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Abstract: The lithium-ion battery state of health (SOH) estimation is critical for maintaining reliable
and safe working conditions for electric vehicles (EVs). However, accurate and robust SOH estimation
remains a significant challenge. This paper proposes a multi-feature extraction strategy and particle
swarm optimization-nonlinear autoregressive with exogenous input neural network (PSO-NARXNN)
for accurate and robust SOH estimation. First, eight health features (HFs) are extracted from partial
voltage, capacity, differential temperature (DT), and incremental capacity (IC) curves. Then, qualita-
tive and quantitative analyses are used to evaluate the selected HFs. Second, the PSO algorithm is
adopted to optimize the hyperparameters of NARXNN, including input delays, feedback delays, and
the number of hidden neurons. Third, to verify the effectiveness of the multi-feature extraction strat-
egy, the SOH estimators based on a single feature and fusion feature are comprehensively compared.
To verify the effectiveness of the proposed PSO-NARXNN, a simple three-layer backpropagation
neural network (BPNN) and a conventional NARXNN are built for comparison based on the Oxford
aging dataset. The experimental results demonstrate that the proposed method has higher accuracy
and stronger robustness for SOH estimation, where the average mean absolute error (MAE) and root
mean square error (RMSE) are 0.47% and 0.56%, respectively.

Keywords: state of health; lithium-ion battery; machine learning; battery management system

1. Introduction

Vehicle electrification has been proven to be one of the most promising directions
to reduce carbon dioxide emissions and solve the energy crisis. With the advantages of
high power and energy density, high energy efficiency, and relatively long cycles of life,
Lithium-ion batteries (LiBs) have become the primary power source of electric vehicles
(EVs) [1]. However, during long-term cycling or storage, it is inevitable for LiBs to degrade,
resulting in performance degradation or safety problems. Therefore, an accurate estimation
of the state of health (SOH) is essential for the energy management system to maintain
safe and high-efficient working conditions for EVs. Generally, the degradation of LiBs is
an integrated consequence of internal and external factors. The internal factors mainly
include the loss of active material (LAM), the loss of lithium inventory (LLI), resistance
increase (RI), and solid electrolyte interface (SEI) growth [2,3]. Moreover, the external
factors include operating temperature, charge and discharge rate, discharge depth, and
cut-off voltage [4]. From the perspective of onboard applications, the loss of capacity and
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the increase of internal resistance are two widely used indicators to reflect the battery SOH,
expressed as follows:

SOHc =
Ct
C0
× 100%,

SOHr =
∣∣∣ REOL−Ract

REOL−RNEW

∣∣∣× 100%
(1)

where SOHc and SOHr represent the capacity-based SOH and resistance-based SOH,
respectively; Ct and C0 are the actual and nominal capacity, respectively; Ract denotes the
current resistance, and REOL and RNEW are resistances of the end-of-life (EOL) and new
battery, respectively. Compared to resistance-based SOH estimation methods, capacity-
based SOH estimation methods draw more attention because capacity directly decides the
driving range for EVs [5].

Generally, the existing SOH estimation methods can be divided into two categories,
as shown in Figure 1 [6]: the direct measurement methods, like the capacity measurement
method, internal resistance measurement test, and impedance measurement method, are
suitable for laboratory condition but not practical in actual operations. Indirect analytical
methods mainly include model-based, data-driven, and hybrid methods. According to
the modeling mechanism, the model-based method can be divided into equivalent circuit
model (ECM)-based method and electrochemical model (EM)-based method. The ECM
employs lumped components, such as resistors, capacitors, and voltage sources, to describe
the battery’s dynamic behavior [7]. It is one of the most promising approaches for online
battery parameter identification and state estimation, owing to its ease of implementation
and acceptable accuracy for EV applications. Based on the principle of ECM, a state
equation and an observe equation are established. Then, filter-based methods, such as
extended Kalman filter (EKF) [8] and unscented Kalam filter (UKF) [9], are used for online
SOH prediction. The EM aims to describe the thermodynamics, Li-ion diffusion process,
SEI film thickness, and side reaction kinetics inside the battery to realize the most accurate
battery modeling and state estimation theoretically. However, with many parameters to be
identified and partial differential equations, the onboard application of the EM-based SOH
estimation remains a significant challenge. The trade-off between model complexity and
accuracy still needs further research.
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Figure 1. Classification of SOH estimation methods.

