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Abstract: Anodes equipped with limited lithium offer a way to deal with the increasing market
requirement for high-energy-density rechargeable batteries and inadequate global lithium reserves.
Anode-free lithium-ion batteries (AFLBs) with zero excess metal could provide high gravimetric
energy density and high volumetric energy density. Moreover, the elimination of lithium with a bare
current collector on the anode side can reduce metal consumption, simplify the cell technological
procedure, and improve manufacturing safety. However, some great challenges, such as insufficient
cycling stability, significant lithium dendrite growth, as well as unstable solid electrolyte interface,
impede the commercial application of AFLBs. Fortunately, significant progress has been made for
AFLBs with enhanced electrode stability and improved cycling performance. This review highlights
research on the design of anode-free lithium-ion batteries over the past two decades, presents an
overview of the main advantages and limitations of these designs, and provides improvement
strategies including the modification of the current collectors, improvement of the liquid electrolytes,
and optimization of the cycling protocols. Prospects are also given to broaden the understanding of
the electrochemical process, and it is expected that the further development of these designs can be
accelerated in both scientific research and practical applications.

Keywords: anode-free; rechargeable lithium-ion batteries; current collectors; electrolyte; protocols

1. Introduction

Rechargeable lithium-ion batteries with high energy density, a long cycling life, a low
cost, and a high level of safety are highly desirable for a wide range of applications, from
miniaturized electronics to grid energy storage [1–3]. On account of its high theoretical
capacity and low redox potential, lithium (Li) metal is regarded as a promising anode
for achieving high-energy density batteries [4]. For a long time, lithium metal battery
(LMB) reports often depended on impractical cell designs to exaggerate the lifespan of
LMBs [5]. In labs, the use of low mass-loading cathodes, excess electrolytes, and thick Li
metal as counter electrodes are the most common treatments for achieving a reasonable
lifetime and high Coulombic efficiency [6]. Meanwhile, in practical cell applications, it
is required to increase the loading of active material, decrease the amount of electrolyte,
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and reduce the thickness of the Li foil to maximize the energy density but minimize the
cost. Among these, making the lithium foil thinner is the main way to decrease the cost
of practical development. The price of making ultra-thin lithium metal is quite high, and
the manufacturing techniques used are very complicated due to the high reactivity and
viscosity of lithium metal, which further increases the costs [7]. Moreover, the severe safety
problems, limited global Li reserves, and challenges associated with the extraction of Li
have forced the development of anode-free batteries.

In an anode-free lithium-ion battery (AFLB), the Li metal is plated on the current
collector in situ during the first charge process, with the Li source entirely springing from
the cathodes. Then, the Li ions can be stripped from the previously formed Li anode
and intercalated back to the cathodes during the cycling discharge. Based on such a cell
configuration, AFLBs possess several merits, including (1) maximized volumetric and
gravimetric energy density at the cell level [8]; (2) improved safety, lower cost, and easier
assembly, due to the absence of lithium bulks/foils or anode materials consumption and
associated issues such as lithium metal extraction, purification, slurry coating, moisture
controlling, etc.; (3) a more valuable tool for evaluating electrochemical performance
because of the true Li plating/stripping behavior with zero excess lithium to replenish the
irreversible loss [5]; (4) less absorption of electrolytes on the current collector side which
can reduce electrolyte consumption and further increase the energy density.

Every coin has two sides. Despite the impressive advantages of zero excess lithium,
the intrinsic irreversible plating/stripping process of lithium on the heterogeneous current
collectors and consumption when reacting with liquid electrolyte lead to rapid lithium
inventory loss [9]. Without an extra Li supply, anode-free cells have a much shorter
cycle life and lower Coulombic efficiency (CE) than Li-excess cells [10]. Moreover, the
as-deposited Li is more inclined to form a mossy and dendritic morphology on foreign
substrates compared to the Li metal’s thin layers because of its lithiophobic properties
and large initial nucleation barriers [11]. The decomposition of electrolytes will accrue on
the interface between the as-deposited lithium and electrolyte, facilitating the formation
of a solid electrolyte interphase (SEI). The SEI can passivate the interface of Li as well
as prevent side reactions since it could impede the transfer of electrons from the lithium
anode to the electrolyte [12]. Nevertheless, the stable SEI cannot be maintained because
the volume changes during the plating/tripping of lithium inevitably destroy the SEI
and result in the continued decomposition of the electrolyte. The Li inventory will be
lost, and the capacity will fade during cycling until the SEI is thick enough to prevent the
side reaction and the dendritic growth. To date, many strategies have been reported for
regulating the quality of deposition and prolonging the cycle lifespan [13,14]; however,
comprehensive and instructive reviews are rare [15–18]. In this review, we provide an
overview of the designs of anode-free lithium rechargeable batteries with various cathodes
and approaches/strategies for enhancing electrochemical performance (Figure 1) and offer
an outlook at last for this nascent and promising field.
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2021, John Wiley and Sons); Ref. [21] (Copyright 2021, Springer Nature); Ref. [22] (Copyright 2019,
RSC Pub); Ref. [23] (Copyright 2019, American Chemical Society); Ref. [24] (Copyright 2019, Elsevier).

2. Cathodes of Anode-Free Lithium-ion Batteries

Due to the cathode being the only lithium source in anode-free batteries, the cathodes
as a Li reservoir will determine the capacity and energy density of the full cells. The
modification of cathodes is considered the most effective way to assemble cells with high
energy density; therefore, it is essential to know the delivered energy density based on
different cathodes. LiCoO2 (LCO), LiNixMnyCo1−x−yO2 (NMC), and LiFePO4 (LFP) are
the common cathodes in AFLBs. Compared to LCO, NMC delivers a higher capacity and
employs less cobalt. According to the ratio of Ni/Mn/Co, there are series of NMC, includ-
ing LiNi0.8Mn0.1Co0.1O2 (NMC811), LiNi0.6Co0.2Mn0.2O2 (NMC622), LiNi0.5Mn0.3Co0.2O2
(NMC532), LiNi1/3Mn1/3Co1/3O2 (NMC111), etc.

