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Abstract: State estimation for lithium-ion battery cells has been the topic of many publications
concerning the different states of a battery cell. They often focus on a battery cell’s state of charge
(SOC) or state of health (SOH). Therefore, this paper introduces, on the one hand, a new lithium-ion
battery dataset with dynamic validation data over degradation and, on the other hand, a model-based
SOC and SOH estimation based on this dataset as a reference. An unscented Kalman-filter-based
approach was used for SOC estimation and extended with a holistic ageing model to handle the SOH
estimation. The paper describes the dataset, the models, the parameterisation, the implementation
of the state estimations, and their validation using parts of the dataset, resulting in SOC and SOH
estimations over the entire battery life. The results show that the dataset can be used to extract
parameters, design models based on it, and validate it with dynamically degraded battery cells.
The work provides an approach and dataset for better performance evaluations, applicability, and
reliability investigations.
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1. Introduction

For lithium-ion batteries in applications, it must be ensured that they are operated in a
safe operating area (SOA). The SOA includes boundaries for the voltage, the temperature,
and the current [1,2]. To support this, different battery states must be tracked during
operation. In addition, the battery management system (BMS) should guarantee a reliable
and efficient operation to ensure a safe operation. Therefore, the BMS’s tasks include
collecting measurements of voltages, temperatures, and the system current to ensure
operation in the SOA and the estimation of the battery states that support the task for a safe
and efficient operation [3]. The typical states the BMS estimates for lithium-ion batteries
include the state of charge (SOC), the state of function (SOF), the state of health (SOH), and
the remaining useful life (RUL). Additional states are sometimes mentioned in the literature,
such as the state of balance or the state of temperature. This paper considers two of these
battery cell states because of their importance in a BMS. The state of charge (SOC) generally
describes the charge available in the battery cell compared to a fully charged cell. Therefore,
the SOC describes how long a battery cell may last with this charge and, thus, reflects in an
electric vehicle the remaining range, similar to a fuel gauge in an internal combustion engine
vehicle. Electrochemically, it describes the average lithium concentration of intercalated
ions in the negative electrode. This is why the SOC cannot be directly measured in an
application. The cell voltage includes the SOC to some extent, mainly the relation of the
OCV and SOC, but the surface concentration of lithium ions influences it, in contrast to the
SOC [1–6]. Since the SOC is essential for improving efficiency and influences battery cell
ageing, it has to be estimated. A further hindrance is that it highly depends on the actual
capacity of the battery cell, which is affected by the temperature, the state of ageing, and the
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current rate [1]. In addition to the general importance of the SOC, it is the foundation of
other states. Its mathematical description is as follows.

SOC =
Qremain

Cest
, (1)

where Qremain describes the concentration of the intercalated lithium ions in the structure of
the negative electrode, and CEst is the current maximum capacity (estimated or measured)
based on the temperature and the ageing state.

The SOH describes the degradation of the battery cell. It describes the battery cell
as having a 100% SOH when it is considered new. In most cases, the parameters used to
describe the SOH are the capacity and the battery cell’s internal resistance (IR). The initial
quantities of the capacity and IR can be either the nominal values gathered from the
datasheet or the measured parameters during the first check-up. When using the nominal
capacities, the SOH can be over 100% because of the production tolerances of the single
battery cells. A classic definition of the SOH is based on the ratio of the estimated and the
nominal or initial capacity

SOHC =
Cest

Cnom
. (2)

This definition is specifically beneficial when the application is mainly interested in
the energy capability of the battery cell. However, it could be extended with an SOH that is
based on the battery cell’s internal resistance, defined by

SOHR =

∣∣∣∣ Rest − REOL

Rnom − REOL

∣∣∣∣. (3)

Depending on the scaling and combination of the definitions, the SOH describing the
end of life could either be 80% or 0%. In this paper, it is 80%. This work aims to show a new,
freely available dataset and how to use the data to implement an SOC and SOH estimation
validated on the dynamic ageing dataset. It introduces and describes the measurements
conducted and the development steps of a state estimation approach for SOC and is used
in multiple applications based on the measurements. The parameterisation of the model
used for the model-based approach for the SOC and SOH estimation is described and
will be validated on dynamically aged battery cell data. Therefore, the paper sums up
the approach for developing state estimation algorithms from the absolute beginning of
the measurements to the modelling, algorithms, and validation at the end. It delivers the
possibility to benchmark other state estimation algorithms in comparison to a common ap-
proach and allows for showing the advantages or disadvantages of developed approaches.
Furthermore, the dataset could be used to develop new algorithms. Compared to other
datasets found in the literature, the dataset includes the dynamic cyclic degradation of
cells with changing stress factors. The paper of dos Reis et al. [7] includes a review of
numerous datasets. Based on that paper, it can be concluded that the datasets available for
cyclic ageing include only constant current charging and discharging. The datasets with
driving cycles include only data with driving cycles for single cells [8,9], for packs [10], or
for multiple cells under the same conditions [11]. The datasets do not include reference
data and dynamical data, and if they include dynamical data, the stress factors stay the
same for every iteration of the driving schedule. In contrast, the proposed dataset includes
reference data with constant-current-cycled cells and dynamical data where the schedule
starts repeating every 10 full-cycle equivalents.

A literature review of the different SOC and SOH algorithms shows different categories
of algorithms. The categories derived are direct measurements, model-based approaches,
data-driven approaches, and hybrids of two or more of these categories.
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1.1. Direct Measurements for SOC and SOH Estimation

Direct measurement approaches in battery cell state estimation describe measurements
that can be directly used to estimate a state. These could be specific parameters, just the
voltage, temperature, or current at specified points in time, depending on the state to
be estimated.

One typical measurement is the measurement of the OCV to use the relation of the
SOC and the OCV. The relation is measured before application of the battery cell and used
during its runtime to estimate the SOC [12]. The OCV can be measured after hours without
a current, therefore, in an application, the assumption that the overpotential, either after
a short resting phase or during a low-current section, is nearly equal to the true OCV, is
applied, which is similar to the assumption for performing the short-term incremental OCV
measurement and the low-current measurement, because in many cases there are no long
resting phases. Often there are still small currents to supply the control units. This kind
of SOC estimation is often used for calibration, to augment other algorithms, or under
laboratory conditions [3]. An analysis based on the relation of the OCV and the SOC that
slightly changes with degradation is used to estimate the SOH. This analysis is called the
incremental capacity analysis (ICA) and describes the differentiation of the charge over the
voltage, leading to peaks in the region of phase changes. The ICA is calculated from current
measurements at constant currents for a full or a partial discharge/charge cycle. The battery
cell’s SOH can be estimated by tracking the position, amplitude, and enveloped area [12,13].
Of course, the change in these peaks has to be investigated before the application to
know which change belongs to which SOH. However, still, these measurements are only
applicable in some applications.

