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Abstract: Electric vehicles (EVs) have emerged as a promising solution for sustainable transportation.
The high energy density, long cycle life, and low self-discharge rate of lithium-ion batteries make them
an ideal choice for EVs. Recently, these batteries have been prone to faster decay in life span, leading
to sudden failure of the battery. To avoid uncertainty among EV users with sudden battery failures, a
robust health monitoring and prediction scheme is required for the EV battery management system.
In this regard, the Unscented Kalman Filter (UKF)-based technique has been developed for accurate
and reliable prediction of battery health status. The UKF approximates nonlinearity using a set of
sigma points and propagates them via the nonlinear function to enhance battery health estimation
accuracy. Furthermore, the UKF-based health estimation scheme considers the state of charge (SOC)
and internal resistance of the battery. Here, the UKF-based health prediction technique is compared
with the Extended Kalman filter (EKF) scheme. The robustness of the UKF and EKF-based health
prognostic techniques were studied under varying initial SOC values. Under these abrupt changing
conditions, the proposed UKF technique performed effectively in terms of state of health (SOH)
prediction. Accurate SOH determination can help EV users to decide when the battery needs to
be replaced or if adjustments need to be made to extend its life. Ultimately, accurate and reliable
battery health estimation is essential in vehicular applications and plays a pivotal role in ensuring
lithium-ion battery sustainability and minimizing environmental impacts.

Keywords: lithium-ion battery; state of health; state of charge; Unscented Kalman Filter; extended
Kalman filter

1. Introduction

The use of Li-ion batteries has become increasingly popular in recent times, particularly
for EVs and renewable energy systems [1]. Electric vehicles are increasing in popularity as
a means of reducing harmful gas emissions and reducing dependence on fossil fuels [2].
However, the success of EVs depends heavily on the performance and reliability of their
energy storage systems. Li-ion batteries are the most used energy storage system in EVs
due to their long cycle life, high energy density, and low self-discharge rate [3]. The
energy density and life cycle of different kinds of batteries, like lead-acid and nickel-metal
hydride batteries, are lower, which makes them less suitable for use in EVs [4]. Li-ion
battery modeling is of utmost importance to predict crucial battery parameters like SOC,
R0, SOH, battery lifetime, and charge/discharge characteristics. Accurate battery modeling
is essential for estimating the SOC, R0, and SOH of Li-ion batteries. In this regard, several
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battery-modeling methods have been proposed, varying from simple empirical models
to complex physics-based models, such as the equivalent circuit model, electrochemical
model, thermal-electrochemical model, and three-dimensional model [5,6]. The precision
of battery modeling is based on the complexity of the model, the quality of the data used
for model calibration, and the accuracy of the battery model parameters [7,8]. Among the
different modeling methods, the equivalent circuit model is the most broadly used because
a simplified electrical circuit can mimic the accurate dynamic behavior of a battery [9]. With
regard to battery modeling, the equivalent circuit model is broadly used due to its simplicity
and accuracy in estimating the different parameters of the batteries [10]. Furthermore,
these models can characterize the battery’s internal nonlinear dynamics with simple circuit
elements such as resistors and capacitors. The utilization of equivalent circuit models is a
valuable approach for the estimation of SOC and internal resistance of lithium-ion batteries
due to the capability of providing a satisfactory trade-off between the accuracy of results
and computational complexity [11]. The SOC estimation is crucial because it reflects the
amount of energy stored in the battery at any given time [12]. Therefore, accurate SOC
estimation is necessary for optimizing battery performance and predicting its remaining
capacity.