With the development of artificial intelligence, the machine learning (ML)-based data-
driven method has gradually become the most popular method for SOH estimation [10].
The data-driven method can estimate battery states based on measured data. It does not
require pre-knowledge about the battery aging mechanism or the battery models mentioned
above, making it suitable and easily implementable for different LiBs. Typical procedures
for developing data-driven SOH estimation methods are shown in Figure 2. In short, the
first step is to conduct battery aging tests and collect raw data, such as voltage, current, and
temperature. Since the raw data cannot provide sufficient information to reflect SOH, it
cannot guarantee an accurate and robust SOH estimation either. The second step is hence to
extract high-related health features (HFs) from the raw data using different techniques, such
as model-based analysis, incremental curve analysis (ICA), and differential voltage analysis
(DVA). In addition, correlation analysis is applied to analyze the correlation of the HFs.
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After that, the HFs and the reference SOH constitute the training dataset. Subsequently,
different ML methods are used to learn and validate the nonlinear relationship between
the input features and output based on the training dataset. Finally, the established ML
algorithms can be used to estimate SOH for new data.
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Figure 2. Procedures for developing data-driven SOH estimation algorithms.

In summary, two key processes for building an accurate data-driven SOH estimation
method are health feature extraction and ML algorithm implementation. How to extract
high-related and easy-obtained features is the basis for developing a data-driven SOH
estimation method and has become a current research hotspot. The current selection of
aging features can be divided into three categories:

(1) Features extracted from voltage and temperature curves during the charging and
discharging process, especially the constant–current constant–voltage (CCCV) charg-
ing and constant–current (CC) discharging processes. For example, Cui et al. [11]
extracted eight HFs from the voltage and temperature curves during CC discharging
process and built a SOH estimation method. Liu et al. [12] used the discharging volt-
age difference of equal time intervals as an HF. However, the CC discharging mode
rarely occurs in practical applications, making these HFs unusable for EV operations.
Cao et al. [13] first analyzed the CC charging and constant–voltage (CV) charging
phases, respectively, and then extracted seventeen HFs. The results of Grey relational
analysis concluded that the HFs extracted from the CV phase were less closely related
to battery degradation. According to the geometrical analysis of the complete CCCV
charging profile, Yang et al. [14] extracted four HFs, such as the time of CC mode, the
time of CV mode, the slope of the curve at the end of CC charging mode, and the
vertical slope at the corner of the CC charging curve. Undeniably, the HFs extracted
from the complete CCCV charging profile can reflect the battery degradation, but for
the actual charging condition of EVs, the initial charging SOC is not necessarily 0%,
and the terminal charging SOC is not 100%.

(2) Features extracted from constructed curves, such as incremental capacity (IC) curve [15],
differential voltage (DV) curve [16], and differential temperature (DT) curve [17]. Take
the IC curve as an example. Because the IC curve has prominent peaks, many studies
have selected relevant features as the HFs to build data-driven SOH estimation meth-
ods. For example, Li et al. [18] extracted eleven HFs in the voltage range from 3.8 V
to 4.1 V at the voltage interval of 30 mV. Zhao et al. [19] selected the peak and valley
values as HFs to construct the SOH prediction method. Moreover, other geometrical
characteristics, such as the width of the peak [20], the area under the peak [21], and
the slope of the peak [22] are considered HFs. Although valuable features can be
extracted from these constructed curves, these curves are easily disturbed by noise
in actual operations. Additionally, an appropriate filtering algorithm is required to
smooth the original curve, and then accurate HFs can be identified.
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(3) Features obtained from electrochemical impedance, or parameters of the ECM, such as
polarization capacitance, polarization resistance, and ohmic resistance. For example,
Lyu et al. [23] utilized the recursive least squares (RLS) method to identify the param-
eters of the Thevenin model. The identified ohmic and polarization resistance were
used as HFs to train a linear regression model. Similarly, Yang et al. [24] chose ohmic
resistance, polarization resistance, polarization capacitance, and state of charge (SOC)
as the inputs of the particle swam optimization-least square support vector regression
(PSO-LSSVR) method to estimate SOH. Generally, these features need to be identified
using additional algorithms, which increases its difficulty in practical applications.