There is the well-known coulomb counting method. The coulomb counting approach
integrates the charged or discharged charge over time. That integrated value is divided
by the current capacity to estimate the SOC. In this case, the starting point, the starting
SOC, of the coulomb counting approach has to be known. The coulomb counting method
depends on the capacity, therefore, on the SOH, and is influenced by the temperature and
the current rate. This method is prone to measurement errors since they are accumulated
over time [3,12]. Due to this disadvantage, it is often combined with the OCV measurement,
where it is possible to recalibrate the counter. Based on the coulomb counter, a cycle counter
can be established that counts the equivalent full cycles during usage. Therefore, it is
extended such that it counts the charge in the charge direction or the absolute value of the
current in both the charging and discharging directions and is divided by either the capacity
or twice the capacity. To be able to use this information correctly, many measurements have
to be taken to obtain the relation between the number of equivalent full cycles and the SOH,
because the trajectory of the degradation depends on stress factors such as the current
rate, the temperature, the ∆DOD, and the mean voltage. The measurement of impedance
or internal cell resistance is another method to estimate a state—especially the SOH’s
correlation with the increase in the internal cell resistance. Different methods are used to
measure the internal resistance. Sometimes people try to identify the internal resistance
at current changes during the application and filter the results afterwards. However, this
approach is often not measuring the actual internal resistance because the sample rate of
the current and voltage measurement is too slow to isolate the internal resistance. So, what
is measured is a combination of the internal resistance and the impedance of the active
electrochemical processes. More common is applying a current pulse to identify the internal
resistance [13,14]. Similarly, here, the measured resistance might not be the internal resis-
tance, but it is a part of it. An electrochemical impedance spectroscopy (EIS) measurement
with a single frequency is possible to measure the true internal resistance. More frequencies
are applied to gain more information using, for example, a multi-sine approach or just
different frequencies to a typical EIS measurement [3,13]. Furthermore, typically EIS is
used in applications to obtain more information on the battery cell’s impedance. Different
electrochemical mechanisms can be analysed without opening the cell by investigating the
EIS. Therefore, it is very interesting to use EIS, since it is a tool that could make a good
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diagnostic of ageing processes possible [3,13,14]. The application of an EIS measurement is
very complex because it is susceptible to changes in the measured system, which can be
changes in the connection, temperature changes, and other disturbing influences. Another
measurement technique that might be used is based on the Joule effect. This approach
analyses the generated heat and the rise in the temperature of the battery cell to identify the
internal resistance. However, a calorimeter is needed to track temperature change and heat
generation [13,14]. Other measurement equipment might be used as well [13]. Of course,
using a calorimeter as an online measurement tool is unsuitable.

1.2. Model-Based SOC and SOH Estimation

In general, model-based state estimation approaches depend on the model. It could be
that the approach only uses a model or combines an algorithm such as a filter or observer
with a model. Using models directly to estimate the battery cell state is primarily not
used for SOC estimation. Suppose coulomb counting or the OCV relation to the SOC is
considered model-based. Then, they are the only models for model-based SOC estimation.
It is another case for SOH or RUL estimation. The basic models used for direct estimation
are semi-empirical, empirical, and electrochemical ageing models used to estimate the
SOH. Empirical and semi-empirical models are developed based on ageing measurements
considering different stress factors. The model is fitted to the change in a parameter over
time or full-cycle equivalents, i.e., the internal resistance or the capacity, and is used to
calculate the current SOH or RUL considering the cycles or the time at a specific stress
factor. A weighted coulomb-counter-based cycle counter can be used to track the influence
of the stress factors. The same approach can be used if the empirical model is replaced
with the degradation data saved in a characteristic map [12,13,15]. By using a more
sophisticated model such as an electrochemical pseudo-two-dimensional model and using
different ageing improvements, the extrapolation ability and, therefore, the prediction
ability is improved for unseen data. In addition, the model can diagnose the ageing process.
However, due to their complexity and the involvement of many parameters and multiple
partial differential equations, they are unsuitable for online usage. Therefore, research has
focused on simplifications and parameterisation [12,13]. Every other model-based state
estimation approach includes a filter or observer. Filters and observers share that they use
the same general framework. They both rely on the model-based prediction (time update)
of the battery cell state and use the measurement to adjust the prediction (measurement
update) to the current behaviour of the battery cell. Filters that are often used belong
to the Kalman filter family, namely, the extended Kalman filter or sigma-point Kalman
filter, of which the unscented Kalman filter is a member. They use the general approach
of making model-based predictions and updating the prediction by measurement using
the so-called Kalman gain. The different modifications of the Kalman filter try to linearise
the system around the current working point using the derivative or an approximation.
Known observers include the Luenberger and the sliding mode observer.

1.3. Data-Driven SOC and SOH Estimation

The data-driven approaches contain machine learning approaches that describe a
group of algorithms capable of inferring a battery’s behaviour from raw data to build
a model that can predict the output or a state depending on the data without directly
programming it for this specific behaviour. The methods used for state estimation can be
categorised into methods that directly predict the output based on data and the methods
that iteratively predict the output, where the output could be a state, parameters, or the
voltage of the battery cell. Whether the prediction structure is direct or iterative depends
on the task and algorithm. An algorithm that makes point predictions can have a direct
structure, whereas an algorithm that predicts sequences or simulates something will have
an iterative structure. Depending on the output, they can be further distinguished into
algorithms that produce outputs with a measure of certainty/probability or not, probabilis-
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tic or non-probabilistic methods. Machine learning approaches include neural networks,
autoregressive-moving average models, and support vector machines [12,16].

1.4. Hybrid Estimation

Instead of estimating a single state, a joint or dual estimation can be applied. Joint
estimation includes the estimation of the SOC and the SOH with one extended algorithm.
In contrast, dual estimation is the estimation of the SOC and SOH using two algorithms
working together. In joint estimation, the connection of the states is directly part of the
estimation. In contrast, the connection in dual estimation is implemented by alternately esti-
mating the SOC and the SOH, or parameters that are used to calculate the SOH, and feeding
it back to the first algorithm that estimates the SOC. The different approaches can be used
with different model-based approaches. Approaches combining model-based and machine
learning approaches can be used as well. The advantage of using these approaches is that
the algorithms may consider the mutual effects of SOC and SOH. Furthermore, methods
focusing on SOC estimation neglect the issue that ageing influences capacity and internal
resistance and, therefore, influences the SOC estimation. Overall, the usage of a joint or
dual estimation leads to higher accuracy [17]. For example, Ref. [18] used a dual estimation
approach using a fractional-order model as the basis of their model-based approach and
applying a dual EKF for SOC and SOH estimation. In comparison to a single EKF for a
fractional-order model, the root mean square error (RMSE) reduced from 7% to 0.5%.