Louli et al. tried to figure out how different cathodes with different sources of lithium
could impact the reversible plating of lithium by using the four most commonly used
positive electrodes: NMC532, NMC811, LCO, and LFP [19]. The authors investigated these
cathodes operating in different influence factors, such as upper cut-off voltage, depths of
discharge, electrolytes, temperatures, and pressures. NMC811 and LCO anode-free cells
exhibited the highest initial volumetric energy density both of 1400 Wh L−1, while NMC532,
LFP, and NMC532 lithium-ion cells showed lower values of 1200 Wh L−1, 700 Wh L−1,
and 700 Wh L−1, respectively. Furthermore, the cycling behavior showed some differences,
despite the similar ultimate lifespan of the batteries. The LCO anode-free cells had a linear
energy fade in the first 60 cycles and along with a rapid decay after 60 cycles. The energy
density decay of cells with NMC811 was more serious than cells with NMC532, not only
in the initial but in the last cycles. The NMC532 cells showed the most stable cycling
behavior in the first 50 cycles ahead of more significant energy density decay. The LFP
cells exhibited the lowest volumetric energy density among all anode-free chemistries with
the most severe energy fade (Figure 2). It should be noticed that this result only reveals
the cycling performance under specific conditions using dual-salt electrolytes. NMC811
cells can deliver a relatively high specific capacity and contain less cobalt in components,
which is beneficial in cost, output energy density, and humanitarian points of view. LFP
cathodes, based on abundant and low-cost iron, with long cycle life are becoming more
popular. Similarly, the LCO cathode does exhibit a significant irreversible capacity and it
has better rate performance and higher cut-off voltage. Therefore, which cathode should be
chosen depending on the real-life demand.
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Figure 2. Volumetric energy density (a), specific energy density (b), and cycling performance (c) of
anode-free lithium-ion cells with LFP, NMC532, LCO, and NMC811 as cathodes compared to a
conventional Li-ion cell with an NMC532 as a cathode [19]. Figures from [19] under CC BY 4.0 license,
without any changes.

LiNi0.9Co0.05Al0.05O2 (NCA) [26], LiNi0.95Mn0.015Co0.02Al0.01Mg0.005O2 (NMCAM) [27],
Li4Ti5O12 (LTO) [28], Li2S [29–32], and lithium compensation cathodes (pre-lithiated
TiS2 [33], Li-rich compounds like Li2 [Ni0.8Mn0.1Co0.1]O2 (Li2NMC811) [20], Li2Ni0.5Mn1.5O4
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(Li2NMO) [34], and self-sacrificing materials [35]) were also investigated in AFLBs. Besides
the single-component cathode materials, there are hybrid ones developed to enhance the re-
versible capacity. Four hybrid cathodes with different ratios of NMC811 and Li2CuO2 were
expressed as (80−x)NMC-xLi2CuO2, and the mass loading of all electrodes was around
5.0–5.5 mg cm−2 [36]. The reversible capacity and the cycling stability were remarkably
enhanced as the increase in the x. The capacity faded very fast for the cell with x = 0,
and the capacity linearly declined to zero only after nearly 40 cycles. With the increase
of Li2CuO2, the cycling stability of cells was dramatically improved. As the value of x
increased to 40, the cell can maintain more than 70% capacity retention (CR) after 140 cycles
at 0.5 mA cm−2 (Figure 3a). With the higher Li2CuO2, the cell’s performance is improved,
which is likely associated with the integrity of the Li primer layer. When the x is low, the
amount of Li deposits may not be sufficient to fully cover the surface of the current collector.
As x increases, a more uniform and complete layer can be formed so that the cell could
have better cyclability. The requirement for the thickness of the practical Li layer is almost
the same for various cathodes. Hence, minimizing the weight percentage of Li2CuO2 and
augmenting the loading of the composite cathode could compensate for the energy density
loss resulting from the additional weight of Li2CuO2, which design of the battery could
maintain a high energy density.
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Li2CuO2, (b) NMC622 + Li3N (c) S + Te. Reprinted with permission from Ref. [32] Copyright 2020,
Elsevier; [36] Copyright 2018, Elsevier; [37] Copyright 2021, John Wiley and Sons.

Motivated by the designs of anion donors in anode-free architecture, Li2O (as an
additional Li source) was preloaded to the NMC811 to compensate for the irreversible
Li consumption during charge/discharge [21]. It can provide ~1.75-fold excess Li in the
decomposition of the Li2O component compared to the active Li reserved within the
NMC811. Li2O preloaded on the NMC811 not only acts as a Li donor, providing an
additional Li source to offset the irreversible loss of Li but also acts as a bifunctional
sacrificial agent which can produce Li+ and O2− contributing to the construction and
stabilization of the cell architecture. Specifically, the produced O2− from Li2O can react
with electrolyte additives to in situ form the LiF-based passivation layer for the cathode,
which could stabilize the electrode and further improve the cyclability of cells. Based on this
composite cathode design, the coin cell presented a high CR of 90% after 300 cycles, while
the pouch cell demonstrated a high energy density beyond 320 Wh kg−1 and delivered
reversible 300 cycles with a CR of 80%.

A sacrificial lithium nitride (Li3N) was also introduced in the NMC622 in order to
boost cycling stability [37]. To assess the effect of Li3N percentage (ranging from 0% to 5%)
on cell performance, pressurized cells were fabricated with a high-Ni NMC as cathode and
indium (free lithium) as a counter/reference electrode. Along with the increase in Li3N,
the delivered charge/discharge capacity increased due to the decomposition of the Li3N
which not only provided supplementary Li to compensate for the consumed Li via side
reaction but also increased the internal cell pressure to keep good physical contact among
the components during cycling. Moreover, the CR for the cell with 0% Li3N was 37.9% after
80 cycles, whereas it showed an excellent CR of 75.8% over 200 cycles with additive Li3N
of 5% in the composite cathode (Figure 3b).
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Introducing an additive of elemental tellurium (Te0) in the sulfur or Li2S cathode
could lead to a great improvement in the reversibility and cyclability of the anode-free
full cells [32]. During cycling, Te0 tends to react with the generated polysulfides (Li2Sn)
to produce polytellurosulfide (Li2TexSy) species. The soluble Li2TexSy can migrate to the
anode and further decompose on the deposited Li surface to form a novel SEI layer, which
consists of the components of Li2TeS3 and Li2Te. The Te-contained SEI conferred a huge
contribution to stabilizing Li deposition. The as-prepared pouch cell with Te additives
could maintain long cycling stability for more than 100 cycles, while the counterparts
of pouch cells without Te additives could only maintain 14% capacity retention after
40 charge/discharge cycles (Figure 3c). It should be noticed that the additives without
lithium could cut down the advantage of anode-free design in terms of energy density.