In addition, other HFs, such as sample entropy [25], and Kullback–Leibler distance [26],
are employed to reflect the aging states of LiBs. Based on the above review, there are some
principles to bear in mind when choosing HFs [27]: (1) suitability for practical working
conditions; (2) easy access to acquire; (3) strong adaptability and robustness; (4) considering
thermal factor; and (4) high relevant degree. Therefore, this paper employs a multi-feature
extraction strategy to extract HFs from partial charging voltage, capacity, and temperature
curves to match these principles.

After selecting HFs and constituting the training dataset, different data-driven meth-
ods are used to train the SOH estimation model. Widely used ML methods include:

(1) Shallow neural networks (NNs), such as backpropagation neural network (BPNN) [28],
extreme learning machine (ELM) [29], radial basis function neural network (RBFNN) [30],
are employed owing to their simple implementation.

(2) Deep learning (DL) methods, such as long-short term memory (LSTM) [31], gated
recurrent unit (GRU) [32], and convolutional neural network (CNN) [33], are utilized
owing to their superior accuracy, adaptation ability, and good generalization.

(3) Probabilistic-based methods, such as Gaussian process regression (GPR) [34], and
deep brief network (DBN) [13], are applied owing to their capability to provide the
uncertainty of the estimated value.

(4) Ensemble learning methods, such as random forest (RF) [17], AdaBoost [35], and
gradient boosting decision tree (GBDT) [36], are used because they do not easily fall
into over-fitting.

(5) Support vector machine (SVM)-based methods [37,38] are utilized owing to their
simple implementation and high accuracy.

Nonlinear autoregressive with exogenous input neural network (NARXNN) is a
subclass of the recurrent neural network (RNN), which is suitable for predicting complex
and nonlinear systems [39]. Compared to other RNNs, such as the LSTM and GRU,
the NARXNN has a more straightforward structure, fewer parameters, and reasonable
accuracy. Although many researchers employed the NARXNN for state of charge (SOC)
estimation [40–42], only a few researchers applied it for SOH estimation. For example,
Khaleghi et al. [43] utilized the open-mode NARXNN to capture the dependency between
the HFs and battery SOH. In another work, Cui et al. [11] built the closed-mode NARXNN
to estimate the battery SOH. Moreover, the existing methods have used a time-consuming
trial-and-error approach for finding the appropriate hyperparameters, which is inefficient.
Recently, an effective strategy for hyperparameter tuning has been to combine data-driven
algorithms and heuristic optimization techniques. For example, Ren et al. [44] utilized the
particle swarm optimization (PSO) algorithm to optimize the number of hidden neurons,
the learning rate, and the maximum epochs of the LSTM. Zhang et al. [45] employed the
PSO algorithm to optimize the kernel parameters (w and σ) of the RBFNN. Hossain et al. [46]
used the gravitational search algorithm (GSA) to find the best number of hidden neurons
of the ELM. Compared with other heuristic optimization techniques, the PSO algorithm
has the advantages of easy implementation, strong robustness, and global exploration.
Therefore, this paper attempts to use the PSO algorithm to find the best values of input
delays, feedback delays, and the number of hidden neurons of the NARXNN. Then the
NARXNN is employed to build a multi-feature-based SOH estimation model. In summary,
the main contributions of this paper are as follows:
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• To comprehensively describe the battery aging characteristics, a multi-feature extrac-
tion strategy is employed to extract HFs from partial voltage, capacity, and temperature
curves. Qualitative and quantitative analysis is used to evaluate the selected HFs.