1.5. Research Objective

In general, whether the methods are data-driven, hybrid, or model-based, there is
still work to be done. Wang [17] identified a gap between research in the laboratory and
practice concerning the influence of different factors such as the temperature, the current
rate, the voltage, or the degradation on the battery states. This makes it necessary to update
the model parameters in time, which introduces more complexity. It was especially pointed
out that the temperature and the computational load must be considered. Furthermore,
it was identified that the estimation of the SOC should be associated with the SOH [17],
because of its influence. Moreover, the systems should be reliable and accurate in different
applications [17]. Still, the recent literature in the field of hybrid estimation, which is
strongly connected with the work presented in this paper, lacks some of these points.
A wide variety of algorithms and combinations is used to estimate the states, model-based
or data-driven. Ref. [19] focused on an interacting multiple model with dual filtering
utilising the Kalman filter and sliding innovation filter. The algorithms were validated
using a NASA dataset with constant current charging and discharging. Ref. [20] used
a co-estimation scheme with a Kalman filter for SOC estimation and a forgetting factor
recursive least squares algorithm for SOH estimation. It was tested on the dynamic stress
test (DST) and federal urban driving schedules (FUDS) schedules, one full cycle each at
two different ageing states. Another approach with OCV adaption and filtering with a
recursive least algorithm was used by [21]. In [21], the work was validated using a sequence
of worldwide harmonized light-duty vehicles test procedure (WLTP) over 40 h. Ref. [22]
proposed an electro-thermal model with two EKFs and a piecewise polynomial function
to capture the SOC and parameter relationships. Here, the approach was validated on
constant-current-degraded cells and, for the parameter estimation, on the WLTP and DST at
a new cell. Further literature proposed a dual EKF and a backpropagation neural network to
estimate the SOC and the parameters for SOH estimation [23]. The experiments in ref. [23]
included DST, Beijing Bus DST and high-power pulse characterisation (HPPC) procedures,
where the DST data were used for training and HPPC and Beijing Bus DST were used
for validation. Ref. [24] proposed a UKF for SOC estimation and a total least squares for
capacity estimation to conclude the SOH. The validation was based on the new European
driving cycle (NEDC) at different ageing states. Ref. [25] utilised a more computationally
expensive approach, where a particle swarm optimisation with a support vector machine
(SVM) was applied to estimate the SOC and SOH. The Adaboost algorithm adapted the
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algorithm online. The approach was tested on a NASA dataset with constant current
charging and discharging. In [26] the SOC, SOH, and RUL were estimated using a joint
approach with a UKF for SOC estimation, a least squares SVM for the SOH, and the RUL
was based on a Gaussian process model (GPM). Validation was conducted on a cyclic ageing
dataset with constant current degradation. More recent literature include [18,27–30], in
which model-based approaches based on Kalman filtering or particle filtering for SOC and
SOH estimation were used. They used driving schedules or stress tests for validation such
as the DST, Beijing Bus DST, WLTP, and NEDC, or simple constant current discharging for
validation at a new battery state or a pre-aged SOH.

The gap mentioned by Wang et al. [17] still exists in the current literature. As reviewed,
the work conducted in the literature proposes new approaches for state estimation. How-
ever, it does not consider the influence of different stress factors, especially changing stress
factors, on the reliability and accuracy over the entire battery life. This paper proposes a
dataset and the information on the dataset to evaluate algorithms’ performance, reliability,
and accuracy over the entire battery life, considering different stress factors and microcycles.
Furthermore, the paper showcases the whole way to design a system capable of estimating
the SOC and SOH over the entire battery life, utilising a UKF for SOC estimation, a holistic
ageing model for SOH estimation, the feature extraction, their combination, and the steps
to identify parameters, obtain characteristic maps, and homogenise the data of different
cells to a reliable system.

1.6. System Description

The system developed in this work starts with the measurements, where the current
is used to predict the states of the system by using the battery model and the voltage
to update the states inside the SOC estimation, where the UKF is used. The conducted
measurements are described in Section 2. The battery model depends on the different
parameters of the dynamic model; these parameters depend on the SOH, the temperature,
and the SOC. The UKF and the model belong to the SOC estimation and are described in
Section 3. By analysing the measurements and the SOC, the features that describe the stress
factors during ageing are calculated using the feature extractor. The feature extraction and
the ageing model belong to the SOH estimation in Section 4. The condensed stress factors
are forwarded into the ageing model, which works on one hand as a parameter model,
describing the SOC and temperature-dependent behaviour. On the other hand, the ageing
model describes the SOH based on stress factors. The parameters are updated in every
iteration for SOC and temperature dependencies and, when it is issued, by the feature
extractor for the SOH dependence. By running iteratively through the measurements of
the SOC, the features and the SOH are estimated for every sample. Figure 1 displays a
schematic of the system.

UKF

Prediction

Update

Battery Model

Measurements

Current

Feature Extractor

Aging Model

Voltage

Features

Temperature

Parameter Updates

SOC

SOC

SOH

State

Figure 1. Schematic overview of the system depicting the UKF, the ageing model, and the feature extractor.
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2. Measurements and Dataset

The dataset consists of 30 cells called HE4 from LG Chem aged in a hybrid ageing
manner, so no differentiation between calendar or cycle ageing was made. The specifications
of the cell are displayed in Table 1.

Table 1. Cell specifications.

Specification Value

Nominal Capacity 2.5 A h
Nominal Voltage 3.6 V

Final Discharge Voltage 2.5 V
Charging End Voltage 4.2 V

Maximum Constant Discharge Current 20 A
Maximum Charging Current 4 A

The battery cells were aged under different stress factors considering three tempera-
tures (room temperature (23 °C), 25 °C, and 45 °C), three different mean SOCs, and three
different DODs. Different currents are not considered during constant current ageing.
In addition, it includes two cells aged under dynamic conditions at room temperature
(23 °C). Table 2 sums up the different stress factors and displays the stress factor matrix.

Table 2. Table of the different stress factors considered in the ageing measurements.

Temperature (°C) DOD SOCmean Number of Cells Cyclic Ageing

25 1 0.5 4 Constant current
25 0.3 0.35 4 Constant current
25 0.3 0.65 4 Constant current
45 1 0.5 4 Constant current
45 0.3 0.35 4 Constant current
45 0.3 0.65 4 Constant current
23 0.7 0.5 2 Constant current
23 0.3 0.5 2 Constant current
23 1 0.5 2 Dynamic profile

The ageing is frequently interrupted by a battery cell capacity test, every ten full-cycle
equivalents, and less frequently by a full characterisation. During the ageing process,
the battery cells are cycled using constant current for charging and discharging, except for
the two dynamically aged cells.

The characterisation is taken out at the specific ageing temperature since the outer
mean SOC and DOD combinations are conducted at the two temperatures. The check-up
characterisations consist of a capacity test, a hybrid of an incremental open circuit voltage,
and a slightly adjusted hybrid pulse power characterisation (HPPC). Pre-tests have shown
that the influence of the HPPC on the OCV is negligible. Furthermore, the incremental
method is an exact and time-efficient way of measuring the OCV and being able to perform
additional analysis, namely, differential voltage analysis [31]. The increments in OCV
are based on every percent of the nominal capacity and the HPPC at every ten percent.
The measurement equipment used consisted of a Neware battery cycler with a voltage range
of 10 V and±10 A and either a Memmert oven for the 45 °C or a temperature chamber from
Binder for the 25 °C measurements. The check-up was extended for the two dynamically
aged cells with a validation part, including dynamic discharges and constant current
constant voltage (CCCV) charging procedures. Figure 2 displays the used check-up and
validation extension.
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Figure 2. Voltage diagram of check-up procedure, including capacity test, hybrid OCV and HPPC,
and the validation.

For the dynamic ageing, the federal urban driving schedule was applied to a battery
cell of the same type, so the cell was CCCV charged and then discharged to 2.5 V using
the FUDS repeatedly. This measurement was used to design dynamic parts of the ageing.
To generate these parts, the so-called random pulse method was used to create profiles
of defined length, as explained in [32]. The general process comprises segmenting the
measured current profiles in charging and discharging pulses and saving them to a database.
Afterwards, the pulses are selected randomly and added to the profile. Even without actual
driving data, a dynamic profile with random pulse sequences is generated that is ready to
be used during the cyclic ageing of the cells. The cycling includes short cycles of 25%, 30%,
75%, 80%, and 95% DOD. These cycles are concatenated to sum up to about ten full-cycle
equivalents followed by a capacity test (see Figure 3).