With regard to SOC estimation, several methodologies have been suggested, including
coulomb counting, model-based methods, open circuit voltage (OCV), and Kalman filter-
based observers [13]. The coulomb counting method is a commonly employed technique
for the determination of SOC of batteries that involves the measurement of the electric
charge passing into or out of the battery over a given period. However, this method has
some drawbacks, such as sensor measurement errors due to noise, which can lead to
inaccuracies in the estimated SOC [14]. The OCV method is also used for the estimation
of the SOC of a battery. However, it may not be practical for real-time estimation because
obtaining an accurate measurement of the OCV typically requires the battery to reach a
stable state, which can take several hours to achieve. Among these techniques, Kalman filter-
based techniques are widely used because they provide accurate SOC estimation and also
robustness to measurement noise [15–18]. With regard to different variants of the Kalman
filter, the basic Kalman filter (KF) and EKF are the two most broadly used techniques
for SOC estimation [19,20]. EKF is a popular technique because it provides an accurate
estimation of linear and nonlinear systems. However, EKF is susceptible to modeling errors
and measurement noise under high nonlinear dynamics of the battery [21–23].

Further, the SOH of a battery reflects its degradation over time and is a critical feature
in determining the remaining useful life of a battery [24]. The exact estimation of SOH is
essential for estimating the remaining capacity and optimizing battery performance. In
EVs, knowing the SOH can help determine when a battery needs to be replaced or if it can
still provide a sufficient range. Several factors can affect the SOH of a battery, including
aging, temperature, and charging/discharging rates [25]. There are several techniques
for estimating SOH, such as coulomb counting, voltage-based methods, electrochemical
impedance spectroscopy (EIS), and model-based methods such as KF and EKF [24]. Among
these techniques, model-based methods are widely used because they provide accurate
SOH estimation and are relatively easy to implement [26], while the KF and EKF are less
capable against sensor noise and varying dynamics of the battery, which limits the usage of
these techniques in real-time SOH estimation [27].

To overcome the aforementioned limitations with regard to existing techniques, in this
paper, the UKF-based technique has been propounded for the accurate estimation of the
SOH of the battery to enhance its overall performance and lifespan. The proposed technique
is also capable of handling nonlinearities of current and voltage sensor measurements,
which leads to accurate health status predictions. The UKF approximates nonlinearity
using a set of sigma points and propagates them via the nonlinear function to estimate
the covariance and mean of the predicted state and measurement. This leads to more
accurate and reliable estimates of the battery’s health, which is important for enhancing
battery performance and prolonging battery life. To assess the effectiveness of the UKF as



Batteries 2023, 9, 376 3 of 18

an algorithm for SOH estimation, its performance was evaluated across a range of diverse
operating conditions. Moreover, to verify the robustness of the suggested UKF-based health
estimation technique, the initial value of the SOC was varied. With this variation in initial
SOC, the proposed technique performed better compared to existing KF-based variants
(KF, EKF).

The primary contributions of this paper are listed below:

1. A robust UKF technique was developed to monitor the health degradation of lithium-
ion batteries.

2. The proposed technique was validated, considering varying initial conditions to verify
the robustness in the health monitoring of the battery,

3. The UKF technique was compared with the widely used EKF algorithm for battery
health monitoring and prediction.

4. The health monitoring techniques (UKF and EKF) were validated under different
nonlinearities to verify the accuracy of health prediction.

The subsequent sections of this paper are organized as follows: Sections 2 and 3 depict
the LIB modeling and UKF-based SOC estimation, respectively. Section 4 discusses the SOH
prediction analytical formula for LIBs, and Section 5 elaborates on the analyses. Finally,
Section 6 highlights the conclusion of the work.

2. Lithium Ion Battery Modeling

To estimate different crucial battery parameters, such as SOC, R0, and SOH, a reliable
and accurate battery model is an indispensable component. In this regard, this section elab-
orates on different battery modeling techniques. While Li-ion batteries have applications
in various domains, they are increasingly being used in vehicular applications. However,
a major challenge in estimating the internal states of lithium-ion batteries lies in their
high degree of nonlinearity, which poses a significant obstacle to accurate estimation [28].
To make the battery’s state estimation less difficult, the concept of battery modeling is
introduced, and it plays a vital role in state estimations [1]. The modeling of batteries
is commonly employed to monitor battery capacity voltage (V)–current(I) characteristics
and charging-discharging status. Lithium-ion battery modeling is divided into various
models. The equivalent circuit model is considered the most widely used technique due to
its practicality for real-time implementation. It has been shown to be effective in accurately
estimating the internal dynamics of batteries [28]. The equivalent circuit model is typically
preferred for battery modeling due to its ability to address various battery management
system challenges, including power flow control problems and others [23].