3. Strategies Applied to AFLB and Improvement

The main strategies for enhancing the performance of full cells, including modification
of the current collectors, improvement of the liquid electrolytes, and optimization of the
cycling protocols. As for each strategy, we classify the groups according to the cathode type.

3.1. Modification of the Current Collectors

Copper (Cu) foil is commonly used as a current collector in AFLB because Cu cannot
be intercalated by Li. The irreversible plating/stripping of Li on the current collector
of Cu and a more serious dendrite growth on Cu than on thin Li metal inspires us to
improve/modify the current collector because the current collector can play a crucial role
in the Li nucleation and growth of deposited Li, which significantly affects the Coulombic
efficiency and cycling performance of the AFLB. Yi Cui’s group elucidated the relationship
between lithium nuclei shape, size, areal density, and current rate, consistent with the
classical crystalline grain nucleation and growth theory [38]. The discovered fundamental
scientific theory could provide a guideline for the modification of current collectors.

A variety of approaches have been proposed by worldwide researchers, including
layer coating modification of the current collector, three-dimensional (3D) design of the
current collector, surface modification, and the development of alternative current collectors
instead of Cu.

Modifying the current collector by layer coating is reported in most research work,
which can effectively decrease the initial nucleation barrier, facilitate the uniform deposition
of Li, and enhance the electrochemical properties with long cycling stability. However,
based on this layer coating design, the extra weight and volume have to be taken into
consideration to maintain the advantage of energy density in the anode-free battery. More-
over, it is worth to be mentioned that the physicochemical property of the coating layer
should be identified, which always be ignored in previous published studies. If the coating
layer is only ionic conductive, it can be regarded as a solid electrolyte; if it is both ionic
and electric conductive, it can be deemed as an anode and the cell cannot be strictly called
the anode-free cell; only when it is electric conductive, it can be seen as a current collector
coating layer. These sorts listed above are very simple models and easy to separate, while
the practical cases are more complicated. Besides the electric conductive of inert layers,
some other properties of the coating layer such as adhesion, stability, and uniformity should
also be considered.

The 3D structured design of the current collector could accommodate the volume
change of Li during Li deposition, reduce the local current density, and further suppress the
dendrite growth with prolonged cycle life. Nevertheless, the intrinsic low lithiophilicity of
Cu current collectors inevitably causes a high nucleation barrier, which can hardly achieve
homogeneity of deposited Li. So, the 3D structured current collector always along with
surface modification with kinds of nucleation seeds to decrease the nucleation barrier. [39].
Surface modification by heat treatment of Cu current can also improve the anode interphase
and lead to enhanced lithiophilicity of Cu foil and homogeneous Li deposition [40].
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By replacing the current collector of Cu with other current collectors, it can enhance
the binding energy with lithium and lower the nucleation barrier of Li to promote the
cyclability of cells. Alternative current collectors like stainless steel (SS) [26,37,41], bare
nickel (Ni) foil [32], and gold sputter perforated polyimide film (PI@Au) [42] substrates
also served as anode current collectors in AFLBs to improve electrochemical performance.
Furthermore, alternative current collectors with lower density than Cu might achieve
high energy density batteries. Nevertheless, sometimes, we need to balance the resulting
performance with manufacture cost based on the alternative current collector instead of Cu.

The above-mentioned various approaches for modifying the current collector could be
presented in detail in different cathodes system as follows.

3.1.1. NMC Cathode

Bing Joe Hwang’s group explored different coating layers on copper current collectors
using NMC111 as a cathode.

Li ion conductive film, consisting of cubic garnet of Li7La2.75Ca0.25Zr1.75Nb0.25O12,
lithium perchlorate (LiClO4) salt and polyvinylidene fluoride (PVDF), was prepared via
electrospinning preparation. The anode-free full cell configuration demonstrated an im-
proved CR of 58.66% after 30 cycles with an average CE of 97.6% (Figure 4a) [43].
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Cu covered with a grounded Al2O3/polyacrylonitrile composite layer (AOP) as
AOP@Cu was reported to promote the compact and smooth lithium deposition. The
as-prepared anode-free full cell exhibited enhanced cycling stability and CE. It exhibited
discharge capacity of 160 mAh g−1 in the first cycle and retained 30% of capacity after 82 cy-
cles, whereas the Cu||NMC111 full cell retained ~30% only after 52 cycles (Figure 4b) [44].

An ultra-thin spin-coated binder-free graphene oxide (GO) was used to modify the
Cu current collector. The AFLB with GO film was able to achieve a high CE of 98% and
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attained ~44% of its initial capacity after 50 cycles. While the full cell with bare Cu had a
CE of 89% and retained 26.9% after 20 cycles (Figure 4c) [45].

A conformal coating of β-PVDF polymer on copper was prepared by electrospin-
ning. When the Cu@β-PVDF||NMC111 cell was treated at 60 ◦C with the first five
charge/discharge cycles, termed thermal-electrochemical activation (TEA), it achieved a
CR of 68.36% at the 20th cycle (Figure 4d) [46].