• The performance of the NARXNN is highly dependent on the number of input delays,
feedback delays, and neurons in the hidden layer. Hence, the PSO algorithm is applied
to improve the training efficiency of NARXNN by searching for the optimal values of
input delays, feedback delays, and the number of hidden neurons.

• The SOH estimators based on a single feature and fusion feature are comprehensively
compared to verify the validity of the muti-feature extraction strategy. Moreover, to
verify the effectiveness of the proposed PSO-NARXNN, a simple three-layer BPNN
and a conventional NARXNN are built for comparison.

The remainder of the paper is organized as follows: Section 2 gives data analysis
and feature extraction. The related algorithms are introduced in Section 3. Results and
discussion are given in Section 4. Finally, Section 5 summarizes the conclusions.

2. Data Analysis and Feature Extraction
2.1. Oxford Battery Degradation Dataset

In this paper, a public dataset from the University of Oxford is utilized for LiBs aging
analysis and SOH estimation algorithm development. As introduced in Ref. [47], the
Oxford aging dataset contains measurements of battery aging data from eight Kokam
pouch batteries with a nominal capacity of 740 mAh, noted as cell 1 to cell 8. The negative
electrode material is graphite, and the positive electrode material is LiMO2 (where M means
a combination of Ni, Co, and Mn, commercially known as NMC) [48]. The cells were all
tested in a thermal chamber at 40 ◦C. The cells were exposed to a CCCV charging profile,
followed by a drive cycle discharging profile obtained from the urban Artemis profile.
Characterization measurements were taken every 100 cycles. The whole test procedure is
summarized in Table 1. The voltage, current, and temperature data is recorded at a sampling
interval of 1 s. More details can be found in Ref. [47]. The typical EOL threshold for LiBs is
when the SOH decreases to 80%, and the LiBs are suggested to be retired. Hence, only the
data with SOH higher than 80% are selected for LiBs aging analysis and SOH estimation
algorithm development, as depicted in Figure 3. It is worth noting that even though these
8 LiBs with the same cathode material use the same aging experimental settings, the aging
paths are significantly different. One possible reason for this phenomenon is internal
variations in material properties from cell manufacturing. Another reason could be the
effects of non-uniform environmental temperatures in the thermal chamber.

Table 1. Test schedule of the Oxford dataset [49].

Step 1: Characterization test

(1) 1 C cycles: Charge and discharge the battery with 1 C (740 mA) current.
(2) Pseudo-OCV: Charge and discharge the battery with C/18.5 (40 mA) current.

Step 2: Drive cycle test (repeat 100 times)

(1) Charge the battery with 2 C (1480 mA) current
(2) Discharge the battery with Artemis Urban driving profile (average current = 1.36 A).

Step 3: EOL judgment

(1) Repeat steps 1 and 2 until the cell loses at least 20% of its rated capacity.
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2.2. Health Feature Extraction

The proposed multi-feature extraction strategy will be explained in detail in this section.

2.2.1. Voltage Feature Extraction

The terminal voltage and capacity curves of cell 1 under different aging states are
shown in Figure 4. Note that only the CC charging phase is recorded in the Oxford dataset.
Additionally, as concluded in Ref. [13], the HFs extracted from CC charging phase are more
related to the battery SOH. Therefore, we only extract features from CC charging phase.
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Figure 4. (a) Terminal voltage curves of cell 1; (b) Charging capacity curves of cell 1.