0 10 20 30 40 50 60 70
Time [h]

Cycles
80 % DOD

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

V
o
lt
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25 % DOD
75 % DOD
50 % DOD
95 % DOD
Capacity Test

Figure 3. Voltage diagram of dynamic cycling procedure, including a capacity test.

3. SOC Estimation

For the SOC estimation, a model-based approach is employed that is part of the
Kalman filter family. The Kalman filters are a widespread family of filters used for state
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estimation. The general Kalman filter is the simplest of the filters. It recursively uses the
system described in state space and the measurements to estimate the state. By weighting
the prediction and the measurement, the Kalman filter can account for noise, variations in
the measurement, and inaccuracies of the used model. Since it is based on the Bayesian
filter, it considers the state to be a normal Gaussian distribution described by its mean and
the variance or covariance matrix for multiple dimensions. So, by using the model for
the prediction, a Gaussian distribution is estimated based on its last state and the model’s
behaviour described by the state space equations. Uncertainties are added to account for
model and measurement imperfections. The measurement represents another Gaussian
distribution, and by multiplying the prediction with the measurement, a new distribution
can be calculated. By extracting the so-called Kalman gain, the new state can be estimated.
Figure 4 summarises the mentioned steps.

Prior

Model

Input 
measurement

Measurement

Update

Prediction

Figure 4. Steps of the Kalman filter.

The Kalman filter is not feasible for battery state estimation since it only operates with
a linear system, which is not the case for battery models and would lead to errors during
estimation. Different variants have been developed [3,12–14].

The extended Kalman filter (EKF) is one variant that linearises the current mean and
the covariance with a Taylor series approximation in every step to nullify the nonlinearities.
In general, the EKF uses the same framework of time update and measurement update
but calculates each time the Jacobian matrix of partial derivatives of the nonlinear state
equation for the state and the process noise and Jacobian matrix of partial derivatives of
the measurement equation for the state and the measurement noise. The problem with this
kind of linearisation is that the distributions of random variables are no longer normal after
the nonlinear transformation. Often the EKF is used to estimate the SOC using an ECM or
the SOH based on estimating the capacity and internal resistance [14,17,33,34].

Another variant of approaches, generalized as sigma-point Kalman filters (SPKFs),
handles the nonlinear problem using a statistical approach. So, the SPKF uses multiple
sigma points depending on the dimensions of the state vector. For these points, the time and
measurement update is calculated, which means they are all transformed, and afterwards,
they are all used to estimate the current state vector. The advantage is that this filter does
not calculate Jacobians or Hessians without losing information and precision. SPKFs are dif-
ferentiated based on the selection rule of the sigma points in the central difference Kalman
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filter, unscented Kalman filter, or cubature Kalman filter [3,14,17,33,35,36]. However, to use
a model-based approach, a model is a central part of estimating the SOC.

3.1. Dynamic Model Description

The modelling of a system has multiple purposes. It supports the design, analysis,
verification, or validation of a system. In the case of BMS, it serves the purpose of analysing
the system in terms of diagnosing and prognosing the actual state of the battery system.
In the case of the model-based approach for SOC estimation, the model is used to calcu-
late the prediction, which is necessary to estimate the system’s internal state. Different
modelling approaches can be physio-chemical, equivalent circuits, or mathematical models.
The data that can be measured is essential, and on the other hand, how efficient is the
computation of the model?

Depending on the purpose, the model differs by the information needed to build the
model. They are often divided into black box and white box models. Black box models do
not need any system knowledge to model the behaviour. They are often represented by
empirical or mathematical models. In contrast, white box models are based on describing
the processes that lead to the specific behaviour of the system. These models could consist of
multiple differential equations. In other words, white box models are based on knowledge,
whereas black box models are based on data to represent the system’s behaviour. The hybrid
of these models is called the grey box model and uses both the knowledge and data-based
approaches to model the system’s behaviour. This approach helps to model a system where
some parts of the internal processes are known, and others are not. It is also used to simplify
a model to reduce its complexity and focus on parts where a diagnosis should be possible.

In terms of battery models, the different categories of models lead to electrochemical
models (white box), data-driven models such as neural networks (black box), or equivalent
circuit models with additional empirical models to reproduce the behaviour of battery cells.

The base of most electrochemical battery models is formed by the work by Doyle,
Fuller, and Newman described in [37]. They describe the model as having a one-dimensional
transport from the anode to the cathode, passing the polymer separator. Film formation
at the lithium/polymer interface is discarded to keep the complexity manageable. At
the same time, the transport is modelled via the concentrated solution theory, leading to
a binary electrolyte and a polymer solvent with one phase. Therefore, the transport in
the electrolyte is defined by the electrical conductivity, the transference number, and the
diffusion coefficient. These parameters depend on the concentration and could lead to
different physical properties. By doing so, the transport phenomena can be handled [37].
All in all, it is described such that it leads to a pseudo-two-dimensional problem based
on a one-dimensional problem on the micro- and macro-scales [38]. Since the process
is nonlinear and pseudo-two-dimensional, it results in an issue that is only numerically
solvable and, therefore, unsuitable for every task such as parameter estimation [38].

For further usage, the Doyle–Fuller–Newman model is simplified to form the so-
called single-particle model, which assumes a uniform reaction rate across the electrodes
and neglects the electrolyte dynamics [39]. Using these assumptions, the electrodes are
modelled as single particles [40]. Electrochemical models can be used in applications
such as SOH estimation based on that simplification. Further improvements have been
made to represent degradation based on solid electrolyte interface development, cracking,
and handling electrolyte dynamics [40–42]. However, they are still represented by complex
differential equations with many parameters.

Electrochemical models are mostly either single-particle models or pseudo-two-dimensional
models, which are mainly used for design and analysis because they need detailed infor-
mation on the battery structure, the materials, and the electrolyte [43]. They have also been
used for state estimation in some cases [44,45]. Nevertheless, they are complex and lack
usability when the information on the battery cell is limited.

Data-driven models include every kind of mathematical model that can be used to
reproduce the behaviour of a battery cell. They can be built up from neural networks,
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support vector machines, fuzzy-logic-based, or others. These models are often called black
box models since they do not deliver an analytical insight; their parameters are not relatable
to the system that should be modelled. However, they can have a good performance
computationally and error-wise. They can be used for monitoring, diagnostics, design,
and understanding physical phenomena. Nevertheless, depending on the application task,
the correct data to train the model is needed, which can be very time-consuming since the
data-driven models tend to overfit the data and cannot extrapolate the data to states beyond
the training data [6,36,46]. The widely used equivalent circuit models (ECMs) can represent
the dynamic behaviour resulting from the reaction’s electrochemical processes during
charge or discharge. Depending on the application, the ECM is employed as a straightfor-
ward model that is computationally efficient [47,48]. Two different approaches for ECMs try
to emulate the battery behaviour using mostly common electrical components such as resis-
tors, capacitors, and voltage sources. Their aim differs to a small extent, since one approach
is completely empirical and the other aims to model the behaviour with electrochemical
relations—the difference in the model generation lies in the underlying measurements.
ECMs with electrochemical relations start with electrochemical impedance spectroscopy
(EIS) measurements, and most empirical ECMs start with pulse measurements.