Cu was coated by lithiophilic silver nanoparticles with polydopamine (Ag@PDA)
layer. This layer can be used as a nucleation seed. Then, graphene oxide (GO) was coated
on Ag@PDA to act as an artificial SEI to buffer the Li-ion distribution in AFLBs. This
anode-free full cell with modified copper as anode and NMC111 as cathode showed a
high average CE of ~98.6% and high CR of ~55.7% after 60 cycles in the carbonate-based
electrolyte with 5% FEC at 0.5 mA cm−2. However, the bare Cu collector with no coating
only achieved the average CE and CR of 94.4% and 4.3%, respectively (Figure 4e) [47].

A two-step modification with Ag@PDA and an artificial protection film (APF) on
the copper surface was designed as interfacial functional double layers. Poly (vinylidene
fluoride-cohexafluoropropylene) to LiTFSI in 5:2 is the component of APF. With modified
copper, the anode-free cell exhibited a superior CE of 98.15%, and maintained 40% CR over
70 cycles compared to the CE of 96.18% and 40% CR after 25 cycles for the cells without Cu
modification under the current density of 0.2 mA cm−2 (Figure 4f) [48].

Marnix Wagemaker’s group exploited the cycling efficiency of the anode-free coin
cells with a BaTiO3-coated Cu electrode and a NMC811-based positive electrode. The full
cell presented an average CE of 99.37% and a CR of 75% over 70 cycles [49].

With liquid metal (LM) coating layer, an epitaxy-induced electro-plating Cu (E-Cu)
and NMC811 cathode were also used in AFLBs. The LM consists of Ga, In, and Sn (mass
ratio of 68.5:21.5:10). By alloying reaction to form an epitaxial-induced layer, the functional
LM layer can initiate Li storage. The anode-free pouch cell was assembled with lean
electrolyte addition of 2 g Ah−1 and high mass loading of 25 mg cm−2. After more than
50 cycles, the CR increased from 66% to 84%. The remarkable energy density reached
420 Wh kg−1 by using E-Cu instead of a normal Cu current collector [50].

3.1.2. LFP Cathode

Bing Joe Hwang’s group used a Cu current collector covered with polyethylene oxide
(PEO) films to reveal the uniform deposition of Li and suppression of dendrite. They tested
the AFLB experimentally by integrating the coated copper with an LFP cathode into a full
cell. The cell exhibited good cycling performance with an average CE of 98.6% and CR of
30% after 200 cycles (at 0.2C) (Figure 5a) [51].
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Royal Society of Chemistry. Ref. [51] Copyright 2018 RSC hub, Ref [52] Copyright 2019 Elsevier,
Ref. [53] Copyright 2020 John Wiley and Sons, Ref. [54] Copyright 2020 American Chemical Society,
and Ref. [55] Copyright 2020 Elsevier.

Using thin-film Cu3N-modified copper foil as an anode current collector and LFP
as a cathode, the full-cell exhibited enhanced cycling stability and low overpotential. A
multifaceted study demonstrated that after initial lithium plating, Cu3N can be converted
to a Li3N/Cu nanocomposite, and form a highly uniform conductive network in situ [56].

With ultrathin multilayer graphene (MLG) growing on a Cu current collector via
chemical vapor deposition (CVD), it can be used to stabilize the electrode interface as an
artificial layer. Paired with a commercial LFP cathode with mass loading of ~12 mg cm−2,
this full cell delivered the initial discharge capacities of 147 mA h g−1 for bare electrodes and
151 mA h g−1 for multilayer-graphene-protected electrodes, respectively. After 100 cycles,
the bare Cu and multilayer graphene-protected electrodes maintained ~46 and ~61% of the
initial capacities, respectively at the rate of 0.1 C (Figure 5b) [22].

A scalable 3D electrode fabricated by coating the well-mixed LiNO3, carbon black,
and PVDF slurry on the Cu current collector and the fabricated AFLB cells exhibited a good
CR of 49.1% after 100 cycles with an average efficiency of 99.3% (Figure 5c) [52].

Derived from a commercial adhesive tape, the use of a laser-induced silicon oxide
(LI-SiOx) layer for current collector modification was studied. The capacity retention was
45.6% after 100 cycles with an average CE of 99.2%. As the areal capacity increased from
0.9 to 2.6 mA h cm−2, the capacity retention can reach 52.8% after 100 cycles. Cells with bare
Cu only remained 21.8% of original capacity and the average CE was 98.1% (Figure 5d) [53].

Benzotriazole (BTA) can modify the Cu foil surface and induce homogeneous Li
plating because of the lithiophilic property of the N atom in the BTA molecule. The anode-
free architecture of BTA-Cu||LFP exhibited a ~73.3% CR of the initial capacity at the 50th
cycle (Figure 5e) [54].

A uniform Li nucleation can be led by a lithiophilic bismuth graphite (Bi–Gr) substrate
with a lithiophobic LiF-rich SEI. The molecular dynamic simulation showed that, in a 2.0 M
LiPF6 in tetrahydrofuran/2-methyl tetrahydrofuran (2.0 M LiPF6–mixTHF) electrolyte, the
preferential reduction of anions can generate a LiF-rich SEI on the surface of deposited Li.
Bi–Gr substrate and electrolyte enabled the anode-free LFP full cells to achieve 100 cycles
at an areal capacity of >2.0 mA h cm−2 (Figure 5f) [55].

An anode-free full cell configuration coupled with LFP cathodes also demonstrated
that the electrochemical performance can be enhanced by coating LiF@PVDF on Cu foil
even under the harsh condition of limited lithium sources in AFLB [57].

3.1.3. Other Cathodes

A Li-free solid-state battery was introduced with LiCoO2 as a cathode and Lipon as an
electrolyte. The cycling stability with only a copper current collector was poor, and almost
half of the reversible capacity was lost during the initial cycles. Two different overlayers on
Cu, glassy Lipon, and plastic parylene were compared for cycling over 1000 times between
4.2 and 3.0 V at 1 mA/cm2. The battery with the parylene overlayer showed only a capacity
fade of 20% over 1000 cycles, whereas the cell with the Lipon overlayer showed a 26%
capacity loss (Figure 6a,b) [58].