There are many combinations of equivalent circuit models currently available. Among
them, the 1-RC battery model (Figure 1) has been widely used because it can replicate the
battery’s dynamic behavior accurately [15]. The complexity of these models is low and
their durability is high, which makes them more suitable for real-time applications. The
1-RC model comprises a series resistance and is connected with the parallel combination of
resistance and a capacitor. Series resistance depicts the internal resistance of the battery,
whereas the parallel combination of the resistor and capacitor represents the change transfer
reaction in the battery.

Mathematical equations for the 1-RC battery model are as follows:

dVp

dt
= −

Vp

C1R1
+

Ibat
C1

(1)

Vt = Voc −Vp − IbatR0 (2)

Voc(s)−Vt(s) = Ibat(s)(R0 +
R1

1 + sR1C1
) (3)
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The final discrete equation can be formulated by using the bilinear transformation
technique as follows:

V(k) + a1V(k− 1) = b0 I(k) + b1 I(k− 1) (4)

where the term V depicts the output vector at time k. The parameters a1, b0, and b1 are
predictable using the help of the recursive least square (RLS) method, where a1, b0, and b1
are parameters that set the value of R0, R1, and C1 in the 1RC model as follows [27]:

R1 =
2(a1b0 + b1)

1− a2
1

(5)

C1 =
T(1 + a1)

2

4(a1b0 + b1)
(6)

R0 =
b0 − b1

1 + a1
(7)

where Voc refers to the open circuit voltage, which is measured when the battery is not
connected to the load. The circuit parameters C1 and R1 are the polarization capacitance
and resistance of the battery, respectively, and Vp is the voltage parallel to R1 and C1. The re-
sistance R0 represents the internal resistance of the battery. Ibat is the charging/discharging
current of the battery. Vt depicts the terminal voltage of the battery and S and K are the
constants used in determining the behavior of the battery [22].
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3. UKF-Based SOC Estimation Scheme

To study the performance and efficiency of batteries for various applications, it is
necessary to employ performance metrics such as SOC. The SOH of the battery is highly
dependent on an accurate estimation of SOC. In this context, the accurate and reliable
estimation of SOC is very important [3] because the SOC method can offer an effective
charging/discharging strategy and gives more accurate results, which may lead to an
increase in battery efficiency. Essentially, the SOC acts like a fuel indicator in EVs. Hence,
the accurate estimation of SOC is essential to operate LIBs under safe conditions and to
enhance their performance and efficiency [10,11].

The UKF is a nonlinear variant of the KF that allows for battery state estimation
when state dynamics are nonlinear [9]. It is particularly useful for SOC estimation in BMS,
where the battery model is highly nonlinear. The fundamental concept of the UKF is to
approximate the nonlinear dynamics of a system by utilizing a cautiously selected set of
sigma points [15]. These sigma points are then used to propagate the state and covariance
estimates with the help of nonlinear system equations. This results in a new set of sigma
points that approximate the posterior state and covariance distributions [13]. The battery
SOC and R0 were estimated using the UKF technique. This is because the proposed UKF
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technique comprises recursive equations which are estimated repetitively during battery
charging/discharging. This shows that the internal dynamic parameters of the battery can
be estimated. The following equation presents the battery state space model:

x(k + 1) = Axk + BIk + wk (8)

yk = Cxk + vk (9)

where the matrices A, B, and C in (8) and (9) describe the battery’s internal dynamics,
while xk and Ik depict the internal state and charge/discharge current of the battery. The
parameters vk and wk are measurement noise and process noise, respectively. The term yk
depicts the output of the system and is calculated using (9) as a linear combination of the
system state and input. The different parameters associated with the battery state space
model (Equations (8) and (9)) are detailed below:

xk =
[
SOC Vp R0

]T (10)

