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I. CHARACTERIZATION   
 
 
 

 
 
Figure S1. Representations of the monoanionic structurally isomeric chromium-chelate 
complexes. a) Cr(1,3-PDTA) and Cr(1,2-PDTA) with the stereocenter highlighted in blue and b) the 
single-crystal X-ray diffraction structure of Cr(1,2-PDTA) with hydrogens, potassium, and waters 
omitted for clarity, showing 50% probability thermal ellipsoids. Analysis is qualitative as the 
enantiomeric nature of KCr(1,2-PDTA) prevented the acquisition of high-quality data.  
 
 
 
 
 

 
 
Figure S2. IR spectroscopy data of the examined Cr(1,2-PDTA) and Cr(1,3-PDTA) complexes. a) 
full spectrum, b) C=O stretching region.    
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Figure S3. Cyclic voltammetry of 5 mM KCr(1,2-PDTA) in 0.5 M KCl and 0.1 M 1,2-PDTA at pH 7.05 
for electrochemical kinetic studies. (a) Cyclic voltammograms at varying scan rates. (b) Peak 
reduction current density as a function of the square root of the scan rate, v1/2. (c) The natural 
log of the peak reduction current (ipc) as a function of the difference in potential between 
calculated E0 and the voltage at the peak reduction current density (Epc).  
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Figure S4. Cyclic voltammetry of 10 mM total equimolar mixed KCr(1,2-PDTA) and KCr(1,3-PDTA) 
at pH 7 on a bismuth-functionalized glassy carbon electrode. 
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II. FLOW BATTERY CELL DATA  
 
    
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
Figure S5. Redox flow battery (RFB) cell cycling data of 1 M KCr(1,2-PDTA) versus HCF. (Top) Cell 
voltage as a function of time for the first ten cycles. (Bottom) Discharge capacity and voltage and 
Coulombic efficiencies over the 50 cycles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S6. Open circuit potential vs. state-of-charge of the negolyte for 1 M KCr(1,2-PDTA). 
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Figure S7. Power data for the 1 M KCr(1,2-PDTA) cell. (Top) Discharge power density as a function 
of current density. (Bottom) Polarization curves demonstrating cell potential as a function of 
current density. The pulsing of the lines is caused by the pump action of the peristaltic pumps.  
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Figure S8. RFB cell cycling data of 1 M KCr(1,3-PDTA) versus HCF. (Top) Cell voltage as a function 
of time for the first ten cycles. (Bottom) Discharge capacity and voltage and Coulombic 
efficiencies over the 50 cycles. 
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Figure S9. Power data for the 1 M KCr(1,3-PDTA) cell. (Top) Discharge power density as a function 
of current density. (Bottom) Polarization curves demonstrating cell potential as a function of 
current density. 
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Figure S10. Voltage efficiency vs. current density for the 1 M KCr(1,2-PDTA), 1 M KCr(1,3-PDTA), 
and mixed 1 M cells. 
 
 
 

 
Figure S11. RFB cell cycling data of 1.5 M KCr(1,2-PDTA) versus HCF. (Top) Cell voltage as a 
function of time for the first ten cycles. (Bottom) Discharge capacity and voltage and Coulombic 
efficiencies across the 50 cycles. 
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Figure S12. UV-Vis spectra of 0.1 M KCr(1,2-PDTA) with 0.1 M 1,3-PDTA buffer electrolyte bulk 
electrolyzed to test for ligand exchange.  
 