The laboratory measurements during testing included a capacity test, an OCV, and pulse
measurements. For electrochemical models, invasive measurements are needed. Neverthe-
less, it is still possible to identify the parameters of an ECM and data-driven models.

Overall, ECMs promise good computability, interpretability, and efficiency with a
reasonable amount of parameters, and, furthermore, they are often used in combination
with model-based state estimation approaches.

The boundary conditions must be considered when designing an ECM for a specific
application. That means, which measurements can be taken, which data can be collected,
where the model should be used, and what is expected of the model. Following the liter-
ature on the next steps of a BMS, it is the online diagnostics of battery cells, identifying
which processes lead to the current behaviour of the cell. Hence, the literature on modelling
for BMS usage seeks for at least a potent physics-based ECM [36] or even reduced-order
models of electrochemical models [40,44,45]. For most physics-based ECMs, at least EIS
measurements are needed. Speaking of the boundary conditions in an application, the mea-
surements’ sampling rates and resolutions are the most important for the model design
and the parameter estimation. Since no specific measurement schemes are taken in an ap-
plication, the boundary conditions reduce further to the resolution and rate. The resolution
in a BMS ranges from 8 bit to 16 bit, hence, theoretically, for a measurement in the range of
0 V to 5 V from 9.8 mV to 38 µV accuracy, but considering the noise from 16 mV to 300 µV
accuracy [49]. The sampling rate that is applied in electric vehicles depends on whether it
is a high-power application, where a faster rate is needed, or a high-energy application,
where a slower rate is feasible. Nevertheless, the rates range from 1 s−1 to 10 s−1 [49].
Specifically looking at the sampling rate, the number of electrochemical processes that
can be investigated shrinks. Taking account of the sampling rate, the following Figure 5
displays the electrochemical processes that can be modelled by showing the EIS, which
includes a small part of the charge transfer, the diffusion, and the change in crystalline
structure. This figure does not take the Nyquist–Shannon sampling theorem into account.

Different ECMs are still usable, considering the impedance spectra and sampling rate.
They can be of fractional order or can include multiple RC elements. These models can
be lumped. Since the paper’s main focus is not the modelling, the model used is a typical
two-RC model with an OCV part. This model is often used when a model-based state
estimation approach is followed [50,51], even of a lower order [33,52]. Overall the two-RC
model is able to model the EIS of a lithium-ion battery. Therefore, it is suitable to be used
as a model for the SOC estimation and the representation of the battery cell in the case of
dynamic battery cell behaviour.
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Figure 5. Electrochemical impedance spectra considering the sample time.

3.1.1. Dynamic Model Equations and Discretisation

This section states the model equations and their discretisation for the dynamic battery
cell model. The model is displayed in Figure 6. The differential equation describing
the model can be established by using Kirchhoff’s and Ohm’s laws and considering that
τ = R · C.

Figure 6. Battery model with two RC elements.

U(t) = UOC(t) + U0(t) + U1(t) + U2(t) (4)

U(t) = UOC(t) + R0i(t) + R1i(t)− τ1
dU1(t)

dt
+ R2i(t)− τ2

dU2(t)
dt

(5)

For the next step to obtain the equations needed, the differential equation is Laplace-
transformed using the law of linearity, leading to

U(s) = UOC(s) + R0i(s) +
R1

1 + τ1s
i(s) +

R2

1 + τ2s
i(s). (6)

By applying the bilinear transformation

s =
2
T

1− z−1

1 + z−1 (7)

and discretising every term on its own leads to the following results.
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Z{UOC(s)} = UOC(z) (8)

Z{U0(s)} = Z{R0i(s)} = R0i(z) (9)

Z{U1(s)} = Z
{

R1

1 + τ1s
i(s)
}

=
R1

1 + 2
T τ1

i(z) +
R1

1 + 2
T τ1

i(z)z−1 −
1− 2

T τ1

1 + 2
T τ1

U1(z)z−1. (10)

Z{U2(s)} = Z
{

R2

1 + τ2s
i(s)
}

=
R2

1 + 2
T τ2

i(z) +
R2

1 + 2
T τ2

i(z)z−1 −
1− 2

T τ2

1 + 2
T τ2

U2(z)z−1 (11)

The bilinear transformation is applied due to its stability and time-domain accuracy
advantages, which were tested in a simulation beforehand. Using the equations and
transforming them to the discrete-time domain, and formulating them in state space, leads
to a model that state estimation algorithms can handle:

SOC(k)
U1(k)
U2(k)

 =


1 0 0

0 1− 2
T τ1

1+ 2
T τ1

0

0 0 1− 2
T τ2

1+ 2
T τ2


SOC(k− 1)

U1(k− 1)
U2(k− 1)

+


1

CN
0

R1
1+ 2

T τ1

R1
1+ 2

T τ1
R2

1+ 2
T τ2

R2
1+ 2

T τ2

[ i(k)
i(k− 1)

]
(12)

U(k) = UOC(SOC(k)) + U1(k) + U2(k) + R0i(k). (13)

3.1.2. Parameterisation

Parameterisation is the process of extracting the model’s parameters from the measure-
ments. To be able to extract the parameters, every ageing cycle is frequently interrupted by
a check-up. Every check-up is preprocessed to obtain the measurement’s capacity, the OCV,
and the pulses. Before preprocessing, the measurements are imported and formatted
into a universal format because only the import function has to be changed if the saved
measurement file changes. The capacity is calculated from the 1C discharging; a CCCV
charge precedes that. Another CCCV charge follows this discharge and the hybrid test
phase of the incremental OCV and the HPPC pulse test. The OCV in the charging and
discharging directions can be estimated from the hybrid phase; see Figure 2 for an example
of the check-up. During the preprocessing, the check-up data, in a standardised import
data format, is separated into different parts, starting from the OCV voltages extracted
from the hybrid part from the resting phase of the incremental OCV to the relaxations of
the HPPC pulses that are used to determine the dynamic parameters of the battery model,
the battery internal resistance, the resistances of the RC elements, and its time constants.
By using the pulse relaxation, the change in OCV does not have to be included because
there is none during the relaxation. Furthermore, the capacity is directly extracted from
the 1C discharging, and the validation is extracted as well if present. The validation part is
only present for cells aged under dynamic regimes.

Open Circuit Voltage Modelling

The OCV is a central part of the model since it describes the midterm behaviour of a
battery if the battery behaviour is segmented into short-term, dynamic behaviour, mid-term,
OCV behaviour, and long-term, described by the ageing behaviour. There are different
approaches to modelling the OCV in the literature, ranging from tables to empirical models
such as polynomials or more electrochemical-based models [53–56]. For more information
on different models for OCV modelling, please refer, for example, to Pillai et al. [56].
To model the OCV, a table-based approach will be used, which can lead to a stable and
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easy method to represent the OCV when sampled correctly. The approach is based on the
inflection point method described by Sundaresan et al. [53]. A few changes were added to
the sampling to improve the performance. The following steps were followed to sample
the measured OCV curve:

1. Calculation of the signed curvature of the OCV according to Narula [57]

κ(x) =
x′′y′ − x′y′′

((x′)2 + (y′)2)3/2 (14)

2. Find roots of the curvature to segment the OCV. Therefore, calculate

κ(x) = 0 (15)

to obtain the roots. Add the first measurement point and roots to the samples.

samples = [x(0), κroots, x(end)] (16)

3. Delete the inner samples if the section range is lower than 5% of the SOC for minimum
section size.

4. Allocate the samples equally to the sections.
5. If there are still samples left:

(a) Calculate the error and curvature peaks per section;
(b) Add a sample to the section with the highest error;
(c) Distribute samples equidistantly in sections;
(d) Go to 5.