A(k) =

 1 0 0

0 e−
∆t

R1C1 0
0 0 1

 (11)

B(k) =


0

R1

(
1− e−

∆t
R1C1

)
0


T

(12)

C(k) =
[

f (SOC)
x1

−1 −Ik

]
(13)

The UKF algorithm typically consists of the following steps. Initialization: initialize
the covariance matrix P and State Vector X:

X (0) = X0 (14)

P (0) = P0 (15)

Equations (14) and (15) represent the initial state and initial covariance matrix, which is
used to model the uncertainty or error in the state estimate and to propagate this uncertainty
through the prediction and update steps of the filter [13]. By appropriately modeling the
uncertainty using the covariance matrix, the UKF can provide a more accurate and robust
estimate of the state [15].

Prediction: use the battery model to predict the next state x(k + 1) and covariance
matrix P(k + 1|k) based on the current state x(k) and control input u(k):

X(k + 1|k) = f (X(k), u(k)) = X(k)−
(

1
RC

)
∗ X(k) ∗ dt +

(
1

RC

)
∗ i(k) ∗ dt (16)

R(k + 1|k) = F(k) + P
(

k
k

)
∗ F(k)T + Q(k) (17)

Equations (16) and (17) depict the state and covariance prediction, respectively, in which
x(k + 1|k) is the predicted state vector at time k + 1 and f is the state transition function
that describes how the state vector evolves, based on the control input u and any other
known inputs. X(k) depicts the current state vector at time k. The parameter u(k) represents
the control input or known input to the system at time k, which influences the dynamics
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of the system. In this case, there is a current input, I(k), that is known at time k. The first
term, X(k) * dt, on the RHS of Equation (16), represents the change in the state variable x(k)
due to self-discharge. The second term, I(k) * dt, on the RHS of Equation (16), represents
the change in charge/discharge current. The term F(k) is the state transition matrix and
it shows how each state changes over time. F(k)T is the transpose matrix, used to ensure
that the resulting covariance matrix has the correct dimensions. Finally, the term Q(k) is the
process noise covariance matrix, which represents the uncertainty or error as SOC rated
with the prediction step.

Unscented transformation: the unscented transform is a mathematical technique
employed in the Unscented Kalman Filter (UKF) algorithm to propagate the mean and
covariance of a random variable through a nonlinear function [14]. In the UKF algorithm,
the state estimation is based on a group of sigma points, which are generated using the
unscented transform [17]. The unscented transform generates sigma points by taking the
mean and covariance of the random variable as inputs and distributing a set of sigma
points around the mean based on the covariance matrix. The number of sigma points
generated is 2n + 1, where n is the number of dimensions of the random variable [19].
After the generation of sigma points, they are passed through the nonlinear function to
obtain the predicted sigma points for the next time step [21]. The predicted sigma points
obtained from the non-linear function are utilized to estimate the mean and covariance of
the random variable for the subsequent step as well as to update the covariance matrix
using the measurement data [29].

sigma_points = unscented_trans f orm
(

X
(

k + 1
k

)
, P
(

k + 1
k

))
(18)

Equation (18) portrays the process of generating the sigma points for the next time step
in the UKF algorithm. The input to the unscented transform is the predicted mean and
covariance of the state variables at time step k + 1, denoted by X(k + 1|k) and P(k + 1|k),
respectively [29].

State update: the state update equations for the Unscented Kalman Filter (UKF) are
used to estimate the state variables of a dynamic system, based on measurements and a
system model.

Y(k + 1) = h(SP) = X(k + 1|k) (19)

Equation (19) gives the predicted measurement, which is obtained by passing predicted
state X(k + 1|k) through h( ), where h( ) is the measurement function.

Y(k + 1) = h(k + 1) ∗ sigma_points (20)

Equation (20) gives the transformed measurement covariance, which is obtained by trans-
forming the sigma points through h( ). In this step, UKF captures the non-linearities in the
system which cannot be achieved by KF.

