, 2, and 5 A/g, respectively, even at a relatively low temperature of−30 ◦C (Figure 13b).
Lu et al. [98] suggested that a multi-component cross-linked hydrogel electrolyte could
suppress Zn dendrites and enable low-temperature environmental adaptation of ZIBs.
Leveraging the inhibitory effect of polyacrylamide and dimethyl sulfoxide (DMSO) on
Zn dendrites, the completed full-cell exhibits a large specific capacity of 265.2 mAh/g at
current densities of 0.2 A/g and remarkable cyclic stability with a capacity retention of
95.27% after 3000 cycles. More importantly, the galvanostatic charge–discharge (GCD)
curves measured at temperatures ranging from −40 ◦C to 60 ◦C indicate that the two-
step charge storage mechanism of the charge/discharge process remains unchanged with
temperature (Figure 13c,d).
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Figure 13. AZIBs performance at wide temperature condition. (a) The thin-film PVAG Znδ-MgVO
battery cycling performances at 2 A/g at different temperatures. (b) GCD curves at different cur-
rent densities at –30 ◦C. © Copyright 2020, Royal Society of Chemistry [97]. (c) Rate capability of
Zn3V2O8Zn||PDZ-H full cell at different current densities. PAAm/DMSO/Zn(CF3SO3)2 multicom-
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from 60 ◦C to −40 ◦C. © Copyright 2022, Wiley-VCH GmbH [98].

4.2. Organic Additives

By reducing the water content in the aqueous electrolyte and increasing the organic
solvent, the hybrid aqueous–organic electrolyte is prepared with suppressed water activity,
which also exhibits good performance over a wide temperature range. Han et al. [99]
used EG as a solvent and added it into the water-containing organic electrolyte based on
Zn(BF4)2, which has accommodated flame retardancy. Due to the strong hydrogen bonding
between various components, the electrolyte can not only effectively inhibit the dendrite
reaction, corrosion, and hydrogen evolution reaction of the Zn anode in a wide operating
temperature range, but it can also promote the formation of a favorable ZnF2 passivation
layer and form a certain protection mechanism. The electrochemical performance of Zn/Cu
cells across a wide temperature range from 40 ◦C to −30 ◦C was examined to determine
the viability of the 4 M Zn(BF4)2/EG electrolyte in challenging circumstances. The Zn‖Cu
battery using this electrolyte displayed a high CE of 97.3%, 96.9%, and 95.7% with good
cycling stability (over 135, 100, and 100 cycles) at 40 ◦C, −15 ◦C, and −30 ◦C, respectively
(Figure 14a–c). In contrast, the electrochemical performance of the cell using the reference
ZnSO4 electrolyte exhibited poor CE properties for 95.8% and 47.1% along with a short
term of sixty cycles, and only one cycle under the conditions of 40 ◦C and −15 ◦C. In
addition, the battery showed the worst performance, which was frozen, so that it could
not work at −30 ◦C. These results demonstrate the Zn(BF4)2/EG electrolyte’s exceptional
wide temperature performance. The interaction inside the electrolyte and the solvation
structure of Zn2+ were verified by DFT calculations and MD simulations. DFT calculations
show that the relative binding energy between any two components obeys the order of
magnitude of Zn2+-BF4

−> Zn2+-EG > Zn2+-H2O > BF4
−–EG > BF4

−–H2O > EG–H2O in
4 M Zn(BF4)2/EG electrolyte (Figure 15a). MD simulations show that in 4 MZn(BF4)2/EG,
three components (EG, H2O, and BF4

−) are involved in the solvation sheath of Zn2+ ions
(Figure 15b,c).
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Mo et al. proposed a biomimetic organohydrogel (BM-gel) electrolyte, which can
effectively and efficiently block water evaporation and seclude hydrogel from external
surroundings. This BM-gel electrolyte kept up excellent electrochemical performance even
at excessive temperatures (from 80 ◦C to −20 ◦C) in the Zn-MnO2 battery, which exhibited
a stable specific capacity of 105 mAh/g after 150 cycles at 2.0 A/g current density at
80 ◦C and a high specific capacity of 165 mAh/g at 0.2 A/g current density at subzero
temperature -20 ◦C [21].

It can be seen that the electrolytes of AZIBs are modified by the above method, and
quasi-solid electrolytes are the main means to achieve wide temperature range. The
electrolytes need satisfy the characteristics of the high-temperature domain and the low-
temperature domain, which greatly expands the application range of the AZIBs in various
environments.

5. Summary and Outlook

The wide-temperature performance of AZIBs significantly impacts their practical
applications. This review discussed the challenges and strategies associated with AZIBs
under extreme conditions, such as low temperatures, high temperatures, and wide tem-
perature ranges, where regulating the hydrogen bonding network and H2O activity is the
effective strategy. Despite advancements in the field of wide-temperature AZIB electrolytes
over the past three years, several obstacles remain. Based on the authors’ knowledge and
understanding, future research should focus on addressing the following challenges:

1. In addition to the development of wide-temperature electrolytes, self-protection
represents another approach to enhance the wide-temperature performance of AZ-
IBs [100,101]. Efficient thermal self-protection strategies for Zn-ion batteries using
smart hygroscopic hydrogel electrolytes have been reported [97,102]. The reversible
water evaporation and regeneration processes within the hydrogel are closely asso-
ciated with temperature fluctuations, which can modulate ion migration in AZIB
hydrogels. These findings present novel opportunities for creating environmentally
adaptive aqueous energy storage devices with improved wide-temperature perfor-
mance, driving future practical applications.

2. While AZIBs’ operation at wide temperatures through intricate electrolyte design
has been documented, the mechanisms underlying the entire battery system warrant
a more comprehensive and systematic examination to better inform the practical
application of AZIBs. Additionally, much of the current research on AZIBs remains
confined to laboratory settings, with a considerable gap between these investigations
and practical implementation. As such, achieving the real-world application of AZIBs
necessitates the collective efforts of researchers worldwide.
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