By pre-plating a thin tin layer on the existing Cu foil, a Li-Sn alloy can be formed by
the reaction between Li and the Sn metal, and then Li metal can deposit on the surface
of Li-Sn alloy instead of Cu substrate. The Cu||LiNi0.85Co0.10Al0.05O2 (NCA) cell can
maintain reversible cycling for about 30 cycles, and the Sn-Cu||NCA cell can achieve
80 cycles before a severe capacity decline (Figure 6c) [59].



Batteries 2023, 9, 381 9 of 19

Batteries 2023, 9, x FOR PEER REVIEW 9 of 20 
 

bare Cu only remained 21.8% of original capacity and the average CE was 98.1% (Figure 
5d) [53]. 

Benzotriazole (BTA) can modify the Cu foil surface and induce homogeneous Li plat-
ing because of the lithiophilic property of the N atom in the BTA molecule. The anode-
free architecture of BTA-Cu||LFP exhibited a ~73.3% CR of the initial capacity at the 50th 
cycle (Figure 5e) [54]. 

A uniform Li nucleation can be led by a lithiophilic bismuth graphite (Bi–Gr) sub-
strate with a lithiophobic LiF-rich SEI. The molecular dynamic simulation showed that, in 
a 2.0 M LiPF6 in tetrahydrofuran/2-methyl tetrahydrofuran (2.0 M LiPF6–mixTHF) electro-
lyte, the preferential reduction of anions can generate a LiF-rich SEI on the surface of de-
posited Li. Bi–Gr substrate and electrolyte enabled the anode-free LFP full cells to achieve 
100 cycles at an areal capacity of >2.0 mA h cm−2 (Figure 5f) [55]. 

An anode-free full cell configuration coupled with LFP cathodes also demonstrated 
that the electrochemical performance can be enhanced by coating LiF@PVDF on Cu foil 
even under the harsh condition of limited lithium sources in AFLB [57]. 

3.1.3. Other Cathodes 
A Li-free solid-state battery was introduced with LiCoO2 as a cathode and Lipon as 

an electrolyte. The cycling stability with only a copper current collector was poor, and 
almost half of the reversible capacity was lost during the initial cycles. Two different over-
layers on Cu, glassy Lipon, and plastic parylene were compared for cycling over 1000 
times between 4.2 and 3.0 V at 1 mA/cm2. The battery with the parylene overlayer showed 
only a capacity fade of 20% over 1000 cycles, whereas the cell with the Lipon overlayer 
showed a 26% capacity loss (Figure 6a,b) [58]. 

 
Figure 6. Comparison of CR and CE versus cycle number using (a,b) LiCoO2, (c) NCA (d,e) Li2S (f) 
pre-lithiated TiS2 and (g) LTO cathodes and various coating layers on copper current collectors. Re-
printed with permission from Ref. [28] Copyright 2018 American Chemical Society, Ref. [29] 
Copyright 2021 Royal Society of Chemistry, Ref. [31] Copyright 2020 Elsevier, Ref. [33] Copyright 
2018 Elsevier, Ref. [58] Copyright 2000 IOP Publishing and Ref. [59] Copyright 2017 Elsevier. 

By pre-plating a thin tin layer on the existing Cu foil, a Li-Sn alloy can be formed by 
the reaction between Li and the Sn metal, and then Li metal can deposit on the surface of 
Li-Sn alloy instead of Cu substrate. The Cu||LiNi0.85Co0.10Al0.05O2 (NCA) cell can maintain 

Figure 6. Comparison of CR and CE versus cycle number using (a,b) LiCoO2, (c) NCA (d,e) Li2S
(f) pre-lithiated TiS2 and (g) LTO cathodes and various coating layers on copper current collectors.
Reprinted with permission from Ref. [28] Copyright 2018 American Chemical Society, Ref. [29]
Copyright 2021 Royal Society of Chemistry, Ref. [31] Copyright 2020 Elsevier, Ref. [33] Copyright
2018 Elsevier, Ref. [58] Copyright 2000 IOP Publishing and Ref. [59] Copyright 2017 Elsevier.

With Au-modified Cu foil as “anode” and Li2S as cathode, an anode-free full cell
can achieve a high energy density (up to 626 Wh kg−1). The Au modification can be
transformed to LixAu alloy, which could decrease the Li nucleation barrier and obtain
the Li deposition layer with thick and dendrite-free morphology. The Au/Cu||Li2S cell
delivered first discharge capacity of 770 mA h g−1 with an initial CE of 69.5%, while as for
the Li2S||Cu chemistry, the first discharge capacity was 639 mAh g−1 with the initial CE
of 56.6%. The Li2S||Au/Cu cell maintained a discharge capacity of 409 mAh g−1 with a
CR of 53%, whereas the Li2S||Cu cell only maintains 254 mAh g−1 with a CR of 40% after
150 cycles (Figure 6d) [31].

The Ag@3D-Cu||Li2S batteries with a Li2S loading of 3.8 mg cm−2 demonstrated a
greater initial discharge capacity (752.4 mAh g−1) compared to that of the 3D-Cu||Li2S bat-
tery (588.4 mAh g−1). The reversible capacity of Ag@3D-Cu||Li2S battery was 424.1 mAh g−1

after 180 cycles, while the capacity of 3D-Cu||Li2S battery was merely 349.2 mA h g−1.
Moreover, the initial CE of the Ag@3D-Cu||Li2S battery was 70.7%, which is higher than
that of the 3D-Cu||Li2S battery (65.3%). (Figure 6e) [29].

The modification of the commercial Cu current collector with atomically distributed
Zn artificial defects was obtained via magnetic sputtering of Cu99Zn. The prepared current
collector was assembled into anode-free full cells with pre-lithiated TiS2 cathodes. The
batteries with 3D Cu99Zn electrodes showed better cycling performance compared to that
with pure Cu electrodes (Figure 6f) [33].

By incorporating a new, high-efficiency electrode design, cells with 15 nm thick Al2O3-
Cu||LTO cells were reported. It yielded stable and efficient lithium plating/stripping at a
current density of 3 mA cm−2 with a CE > 98% over 120 cycles (Figure 6g) [28].