Pyy(k + 1) = Y(k + 1) + Y(k + 1)T + R(k + 1) (21)

Equation (21) is the predicted measurement covariance, which predicts the measurement
covariance Pyy(k + 1) at the subsequent time step based on the transformed measurement
covariance Y(k + 1) and the measurement noise covariance R(k + 1) [25]. R(k + 1) is
the measurement noise covariance matrix, which is a diagonal matrix that describes the
statistical properties of the noise that is present in the measurement. The inclusion of R(k
+ 1) in the predicted measurement covariance Pyy(k + 1) ensures that the filter takes into
account the presence of measurement noise when updating the state estimate.

Pxy(k + 1) = P
(

k + 1
k

)
∗Y(k + 1)T (22)
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Equation (22) is the cross-covariance matrix Pxy(k + 1) and measures the correlation between
the predicted state and the predicted measurement [29]. It represents the relationship
between how the predicted state affects the predicted measurement. The notation Pxy is
used because it represents the cross-covariance matrix between the state variable ‘x’ and
measured variable ‘y’ [8].

K(k + 1) = Pxy(k + 1) ∗ inv(Pxy(k + 1)) (23)

Equation (23) represents Kalman gain, which is a critical element in the Kalman filter
algorithm. It is a vector that determines the degree to which the predicted state estimate
(x(k + 1|k)) is adjusted by the observed measurement (z(k + 1)) [15]. The Kalman gain
is calculated by multiplying the cross-covariance matrix Pxy(k + 1) by the inverse of the
predicted measurement covariance matrix Pyy(k + 1) [18]. The Kalman gain K(k + 1)
combines the information from the predicted state estimate and the predicted measurement
to produce a more accurate estimate of the true state.

3.1. Measurement Update

X(k + 1) = X
(

k + 1
k

)
+ K(k + 1) ∗ (z(k + 1)− y(k + 1)) (24)

Equation (24) represents the state update step in the Kalman filter. It updates the
predicted state estimate x(k + 1|k) with the actual measurement z(k + 1) using the Kalman
gain K(k + 1). The residual error between the actual measurement and the predicted
measurement y(k + 1), which is generated by passing the sigma points through the mea-
surement function, is weighted by the Kalman gain [9,12]. This weight determines how
much the measurement should be used to correct the predicted state estimate. The resulting
correction is added to the predicted state estimate to obtain the updated state estimate
x(k + 1) [14].

3.2. Covariance Update

P(k + 1) = P
(

k + 1
k

)
− K(k + 1) ∗ Pyy(k + 1) ∗ K(k + 1)T (25)

Equation (25) calculates the updated estimate of the error covariance matrix after
incorporating the measurement at time k + 1. It uses the Kalman gain (K(k + 1)) calculated
in the previous step, the predicted error covariance matrix at time k + 1|k (P(k + 1|k)), and
the predicted measurement covariance matrix (Pyy(k + 1)) [18]. Equation (25) essentially
calculates the amount of uncertainty that remains in the state estimate after incorporating
the measurement. The term K(k + 1) * Pyy(k + 1) * K(k + 1)T represents the portion of the
error covariance matrix that is reduced due to the measurement. Subtracting this term
from the predicted error covariance matrix (P(k + 1|k)) gives the updated error covariance
matrix (P(k + 1)) that reflects the reduction in uncertainty due to the measurement [25].

After the initialization step, Equations (17)–(25) are applied repeatedly to continually
update the battery’s state estimate as new measurements become available. The exact
number of times these equations need to be applied will depend on the specific problem
being considered and the desired level of accuracy or precision. The overall flowchart of
the UKF-based technique is depicted in Figure 2.