6. Finished sampling the OCV.

The main differences to Sundaresan et al. [53] is the formula for calculating the cur-
vature and the steps to distribute the samples, despite the equal distribution. Because the
approach described in the literature could lead to many samples in just two sections, even
if other sections would benefit from additional samples, this distribution depends on the
number of excess samples after the equal distribution. If no samples are left, the distribu-
tion of the excess samples is not conducted. Figure 7 displays the result of the sampling
compared to the measurement.

0.0 0.5 1.0 1.5 2.0 2.5
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2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25
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V 

[V
]

measurement
final samples
section boundaries

Figure 7. Sampling result of an OCV measurement.
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Dynamic Parameter Identification

The battery model’s dynamic parameters are the battery cells’ ohmic resistance, the re-
sistances belonging to the RC elements, and the time constants. The time constants are used
instead of the RC capacities because they are simpler for identifying boundaries, and the
distribution of relaxation times could be easily used for estimation of the start parameters.
The relaxation of the HPPC part of the check-up is used to identify the parameters. Iden-
tifying the parameters is divided into the preprocessing of the relaxation, the estimation
of the start parameters, and the fitting itself. The relaxation consists of switching from the
current pulse to the relaxation and the complete relaxation. The measurement is checked
for doubled data points and NaNs during preprocessing. Afterwards, the relaxation is freed
from the OCV by subtracting the last voltage of the relaxation. Because the relaxation is
1800 s long and sampled every 0.1 s, it consists of many samples and many of these samples
are part of the relaxed voltage. Many samples in this area work during the fitting process
as a weighting since the faster processes should be fitted as well. Logarithmic resampling
was used to have more samples at the beginning of the relaxation and fewer at the end.

Estimating the start parameters is essential; the better the start parameters, the better
the fit. In this case, estimating the start parameters is relatively complex. The overall process
consists of different steps starting with the estimation of the ohmic series resistance using

R0 =
U(t = 0.3 s)−U(t = 0 s)
I(t = 0.3 s)− I(t = 0 s)

. (17)

Then, the next step includes estimating the resistances and time constants of the
RC elements. This step includes calculating the so-called distribution of relaxation times
(DRT) to obtain meaningful parameters. Since no electrochemical impedance spectroscopy
was measured, the DRT is estimated by overfitting the relaxation with five RC elements,
calculating the impedance spectra using the fitted parameters and the impedance equation,
and calculating the DRT using the package pyDRTtools by Wan et al. [58]. The DRT is
evaluated for local peaks, whether they lie in the range of the boundaries used for fitting
the parameters later on. If they lie in the range of one of the ranges of the time constants,
the time constant is used as the starting parameter of the specific RC element time constant.
The resistance corresponding to the respective time constant is calculated by

URC,1 = Upp(t = 0)−Upp(t = 5τRC,1) (18)

RRC,1 = URC,1/Ipulse,t=0 (19)

for the first and the other RC elements

URC,n = Upp(t = 5τRC,n−1)−Upp(t = 5τRC,n) (20)

RRC,1 = URC,n/Ipulse(t = 0). (21)

where Upp is the preprocessed measured relaxation voltage, RRC,n is the resistance, and
τRC,n is the time constant of the n-th RC element. At this point, the start parameter estima-
tion is finished. For robustness, the start parameters for time constants are the mean of
their boundaries if no peak in the region of the boundaries is found.

Now, the data are fitted using the lmfit package by Newville et al. [59], applying the
minimizer with the Nelder–Mead algorithm. Only the parameters of the RC elements are
fitted, and the ohmic resistance is kept constant throughout the fitting process. Because the
fitting is performed on a relaxation process, the fitted model has to include the starting
voltage of the RC elements, because instead of having 0 V at the RC element, the capacity is
pre-charged by the previous current pulse. Therefore, the discrete equation for a single RC
element itself is as follows.
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U[k]RC,n = e
−t[k]
τRC,n U[k− 1]RC,n + RRC,n I[k]

(
1− e

−t[k]
τRC,n

)
, k = [1, size(t)] (22)

U[k]RC,n = RRC,n I[k](1− e
−tpulse
τRC,n ), k = 0 (23)

See Figure 8 for a start parameter result and a fitting result.
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Figure 8. Result of the start parameter estimation and the fitting.

These processes are applied to every check-up and the extracted relaxations.

3.2. Unscented Kalman Filter

In general, the UKF follows the same process as other filters, including the prediction
and update steps. Of course, these steps can be further divided into smaller substeps.
Its name is derived from the unscented transform, an approach used for the statistical
calculation of random variables that undergo a nonlinear transformation. Instead of
calculating the Jacobian and Hessian matrices, the UKF uses discrete samples, called sigma
points, that are projected through the transformation. By using weights, the mean and the
covariance can be calculated [60,61]. The general process is described here:

1. Initialization of the mean and the covariance with expectations, where x is the state vector.

x̂0 = E[x0] (24)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (25)

2. Prediction of the current state, including sampling and weight calculation.

(a) Calculate the sigma points based on the mean x̂k−1, depending on the dimen-
sion of the state vector and mean N, using the composite scaling factor λ:

Xk−1,i =


x̂k−1 , i = 0
x̂k−1 +

√
(N + λ)Pk−1 , i = 1, ...N

x̂k−1 −
√
(N + λ)Pk−1 , i = N + 1, ...2N

(26)

where the scaling factor is

λ = αβ(N + κ)− N (27)
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with α determining the spread of the samples, β depends on the expected type
of distribution, where for a Gaussian β = 2, and κ being the scaling factor,
which is usually equal to 3− N.

(b) Transform the samples using the model system equation (F) and the input (u)

X ∗k = F(Xk−1, uk−1). (28)

(c) Calculate the predicted mean x̂−k and covariance based on the samples by
using the weights Wm,i for the mean and Wc,i for the covariance in addition to
the process noise covariance Rp

x̂−k =
2N

∑
i=0

Wm,iX ∗k (29)

P−k =
2N

∑
i=0

Wc,i(X ∗k − x̂−k )(X
∗

k − x̂−k )
T + Rp (30)

and augment the samples with additive noise

Xk,i =


X ∗k,i , i = 0,
X ∗k,i,0 +

√
(N + λ)Rp , i = 1, ...N,

X ∗k,i,0 −
√
(N + λ)Rp , i = N + 1, ...2N.

(31)

(d) Calculate the output with the output equation of the model (H) using the
samples and calculate its mean with the weights:

Yk = H(Xk), (32)

ŷ−k =
2N

∑
i=0

Wm,iYk,i (33)

3. The measurement update calculates the new state of the model using the prediction,
the Kalman gain, and the measurement of the output. Furthermore, the measurement
noise is added.