 

 
Figure S13. RFB cell cycling data of the mixed electrolyte cell with a total 1 M Cr negolyte 
comprising 0.5 M KCr(1,2-PDTA) and 0.5 M KCr(1,3-PDTA) versus HCF. Cell voltage as a function 
of time for the first ten cycles. (Bottom) Discharge capacity and voltage and Coulombic 
efficiencies across the 50 cycles. 
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Figure S14. Power data for the mixed electrolyte cell with a total 1 M Cr negolyte comprising 0.5 
M KCr(1,2-PDTA) and 0.5 M KCr(1,3-PDTA) versus HCF. (Top) Discharge power density as a 
function of current density. (Bottom) Polarization curves demonstrating cell potential as a 
function of current density. 
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Figure S15. RFB cell cycling data of the mixed electrolyte cell with a total 2 M Cr negolyte 
comprising 1 M KCr(1,2-PDTA) and 1 M KCr(1,3-PDTA) versus HCF. (Top) Cell voltage as a function 
of time for the first ten cycles. (Bottom) Discharge capacity and voltage and Coulombic 
efficiencies across the 50 cycles. 
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Figure S16. Open circuit potential as a function of state-of-charge of the cell containing the 2 M 
mixed negolyte. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S17. UV-Vis analysis of 2 M cell before and after cycling.   
 
 
 
 
 
 
 



S15 
 

III. TABLES AND EQUATIONS 
 
Table S1. X-ray Crystallographic Table for KCr(1,2-PDTA). 

  2  

Formula  KCrN2O8H14C11 
fw, g/mol  437.367  
Temperature  100(2) K  
cryst. syst.  Monoclinic  
space group  P 1 21/c 1 
color  Dark Violet 
a (Å)  19.410(3)  
b (Å)  13.474(2)  
c (Å)  13.4160(16)  
α (deg)  90  
β (deg)  104.775(6) 
γ (deg)  90  
V (Å3)  3392.7(8)  
Z  8  
no. refl.  43130 
unique refl.  6665  
Rint  0.1690  
R1a (all data)  0.1690  
wR2b (all data)  0.1168  
R1 [(I > 2σ)]  0.0889  
wR2 [I > 2σ)]  0.0978  
GOFc  1.0828 
aR1 = Σ||Fo| − |Fc||/Σ|Fo|. bwR2 = (Σ(w(Fo

2 − Fc
2)2)/Σ(w(Fo

2)2))1/2. cGOF = (Σ w(Fo
2 − Fc

2)2/(n − p))1/2 
where n is the number of data and p is the number of parameters refined.  
 
Table S2. IR peaks of each complex in the C=O stretching region (1690-1600 cm-1). 
 

 Peak 1 / cm−1 Peak 2 / cm−1 Peak 3 / cm−1 

KCr(1,2-PDTA) 1690 1640 1621 
KCr(1,3-PDTA) 1662 1628 1600 
    

 
 
Table S3. UV-Vis peaks and respective molar absorptivities for KCr(1,2-PDTA) and KCr(1,3-PDTA). 
 

 Peak 1 (nm) / molar absorptivity 
(M−1 cm−1) 

Peak 2 (nm) / molar absorptivity 
(M−1 cm−1) 

KCr(1,2-PDTA) 391 / 105 541 / 191 
KCr(1,3-PDTA) 382 / 83 506 / 116 
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Table S4. Heterogeneous rate transfer constants (k0) and diffusion coefficients (Do) of KCr(1,2-
PDTA) and KCr(1,3-PDTA).1 
 

 Heterogeneous Electron 
Transfer Rate k0 (x10−4 cm s−1) 

Diffusion Coefficient Do (x 10−6 cm2 s−1) 

KCr(1,2-PDTA) 1.1 4.1 
KCr(1,3-PDTA) 1.7 6.2 

 
 
Table S5. Relevant electrolyte densities, viscosities, and area specific resistances (ASRs).  
 

 Density (g/ml) Viscosity (cP) ASR (Ω cm2) 

1 M KCr(1,2-PDTA) 1.1 1.4 1.6 
1 M KCr(1,3-PDTA) 1.22 2.22 1.7 
2 M Mixed 1.4 5.5 3.37 

 
 
 
 
Equation S1. Relationship of reduction potential with binding constant for Cr(III)/Cr(II)3: 

��� = ����������
�� +

��

�
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