Using the above technique, SOC can be estimated. The SOH of lithium-ion batteries
is highly dependent on accurate SOC prediction. The subsequent section describes the
technique for SOC-dependent SOH estimation.
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4. SOH Estimation Technique for LIBs

In this section, different SOH estimation techniques are elaborated. Li-ion batteries
have become an essential part of modern life, especially in powering EVs. Li-ion batteries
used in electric vehicles undergo cycles of charging and discharging during operation,
which causes the battery to age over time. Furthermore, they can experience a decline
in performance and capacity [24]. The deterioration of a battery’s capacity over time is
commonly known as “capacity fade”, which can have a significant impact on the overall
SOH [30–32]. The SOH of a lithium-ion battery is a measure of its present condition and
how much it has degraded from its original state. Accurate monitoring of the SOH of a
battery is crucial for predicting its remaining useful life, optimizing its performance, and
ensuring its safe and reliable operation. There are several metrics used to assess the SOH of
Li-ion batteries, including the columbic efficiency, capacity, cycle count, internal resistance,
and self-discharge. Each of these metrics provides valuable information about the battery’s
current state, and they can be used together to gain a comprehensive understanding of the
battery’s health [24].

The basic SOH estimation analytical expression is given as:

SOH =
Ca

Crated
∗ 100% (26)

Equation (26) is used to calculate a lithium-ion battery’s SOH. The SOH of a battery is a
measure of its current condition and how much it has degraded from its original state [30].
The actual capacity (Ca) of a battery refers to the quantity of stored energy it can deliver at
a particular point in time. This value can be measured by charging the battery fully and
then discharging it completely while measuring the amount of energy delivered [30]. The
capacity decreases over time as the battery undergoes charging and discharging cycles and
is affected by temperature and usage patterns. The rated capacity (Crated) of a battery is
the amount of energy it is designed to store and deliver under ideal conditions [31]. The
manufacturer typically provides this value and is based on the battery’s chemistry and
design.
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For improved SOH estimation, the following analytical expression has been
derived [24]:

SOH =
Rend − Rpre

Rend − Rnew
∗ 100% (27)

Equation (27) is an important technique widely used to compute the SOH of lithium-ion
batteries. The term Rend represents the battery’s initial or “as-new” R0, Rpre is the current
R0, and Rnew is the R0 of a brand-new battery of the same type. R0 is a measure of the
opposition to the flow of current within the battery. As Li-ion batteries age, their R0 tends
to increase due to the decomposition of unwanted materials and changes in the battery’s
physical structure [24]. A higher R0 can result in a decrease in the battery’s capacity and
overall performance. Equation (27) calculates the SOH by comparing the current R0 of
the battery (Rpre) to its initial or “as-new” R0 (Rend). The difference between Rend and Rpre
is then divided by the difference between Rend and the R0 of a brand-new battery of the
same type (Rnew) [20]. This ratio is then multiplied by 100 to obtain the SOH percentage. By
monitoring the R0 and implementing the derived Equation (27) in the battery management
system, EV users can estimate an accurate SOH of a battery. Additionally, the derived
formulation is useful for battery users and manufacturers for reliable health monitoring
of EV batteries and allows EV users to make prompt decisions about battery replacement
time [24].

5. Results and Discussion

The SOC-dependent SOH estimation is elaborated on in this section. The various
observations, such as SOH and R0 of the battery, were carefully estimated with different
initial SOC values. Furthermore, the robustness of the SOH estimation using the UKF
technique was studied and compared with well-established techniques in the literature
(EKF Technique). Figure 3 illustrates the steps involved in estimating the SOH of a battery.
Accurate modeling of a battery is crucial in estimating its SOH, especially in the case
of lithium-ion batteries. A precise model can provide insight into the internal behavior
and characteristics of the battery, enabling accurate prediction of its remaining useful
life. In this context, by using the battery model (Figure 1), it is possible to simulate the
performance of the battery for a range of operating conditions and estimate its SOH based
on the comparison with the model’s simulated performance. Temperature sensors are
instrumental in the estimation of SOH for Li-ion batteries, as they offer critical insights into
the internal temperature of the battery, which has a notable influence on its performance,
degradation, and safety. The internal temperature of a Li-ion battery can greatly impact its
capacity and cycle life. For example, at high temperatures, the battery can undergo thermal
runaway, leading to irreparable damage or even explosion.