3.2. Improvement of the Liquid Electrolytes

Electrolyte has played an indispensable role in cycling stability of lithium-ion batteries.
All of the choices such as electrolyte salt species and solvent types, electrolyte concentra-
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tions, and electrolyte additives can affect the solvation of electrolytes and, therefore, modify
the in situ formed SEI. Meanwhile, liquid electrolyte modification has a minor impact on
the whole energy density of cells as the increased weight can be negligible. The commercial
and basic electrolyte solvents can be divided into carbonate-based and ether-based solvents.

Some carbonate-based solvents in the following examples are listed here: diethyl car-
bonate (DEC), dimethyl carbonate (DMC), ethylene carbonate (EC), ethyl methyl carbonate
(EMC), fluoroethylene carbonate (FEC), 3,3,3-fluoroethylmethyl carbonate (FEMC), propy-
lene carbonate (PC) and vinylene carbonate (VC). And ether-based solvents are also listed:
diethylene glycol dimethyl ether (DGDE), 1,2-dimethoxyethane (DME), 1,3-dioxolane
(DOL), 1,1,2,2-tetrafluoroethyl-2′,2′, 2′-trifluoroethyl ether (HFE), 1,1,2,2-tetrafluoroethyl-
2,2,3,3-tetrafluoropropyl ether (TTE), etc.

Electrolyte salts commonly used are lithium hexafluorophosphate (LiPF6), lithium
tetrafluoroborate (LiBF4), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium
bis(fluorosulfonyl)imide (LiFSI), lithium difluoro(oxalate)borate (LiDFOB), lithium trifluo-
romethanesulfonate (LiCF3SO3), etc.

Replacing the liquid electrolyte with the solid-state electrolyte (SSE) does not change
the volumetric energy density considering the SSE has the same volume as the electrolyte
and separator in the liquid cell. However, it reduces the gravimetric energy density because
of the higher density of SSE than liquid. Even though, the energy density is still comparable
to the ones of the lithium metal battery. Excellent cycle lifespan (>1000 cycles) that far
exceeds any reported work on anode-free cells is obtained in anode-free solid batteries with
Lipon/Li6PS5Cl as electrolytes [26,58]. The key challenges are the low ionic conductivity
of electrolytes and high interfacial transfer resistance between the cathode and electrolyte.
The current developments, issues, and challenges in anode-free solid-state batteries have
been comprehensively reviewed [8,60]. Here, in this part, we focus on the development
of liquid electrolytes and their modifications along with performance effects exhibited in
different cathode systems as follows.

3.2.1. NMC Cathode

After Li deposited on Cu current collector during the first discharge in the Cu||NMC111
cell with 1.2 M LiPF6 in EC:EMC (30:70 wt%) as electrolyte, the following discharge capacity
only recovered 23% of the first charge capacity of the full cell (Figure 7a) [9].
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Bing-Joe Hwang’s group reported that dual additives for electrolytes in full cell
configuration of Cu||NMC111 can dramatically improve the average Coulombic efficiency,
cycling performance, and capacity retention of the cell. It was reported that the CR of
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48% can be retained at the 20th cycle for anode-free cells with 2 wt% KPF6-2 vol% TMSP
additives in the electrolyte, while the CR of 14% only was reached for the counterpart cell
with commercial electrolyte without any additives (Figure 7b) [61].

Development of electrolyte additives could be an effective way to promote the non-
flammable and high-voltage electrolyte. Based on the anode-free cell of Cu||NMC111,
two extreme electrolytes were compared to understand the fundamental science behind
them. The cells with the electrolyte of LiPF6 in a mixture solvents of FEC and TTE showed
super cycling stability, retaining 85% of its initial capacity after 30 cycles’ charge/discharge
with an average CE of ~98% at 0.5 mA cm−2 (Figure 7c,d) [62].

AFLB of Cu||NMC111 with a locally concentrated electrolyte (2 M LiPF6 in EC/DEC
with FEC) showed great cycling stability with an average CE of 97.8% and a CR of 40% after
50 cycles. However, the common carbonate-based electrolyte had an average CE below
90% and a CR below 40% even in the 15 cycles (Figure 7e) [23].

The Cu||NMC111 cell possessed a CR of ~40% at the 50th cycle in the existence of
KNO3 additive in the electrolyte, while compared to the same value of CR, it only can
maintain 15 cycles in the counterpart electrolyte, 1 M LiPF6 in EC/DEC. The average CE
of Cu ||NMC111 cell with electrolyte additive was 96.50% after 50 cycles, whereas it was
91.32% after 35 cycles without KNO3 (Figure 7f) [24].

J. R. Dahn et al. discussed the cycling behavior of pouch cells of NMC532||Cu under
an ultra-high-precision-charger (UHPC) process, in which the cells can be operated under
low or high pressure in two kinds of electrolytes (1.0 M LiPF6 FEC:TFEC 1:2, v/v; 1.0 M
LiPF6 FEC:DEC 1:2, v/v). The performance parameter of CR and CE can be significantly
affected when the lower cutoff voltage was decreased from 3.6 V to 1.25V (Figure 8a). As
the lower cutoff voltage decreased to 1.25 V, it showed a linear capacity fade with a poor
constant CE < 99% and an improved output capacity after 60 cycles. Moreover, relatively
accurate predictions of the cells’ lifetime (FEC:TFEC > FEC:DEC; high pressures > low
pressure) had been made based on the measurements of CE after the deep discharge for
5–10 cycles [63].

They evaluated the cycling performance of AFLB pouch cells (NMC532||Cu) with
operando pressure measurements (75–2205 kPa) in different electrolytes. It was reported
that the initial average pressure in a certain range (75–1200 kPa) could prolong the cycle life
of cells both in FEC:TFEC and FEC:DEC electrolytes (Figure 8b). They also discovered that
the effect of high pressure (in the range of 1200 to 2200 kPa) on the cycling performance
of AFLB in different electrolyte systems was inconsistent, suggesting in the high-pressure
range the physical characteristics of electrolyte lead a key role in the cells’ performance
instead of the pressure influence factor [64].