(a) Calculate the Kalman gain:

Pyy,k =
2N

∑
i=0

Wc,i(Yk,i − ŷ−k )(Yk,i − ŷ−k )
T + Rm (34)

Pxy,k =
2N

∑
i=0

Wc,i(Xk,i − x̂−k )(Yk,i − ŷ−k )
T (35)

K = Pxy,kP−1
yy,k. (36)

(b) Calculate the state and covariance of the state of the model using the Kalman
gain and the measurement of the output (yk):

x̂k = x̂−k +K(yk − ŷ−k ) (37)

Pk = P−k −KPyy,kKT
k . (38)

(c) After the calculation of the current state, it is shifted to be the old state (x̂k−1),
and the same is performed for the covariance (Pk−1). Now, start all over again
with the prediction steps, and so on.

These process steps are applied to the model described in Section 3.1 to estimate the
internal cell states of the model consisting of the SOC and the overpotentials of the two RC
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elements. Due to instability outside the defined state boundaries, especially for the SOC,
because it influences different parts of the model, the states are bounded at low and high
SOCs. Otherwise, the Kalman filter deconverges fast. Now, the state estimation consists of
the SOC estimation based on the model using the UKF. It is extended by an SOH estimation
based on an ageing model.

4. SOH Estimation

As for the SOC estimation, the SOH estimation can be grouped into direct measure-
ments, model-based, and data-driven approaches. Direct measurements for the SOH
estimation consider an analysis based on the relation of the OCV and the SOC, where slight
changes over the degradation are identified. The analysis is called incremental capacity
analysis (ICA) and describes the differentiation of the charge over the voltage that leads to
peaks in the region of phase changes. The ICA is calculated from current measurements at
constant currents for a full or a partial discharge/charge cycle. The battery cell’s SOH can
be estimated by tracking the position, amplitude, and enveloped area [12,13]. Of course,
the change in these peaks has to be investigated prior to the application to know which
change belongs to which SOH. Another direct approach is the so-called cycle counter. Based
on the coulomb counter, a cycle counter could be established that counts the equivalent
full cycles during usage. Therefore, it is extended such that it only counts the charge in the
charge direction or the absolute value of the current in both the charging and discharging
directions and is divided by either the capacity or two times the capacity. To be able to
use this information correctly, many measurements have to be conducted to obtain the
relation between several equivalent full cycles and the SOH, because the trajectory of the
degradation highly depends on stress factors such as the current rate, the temperature,
the ∆DOD, and the mean voltage. Another approach is to use the relation of the internal
resistance with the ageing processes. This derives the SOH based on the measurement
of the internal resistance either from EIS measurements or pulses. The next group of
methods includes model-based approaches, divided into direct and indirect approaches,
where direct models that are used for direct estimation are, for example, semi-empirical,
empirical, and electrochemical ageing models used to estimate the SOH. Empirical and
semi-empirical models are developed based on ageing measurements considering different
stress factors. The model is fitted to the change in a parameter over time, or full-cycle
equivalents, i.e., the internal resistance or the capacity, and is used to calculate the current
SOH or RUL considering the cycles or the time at a specific stress factor. A weighted
coulomb-counter-based cycle counter can be used to track the influence of stress factors.
The same approach can be used if the empirical model is replaced with the degradation
data saved in a characteristic map [12,13,15]. By using a more sophisticated model such as
an electrochemical pseudo-two-dimensional model and different ageing improvements,
the extrapolation ability and, therefore, the prediction ability is improved for unseen
data. In addition, the model could be able to diagnose the ageing process. However,
due to their complexity and the involvement of many parameters and multiple partial
differential equations, such models are unsuitable for online usage. Therefore, research
focuses on simplifications and parameterisation [12,13]. Model-based approaches that
incorporate models are, in most cases, observers and filters. The model is used to predict
the measurement, where the model’s state consists of its parameters and not its SOC or
overpotential [6,14,33,34]. In the group of data-driven approaches, some parts of the direct
models can be used since they rely highly on data or machine learning approaches, such as
the support vector machine or neural networks. These algorithms can be used to directly
estimate the SOH based on measurements such as EIS or charge profiles that are measured
during the application [3,12,13,62]. A much more specialised approach for sequential data
is the recursive neural network (RNN). One central part of an RNN is parameter sharing,
meaning that parameters are shared between multiple parts of the model. The second
central part is that the network has connections to results in the past. Therefore, the present
values of a variable can influence its future values. Different approaches are considered to
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be RNNs [63]. These models are often used for RUL prediction and capacity degradation
prediction in general.

For this work, the decision is made to use a direct model-based approach, where
an ageing model is designed based on the measurements made and a cycle counter is
used to access the model. This approach is common and sometimes extended with a filter
or observer. The following sections describe the processing of the raw ageing data into
combined datasets and, from there, the ageing model and its usage in combination with
the cycle counter.

4.1. Ageing Data Processing

The fitting of the relaxations of each check-up leads to the identified dynamic pa-
rameters for various SOCs at different ageing states of each cell. For every stress factor
combination, at least two cells were used. For every check-up, parameters for the charg-
ing and discharging directions are collected from the HPPC parts’ relaxations during the
discharging and charging measurement of the incremental OCV. These datasets of each
cell are combined as if it is one cell’s data. At first, the charging and discharging values of
the parameters are combined and sampled to a fixed grid of SOCs. This is conducted in
two steps. At first, the data are fitted using a fifth-degree polynomial. Then, the model is
sampled with the original SOCs to be interpolated/extrapolated to the fixed grid of SOCs.
The fit of a polynomial is helpful because the SOCs of the parameters in the charging and
discharging directions differ, so by fitting a polynomial instead of calculating the mean,
the step of bringing both to a fixed grid at this point is skipped, and a kind of trend line is
estimated. The measurements represent the parameters for the charging and discharging
directions and the colour changes with the SOC. However, a polynomial of a relatively high
degree compared to the number of samples leads to problems resembling the behaviour
outside the given SOCs. By combining the fit and the extrapolation, the estimate outside
the given SOCs is more conservative. Another solution to the extrapolation can be the
clipping of the characteristic map. Figure 9 shows an example of this process’s result.
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Figure 9. Result of the combination of charging and discharging parameter values using fitting and
extrapolation. Different colours of measurements represent the SOC value the parameter is estimated
to have. The points belong to parameters estimated in the charging and discharging directions.

A similar approach combines the capacities of the cells aged under the same stress
factors over the full-cycle equivalents (FCEs). After combining the parameters for the
charging and discharging directions, the parameters can be displayed as a 3D map over
SOC and SOH. The following steps combine the maps of the different cells aged with the
same stress factors, resulting in maps with a fixed SOC and SOH, which makes it easier
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for later usage. During this process, the maps of the group of battery cells are fitted using
the lmfit package by defining a multidimensional polynomial. As before, this process
eliminates the step of bringing all of the maps to the same fixed SOH values (see Figure 10).
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Figure 10. Result of the combination of different cells using a multidimensional polynomial fit.

At this point, the data of the cells that share the same stress factors are combined into
a single dataset. The following steps include the design of the ageing model based on the
data and how the degradation-based change is combined with the battery model.