Voltage measurement and current measurement sensors are essential components
in the SOH estimation of Li-ion batteries. They are employed to measure the battery’s
voltage and current during EV operation, which provides critical information about the
battery’s state and performance and helps in the estimation of important parameters such
as battery capacity, SOC, R0, and operating temperature. Furthermore, these parameters
are of utmost importance for estimating the battery’s remaining capacity, which is critical
for SOH estimation. The estimation of the SOC of a battery has been accomplished using
measurement data obtained from the voltage and current sensors. The estimated SOC plays
a vital role in predicting the SOH of the battery by tracking its SOC over time, as depicted
in Figure 3. In addition, the estimated SOC obtained through the UKF method, along with
the temperature and R0 information, was utilized to estimate the SOH of the battery.
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Initially, the battery was operated with the current profile as depicted in Figure 4. The
current profile represents the amount of current that is being drawn or supplied to the
battery over time during EV operation. The current profile (Figure 4) is given to the battery
model (discussed in Section 2). The battery voltage dynamics (Figure 5) were observed
for the given input charge/discharge drive profile. The voltage profile of the battery was
acquired using a voltage sensor that is positioned across the battery terminals. The voltage
sensor may introduce some noise into the measurements; this error is also added to the
measured voltage and given as input to the SOC estimator. Figure 6 illustrates the battery
temperature measurements obtained during the operation of the EV. The temperature
of the battery is monitored over time by a temperature sensor. From Figure 6, it can be
observed that the temperature increases while charging and decreases while discharging.
This phenomenon can be explained by the fact that during a charging cycle, the temperature
of the battery may increase due to the conversion of electrical energy into chemical energy
within the battery. Conversely, during a discharge cycle, chemical energy is converted into
electrical energy, leading to a decrease in temperature.
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The SOH estimation process elaborated on in Figure 3 demands an accurate SOC
estimation to predict battery degradation accurately. Initially, the actual SOC of the battery
is measured with commonly used methods, such as the coulomb counting technique or the
current integration technique, based on the EV drive profile (Figure 1). The measured real
SOC is depicted in Figure 7. The estimated SOC using the coulomb counting technique
has a critical limitation, such as current sensor noise accumulation and initial SOC being
updated at a regular interval of time. This makes the accurate SOC estimation uncertain,
further affecting the accuracy of the battery degradation prediction. This demands an
accurate and reliable SOC estimation technique.
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To overcome the above limitations, different KF variants have been adopted. Using
the input drive profile (Figure 4) and output voltage profile (Figure 5), the proposed UKF
technique, as discussed in Section 3, was utilized for estimating the SOC of the battery,
which is illustrated in Figure 7. From Figure 7, it can be seen that the UKF algorithm
performs better in comparison to widely used techniques such as the EKF algorithm for
estimating the SOC of a battery. The enlarged depiction presented in Figure 8 provides
enhanced clarity concerning the effectiveness of the SOC estimation technique based on the
UKF algorithm. This means that the UKF algorithm provides more accurate and reliable
SOC estimates than the EKF algorithm. The UKF algorithm is more adept at managing
non-linearities, noise, and uncertainties associated with input parameters.
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The UKF-based SOC estimator produced an output (estimated R0) along with an esti-
mated SOC as shown in Figure 9. To verify the accuracy of the estimated R0, measurements
were taken using both UKF and EKF algorithms. It can be observed that the estimated R0 in-
creased with time, which is a common trend in battery aging. Additionally, it was observed
that the R0 obtained from EKF had more noise compared to UKF, indicating that the EKF
algorithm may be more sensitive to noise and other sources of error in the input data. With
the estimated SOC (using UKF), R0 (Figure 9), and temperature measurements, the SOH
(using Equation (27)) of the battery has been estimated and is depicted in Figure 10. It can
be seen (Figure 10) that the SOH decreases with time, which is due to various degradation
mechanisms. To verify the accuracy of the SOH estimator, measurements were taken using
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both UKF and EKF algorithms as shown in Figure 10. It can also be seen that the EKF
algorithm produces more noise in the SOH estimation compared to UKF, indicating that
EKF may be more sensitive to noise and other sources of error in the input data The smooth
measurements of R0 (Figure 9) and SOH (Figure 10) using the UKF technique depict that it
is more robust against unknown sensor noise/input and nonlinearities in system dynamics.
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To check the robustness of SOH estimation using the UKF technique, the initial SOC
value was varied to different values. The proposed UKF-based technique robustness was
validated under two different scenarios. During case I, the initial value was fixed as SOC =
0, and the SOC and R0 of the battery were estimated using UKF and EKF. This estimated
SOC and R0 are depicted in Figures 11–13, respectively. Based on the observations from
Figures 11 and 12, it can be concluded that the UKF technique provides more accurate and
faster tracking of the real SOC compared to the EKF technique. Using the estimated SOC,
estimated R0 (Figure 13), and temperature measurements, the SOH (Using Equation (27))
of the battery has been predicted, as shown in Figure 14.
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This SOH prediction further depicts that the EKF algorithm produces more noise in
the SOH estimation compared to UKF, indicating that EKF may be more sensitive to noise
and other sources of error in the input data. A similar analysis was carried out considering
case II (initial SOC = 0.2). Under the fluctuating condition of an initial SOC of 0.2, the SOC
and R0 estimation using the UKF technique were found to be superior to the EKF technique,
as demonstrated in Figures 15–17. The magnified view presented in Figure 16 provides
clear evidence of the effectiveness of the proposed technique (UKF) for SOC estimation.
Furthermore, the SOH of the battery was estimated considering the estimated SOC and
R0. The estimated SOH for case II is illustrated in Figure 18 and it can be seen that the
UKF technique provides robustness against noise and other uncertainties in comparison to
the UKF base method. From Figures 13, 14, 17 and 18, it is clear that the initial SOC value
estimator will affect the estimation of other battery parameters, such as SOH and R0. If the
initial SOC value is inaccurate, the estimator may produce distorted estimates of SOH and
R0 in the initial phase. This is because the estimator needs to gather enough information
about the battery behavior to produce accurate estimates of the health parameters (SOH
and R0). Finally, Table 1 depicts the superiority of the proposed technique (UKF) in terms
of tracking speed to real SOC.
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Table 1. Comparative analysis among different techniques (UKF, EKF) with varying initial conditions.