The anode-free pouch cell of Cu||NMC532 could deliver a high CR of 80% after
90 cycles when it was equipped with a dual salt LiDFOB/LiBF4 electrolyte (Figure 8c) [65].

The cells with the high-concentration dual-salt (2.0 M LiDFOB and 1.4 M LiBF4 mix-
ture) electrolyte in Cu||NMC532 outperformed the cells with 0.6 M LiDFOB and 0.6 M
LiBF4 mixture salts in electrolytes, sustaining a lifetime of more than 200 cycles under high
pressure at 20 ◦C (Figure 8d) [66].

The Cu||NMC532 cells with 1.0 M lithium difluoro (oxalate) borate (LiDFOB) and
0.05 M lithium hexafluorophosphate in FEC/TTE/DEC electrolyte (2:2:1 v/v/v ratio) can
output superior electrochemical properties than the cells with FEC/TTE electrolyte (2:3 v/v
ratio). A capacity retention of 45% was obtained for the FEC/TTE/DEC electrolyte, while a
CR of only 8% was achieved for FEC/TTE electrolyte (Figure 8e) [67].

Anode-free cells with NMC622 as cathode were used to test the electrolytes. The
capacity of the cells with Gen II as an electrolyte can decay significantly to barely zero after
30 cycles. Meanwhile, the cells with BSEE (4.6 m LiFSI + 2.3 m LiTFSI-DME) surpassed
the cells with SSEE (4.6 m LiFSI-DME), with initial CEs of 80.5% vs. 78.1%, and a residual
capacity of 90.9 mA h g−1 and CE of 98.6% as compared to 54.8 mA h g−1 and a CE of
97.4% for SSEE (Figure 8f) [68].
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The non-flammable electrolyte comprised of 1 M LiPF6 in a mixture solvent of FEC:
FEMC: HFE, 2:6:2 by weight, was introduced. This all-fluorinated electrolyte made the
cells of Cu||NMC811 deliver a 60 times higher capacity than that of cells with EC/DMC
electrolyte (Figure 8g) [69].
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J. R. Dahn’s group tested 65 electrolyte mixtures based on an anode-free pouch cell
architecture with a high-mass-loading (16 mg cm−2, or 3.47 mAh cm−2) NMC811 as cathode
and a commercial Cu foil as a lithium-free electrode. According to collected total energy
delivered above 140 cycles, it showed that only four electrolytes can enhance the energy
output over the baseline, and the other electrolytes were uncompetitive [71].

Anode-free pouch cells of Cu||NMC532 using 1 M LiFSI/fluorinated 1,4-dimethoxylbutane
(FDMB) as electrolyte were evaluated, and the cells can achieve a 80% CR after 100 cycles,
which was super than the cells of Cu||NMC622 and Cu||NM811 with same electrolyte
(Figure 8h). It should be noted that all the cells above were tested under 100% depth of
discharge [70].

3.2.2. LFP Cathode

With the high concentration ether-based electrolyte of 4 M LiFSI-DME, the Cu||LFP
cell had the first charge/discharge capacities of 148/143 mAh g−1 and retained the capacity
of 85 mAh g−1 after 50 cycles, that is ~60% CR with an average CE > 99%. Its performance
can be even further enhanced by adopting a slow charge and fast discharge protocol. After
100 cycles at a low rate (0.2 mA cm−2) charge and high rate (2.0 mA cm−2) discharge, the
discharge capacity was ~54% of the original value. It was a sizeable increase compared to
the cells using the same current density of 0.2 mA cm−2 for both charge and discharge with
a CR of only ~32%. The average CE of the anode-free cells also increased from 98.8% to
99.8% when the cycled protocol was changed (Figure 9a) [72].
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The influence of VC on the plating/stripping of lithium was investigated using cells
of Cu||LFP in a 1.2 M LiPF6-EC/EMC electrolyte. It was indicated that increasing the
concentration of VC in the electrolyte can boost the cycle life and Coulombic efficiency
(Figure 9b) [73].

The Cu||LFP cell in a 4 M LiFSI-DME electrolyte demonstrated the best CR of all
tested electrolytes; while the electrodeposited lithium exhibited similar deposition mor-
phology from this electrolyte to the ones from other electrolytes with poor CR. Optical
imaging of deposited Li revealed that, even at high specific capacities, the electrolyte with
high concentration of LiNO3 could inhibit dendrite formation (Figure 9c) [74].

Hwang’s group reported a dual-salt electrolyte, 2 M LiFSI + 1 M LiTFSI (2FSI + 1TFSI)
in DME/DOL (1:1, v/v), to compare with the single salt electrolyte of 3 M LiTFSI (3TFSI) in
DME/DOL (1:1, v/v). A dual-salt electrolyte system can stabilize AFLB with LFP as the
cathode and bare Cu as the anode. This battery could retain > 50% of the initial capacity in
50 cycles which by far exceeded the control electrolyte (Figure 9d) [75].

The Cu||LFP cells with electrolyte of 1 M LiPF6 in EC/DEC (1LiPF6) using the
“Rested” cycling protocol (before stripping at a high rate, firstly charged at a low rate
and the deposited Li was kept rested for 24 h) showed very poor performance. They
retained < 30% of the initial capacity after 15 cycles. The battery of Normal-3LiFSI showed
a better performance within 50 cycles, with an average CE of 98.03% and retaining 46.70%
of its initial discharge capacity. Exceptionally, using the “Rested” cycling protocol, the
cycling performance of the Cu||LFP cell with 3 M LiFSI in DOL:DME (3LiFSI) was further
improved with an average CE reaching 98.97% and retaining 63.78% of its initial discharge
capacity after 50 cycles (Figure 9e) [76].