4.2. Ageing Model

The ageing model, in general, is kept very simple. A simple way to implement a model
is to create characteristic maps and access these maps with the extracted stress factors to
obtain the parameters’ changes. The previously preprocessed data are further processed to
obtain to the characteristic maps. For the characteristic map of the capacity, the data of the
capacities are normalised to the first value of each dataset for each stress factor combination
so that the graph corresponds to the SOH over the FCEs, as shown in Figure 11.
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Figure 11. Resulting characteristic map for the capacities.
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A similar approach is used for the other parameters, where at each ageing state
the mean is calculated and normalised to its initial value. The parameters, consisting of RC
resistances and time constants τ instead of the capacities, in addition to the battery cells’
internal resistance, do not follow a specific trend, see Figure 12. This is why the change in
the other parameters is often neglected, and the modelling focuses on changing the internal
resistance and the battery cell capacity.
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Figure 12. Resulting characteristic map for the dynamic parameters.

These characteristic maps are used to calculate the parameters’ changes during degra-
dation for the aggregated stress factors. These maps are combined with a simple method to
extract the stress factors during runtime to calculate the change and add it to the change in
the specific parameter. The feature extraction is performed by calculating the minimum
and maximum SOC for the DOD and the mean temperature and by summing up the SOC
and calculating the mean for a specified window based on the calculation of the FCE. The
overall process of the ageing model consists of the continuous calculation of the FCE and
stress factors that are fed into the characteristic map of the SOH over the FCE to obtain the
change in SOH and the current SOH as follows:

∆SOH = SOH(SOCmean, T, DOD, FCE[k])− SOH(SOCmean, T, DOD, FCE[k− 1]) (39)

SOH[k] = SOH[k− 1] + ∆SOH. (40)

The calculated SOH[k] and the SOH[k − 1] of the last update are used to obtain the
change in the dynamic parameters, P.

∆P = P(SOCmean, T, DOD, SOH[k])− P(SOCmean, T, DOD, SOH[k− 1]) (41)

P[k] = P[k− 1] + ∆P. (42)

By normalising the maps and calculating the change in the parameters, the battery
model can be initialised with parameter maps that describe the behaviour of the parameters
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for different temperatures and SOCs. These initial maps are not normalised for the basic
parameterisation. Therefore, the degradation of the parameters is included as a factor of
the initial maps.

5. Results and Discussion

The validation of the whole system, consisting of implemented models and algorithms,
is realised by iterating the data of the dynamically cycled cells. That means starting with
the first check-up and alternating through check-up and cycling data. To do so without
taking too much time, the data were resampled with a sampling rate of 1 s and the updating
of the feature extractor was set to every two full-cycle equivalents. The extraction result is
displayed in Figure 13.
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Figure 13. Features extracted over laboratory battery life. Check-ups are marked by a grey shaded area.

The figure displays the degradation process of the battery cell. Check-ups are marked
by a grey shaded area. During the degradation, the mean of the SOC is around 50% and
transitions to about 65%, whereas the DOD switches between 50%, 80%, and full cycles.
Smaller cycles are included, but since the feature extractor updates every two full-cycle
equivalents the system is experiencing in this duration of bigger cycles, the small cycles
are neglected. The temperature is, in general, about 25 °C and increases minimally during
degradation. During the degradation process, the SOH estimation error increases over
time. This is an expected behaviour since the ageing model does not represent dynamic
ageing, and the feature extractor does not capture the stress factors of smaller stress cycles.
The absolute error in the SOH rises to 1.2% at the end. The 1C capacity measured during
the check-ups is used as a reference for the SOH. The evolution of the SOH in comparison
to the reference and its absolute error is displayed in Figure 14.
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The error in the ageing model is included in the SOC estimation since the model for
the internal state prediction of UKF uses the capacity to calculate the current state vector,
including the SOC. This circumstance leads to an increasing error in the SOC estimation
of the degradation of the battery cell. Therefore, the SOC and SOH errors correlate as the
Pearson correlation coefficient confirms, with a value of 0.75 (see Figure 15). The RMSE of
the SOC is calculated for the dynamic sections of the check-ups because an SOC reference
based on the measured capacity of the corresponding check-up can be used.
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Figure 14. Comparison of the estimated SOH and the reference SOH.
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Figure 15. RMSE of the estimated SOC and SOH with their trendline and Pearson correlation coefficient.

Interpreting the diagram leads to the conclusion that the error will rise faster with
further degradation. It may then reach the limit of the implemented UKF. Nevertheless,
the error in the SOC estimation is minimal, being about 4% at its maximum. A regression
plot is generated to analyse the performance of the SOC estimation. The regression plot
displays the performance of the estimated SOC (SOCsim) in contrast to the reference SOC
(see Figure 16). When a marker is above the diagonal line, the SOC is overestimated.
Otherwise, it is underestimated. The SOC was resampled for visibility reasons, only
plotting every 300th estimate.



Batteries 2023, 9, 364 24 of 28

0.0 0.2 0.4 0.6 0.8 1.0
SOCref

0.0

0.2

0.4

0.6

0.8

1.0

SO
C s

im

SOH = 1.0
SOH = 0.95
SOH = 0.92
SOH = 0.9
SOH = 0.9
SOH = 0.88
SOH = 0.87
SOH = 0.86

Figure 16. Regression plot of the SOC for different ageing states.

The diagram shows that during ageing, the SOC estimation is increasing, but especially
in the range of the 20% to 60% SOC, the estimation has more outliers. Outliers might result
from the change in the OCV during ageing, which is not part of the model because it was
neglected during the system’s development. In addition to more outliers, the estimation
overestimates the SOC with increasing degradation. This overestimation results from
underestimating the degradation, leading to a higher SOH than the reference. Since the
measurement segments start fully charged, the cell discharges slower than the reference
suggests, resulting in the overestimation of the SOC.

Compared to other algorithms used in the literature, the system performs comparably
to other implementations. In general, the RMSE lies in the range of about 1% to 2% SOC
in the literature. The paper of Yang et al. [64] includes a survey for multiple approaches.
However, the approaches are tested in simple circumstances where the cell is cycled with
constant currents or schedules, such as the urban dynamic driving schedule that consists of
multiple constant current pulses. They are sometimes tested on dynamic driving schedules
such as the FUDS. They are only in rare cases validated on whole battery cell life and
especially a cell life with dynamic profiles.

6. Conclusions

The results showed that the approaches combined in a system for the SOC and SOH
estimation led to good results. The initial RMSE of the SOC is 1.75% and of the SOH
is 0.0014%. It increases over the degradation to 3.82% for the SOC and 1.26% for the
SOH. Therefore, the main problem is the evolution of the error over the cycling. There
are multiple steps to improve the performance over the degradation. First, the feature
extraction can be improved because it often labels a section with a non-dominant cycle.
In addition, a new approach for the ageing estimation might be used, at least another model
that does not rely on a look-up table. Furthermore, an approach to estimate the parameters
online can be implemented to improve the estimate of the current capacity and, therefore,
the SOC estimation over the degradation.

Overall the paper includes all the steps to set up an approach for SOC and SOH estima-
tion with additions such as another discretisation of the model, an enhanced OCV sampling
method, a specific parameterisation of the relaxation of the pulses, and a simple feature
extraction. In contrast to the literature, this paper includes all the steps from measurements
to modelling, parameterisation, ageing modelling, and bringing it together with feature
extraction to run through a whole battery degradation process. The degradation consists of
dynamic cyclic ageing and the check-ups in between, leading to the opportunity to analyse
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the influence of the SOH estimation on the SOC estimation and the performance of the
approaches considering dynamic load profiles. By that, the introduced dataset and the
displayed results are useful for testing algorithms over degradation and comparing them
to the results.
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