Initial SOC
Tracking Time (Real SOC)

UKF EKF

SOC0 = 0 700 s 8000 s

SOC0 = 0.2 730 s 8469 s

SOC0 = 0.4 780 s 8678 s

6. Conclusions

This paper provides a robust battery health monitoring and prediction scheme for an
electric vehicle battery management system. The UKF-based technique has been developed
to monitor the health status of the battery. Furthermore, we have shown that the UKF is
an effective tool for the SOH estimation of Lithium-ion batteries under diverse operating
conditions. The UKF technique was compared with the widely used EKF-based health
estimation scheme. The results depict that the proposed technique performed well in
comparison to the EKF-based scheme. The study also found that the UKF technique
produced accurate and reliable results in estimating the SOH of the battery, even when
the battery was subjected to varying initial conditions in terms of the state of charge.
Furthermore, the obtained results depict that the proposed UKF-based technique tracks real
SOC very quickly in comparison to the EKF-based estimation scheme under varying initial
conditions (varying SOC). This shows that the proposed technique (UKF) has a higher
computation speed. Overall, the study demonstrates that the use of the UKF technique for
SOH estimation has the potential to enhance the efficiency and durability of Lithium-ion
batteries. The utilization of the UKF technique can aid in mitigating the risk of unforeseen
battery failures and reduce maintenance costs associated with battery systems in electric
vehicles.
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