A baseline carbonate electrolyte, 1 M LiDFOB dissolved in EC:DMC has been devel-
oped in AFLB. The Cu||LFP cell containing this electrolyte was achieved over 25 cycles
before the capacity was decayed below 20% of the initial capacity. When saturating the
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LiDFOB/EC electrolyte with LiNO3, the CEs were further increased to 98% after 10 cycles
with an improvement in cycle life. To increase the solubility of LiNO3, TEP was also
employed to the electrolyte of ~0.2 M (LiDFOB LiNO3 TEP:EC). This further improved
the performance, with a CE up to 99% after 15 cycles and cycling for 65 cycles before the
CR dropped below 20%. The electrolyte of LiDFOB in TEP:EC showed poor performance
without LiNO3 additive compared to the other investigated electrolytes, with a CE of 62%
in the first cycle and a reversible cycle of 13 before the capacity was dropped below 20% of
the initial capacity (Figure 9f) [77].

The cells using 1:6 LiTFSI:PC (6 PC) electrolyte lose all capacity within 20 cycles, while
for the cells with other electrolytes, the remaining discharge capacities were still high after
30 cycles. The related electrolytes and the CRs after 30 cycles were shown as follows:
1 M LiTFSI in 1:1 EC:DEC (EC-DEC), 8%; 1 M LiTFSI + 0.2 M LiNO3 in 1:1 DOL:DME
(DOL-DME), 22%; 1:6 LiTFSI:EC (6 EC), 41%. The overall highest capacity loss is observed
for DOL-DME electrolytes, where the rapid capacity decay indicated severe electrolyte
oxidation (Figure 9g) [78].

Based on the anode-free lithium-ion coin cells, it revealed that the cells with the
1 M LiFSI and 1 M LiNO3 in the DME solvent as electrolyte showed the best cycling
stability (approximately 34% loss after 50 cycles) compared to electrolytes with different
solvents. Once the solvent of DME was replaced by DGDE, the CR was markedly decreased
(Figure 9h) [79].

3.2.3. Other Cathodes

The Cu||LFP full cells employing 2 M LiCF3SO3 in DME/DOL as electrolyte with
0.2 M LiNO3 as additive failed within 10 cycles. In contrast, the Cu||Li2S full cell showed
a CR of 51.5% over 100 cycles at a rate of 0.1C with an average Coulombic efficiency of
97.2% over the first 50 cycles (Figure 10) [30].
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3.3. Optimization of the Cycling Protocols

Cycling protocols including charge and discharge current density [25], cut-off volt-
age [63], temperature [46], external pressure [64,80], etc. are also important for improving
the electrochemical performance of AFLBs. These protocols are beneficial to mechanism
investigation but may not be suitable for application in real life.

J. R. Dahn’s group is the uppermost contributor to the research in this area. Combined
with the electrolyte improvement such as the dual-salt usage and concentration tuning, they
demonstrated that the different current densities during the charge and discharge process
would affect the performance of AFLBs. They found that the rate of charge/discharge
current density was much more important compared to their absolute current densities
and an asymmetric charge/discharge action played an important role in cells’ cycling
stability. Similar results were also shown in the previous studies on lithium metal anodes.
Then, the effect of discharge depth and lower voltage cut-off were also chosen to examine



Batteries 2023, 9, 381 15 of 19

the possibility to form an in situ lithium reservoir. The results showed that the optimal
lithium reservoir can significantly extend the lifetime of cells within a fixed discharge depth.
Finally, they developed an advanced intermittent discharge cycling strategy and made
optimization for anode-free lithium metal cells [25].

A brand new “hot formation” method was also presented to improve the long-cycle-
ability of Li metal anodes at low temperatures. The capacity of anode-free full cells
(Cu||NMC532) at pressure of 75 kPa was demonstrated to decrease significantly when
the operating temperature was changed from 40 ◦C to room temperature. Different from
that at 20 ◦C, a dense and columnar-like lithium anode would form as the lithium plated
at relatively low pressure around 75 kPa and initial 40 ◦C. Before the room temperature
cycling, as “hot formation”, two 40 ◦C cycles (0.1C charge and 0.5C discharge) were carried
out, respectively. They found a significant impact on cycling stability of cells when using
LiDFOB/LiBF4 dual-salt as electrolyte from “hot formation” process. The capacity retention
with hot formation can be kept at ~80% for 60 cycles, while only 18 cycles can be maintained
without that process. As the applied pressure increased to around 1200 kPa, these cells
with the hot formation displayed a capacity retention of 85% upon 100 cycles. Using a
high concentration dual salt electrolyte, the “hot formation” strategy was demonstrated
to improve cycling stability with an average CE of 99.67% after more than 200 cycles
(Figure 11) [81].
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4. Future Prospects

To improve the electrochemical performance of AFLB, many approaches have been
developed which are reviewed above. The practical application is still limited by the
insufficient cycle life which is normally less than 200 cycles with a CR of 80%. Some of the
prospects are suggested as follows:

(1) Separators are always ignored in the previously reported works. Besides coating
layers and SEI, separators are important obstructions to prevent mossy and dendritic
growth which could lead to short circuits. The optimization of the separator is also
essential for prolonging the cycle lifespan.

(2) The key scientific issues such as the SEI formation and its evolution mechanism, the
dynamic performance of lithium ions, as well as the role of the electrolyte functional
group desire further probing.
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(3) Most experiments only exist at the laboratory level with coin cells. They help solve
problems from the point of mechanism. However, the direct transfer of these strategies
to scaled-up pouch cells with the energy density calculation appears not successful in
most cases. Much more effort should be devoted to the practical use.

5. Conclusions

The anode-free design of lithium is an important milestone for the development of
lithium-ion batteries, as it delivers the highest capacity and energy density by eliminating
all the anode materials and utilizing the maximum output voltage of the cathode. The
elimination of Li during cell manufacture simplifies the cell assembly and improves safety
as well as lowers the cost. However, their exploration is still in the elementary stage.
The limitation of the cycle life and the heterogeneous lithium deposition are the major
obstacles in the practical application. In this review, we compared the energy density of the
anode-free cells paired with various cathodes/hybrid cathodes, summarized the strategies
for performance improvement with the classification from the perspective of cathodes in
each strategy part, as well as provided an overview of the main advantages and limitations
and outlined the prospects. We anticipate this review could be a useful handbook for
research in AFLBs and offer inspiration for further novel designs for enhancing the cycling
performance of AFLBs.
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