As shown in Figure 4a, the time for LiBs to reach 4.2 V gradually decreases as the
number of cycles increases, which directly reflects the reduction in usable capacity. This
phenomenon can also be demonstrated in Figure 4b, where the charged capacity gradually
decreases with the battery SOH decreases. Thus, the charged time and charged capacity
of the CC phase can be selected as HFs. However, considering the practical operations of
EVs, LiBs are rarely charged from 0% to 100% SOC but in a specific SOC range (e.g., 40% to
80%). Therefore, the charged time and charged capacity from partial CC curves of voltage
varying from 3.8 V to 4.0 V (about 35% to 80% SOC) are selected as HFs to reflect the battery
degradation, denoted as T1 and Q1, respectively.

2.2.2. Temperature Feature Extraction

As shown in Figure 5a, the raw temperature curves under different aging states are
vulnerable to the impact of temperature sensor noise, resulting in difficulty in extracting
temperature-related features. Therefore, a finite difference method is utilized in this paper
to pre-process the raw temperature curves and then obtain the differential temperature
(DT) curves [17]. The expression is as follows:

DT(t) ≈ T(t + ∆)− T(t)
∆

(2)
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where ∆ is the pre-determined sample interval. Generally, when ∆ chooses a larger value,
the DT curves cannot present subtle temperature changes. However, if ∆ takes a smaller
value, the finite difference method cannot eliminate the influence of temperature sensor
noise and produce errors. After parameter tuning, the interval sampling ∆ = 40 s is selected
in this paper. In addition, a Gaussian filter is used to smooth the original DT curves to
eliminate the impact of noise further.
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Figure 5. (a) Raw temperature curves of cell 1; (b) Smoothed DT curves of cell 1.

Figure 5b shows the DT curve of cell 1 under different aging states. Overall, the
DT curve can be divided into three parts: (1) The DT curve first undergoes a period of
rapid ascent, reaching its first peak value (denoted as F1); (2) After that, it undergoes a
sharp decline and reaches its first valley value (denoted as F2); (3) Then, it experiences
a rapid increase. Note that the DT curve represents the temperature change rate during
the charging process. Thus, the entire DT curve shows a particular trend with the SOH
decreases. Specifically, the first peak value, F1, gradually decreases, and the voltage
corresponding to F1 (denoted as V1) increases with the SOH decreases. Moreover, the
voltage corresponding to the valley value F2 (denoted as V2) gradually declines with the
SOH decreases, but the valley value F2 does not show a clear upward or downward trend.
In addition, the voltage difference between F1 and F2 (denoted as ∆V) shows a decreasing
trend. As for the third part, although the DT curve shows an overall increasing trend and
then declines, health features are not noticeable. Overall, the first and second parts of the
DT curve present an obvious change with the SOH decreases. Therefore, the peak value F1,
the voltage corresponding to F1, the voltage corresponding to F2, and the voltage difference
∆V between them, are chosen as HFs to describe the battery degradation.

2.2.3. IC Feature Extraction

The ICA is a widely used method to analyze the aging mechanism of LiBs from
the electrochemical level. The IC curve is an effective tool for analyzing capacity loss
and extracting HFs. The most important function of ICA is translating the flat capacity
curve into the IC curve with clearly identifiable peaks, which can reflect the phase change
characteristics of LiBs during active material insertion and delamination. Usually, the
IC curve is obtained from the charging process under the CC charging phase by using a
differential equation:

IC =
dQ
dV

= I· dt
dV

(3)

where Q represents the capacity, V denotes the voltage, and t is the sampling time.
As shown in Figure 6b, there are two peaks in the IC curve’s middle range (e.g.,

3.4–4.0 V), and each peak can reflect the phase change inside the LiBs during the charging
process with a 1-C charging rate. It can be found that the area under the peaks decreases
with the cycle increases, indicating LAM and LLI [21]. In addition, the peak values decrease
with a clear trend. Note that compared with the first peak (between 3.5 V and 3.7 V), the
second peak (between 3.7 V and 4.0 V) shows a more noticeable trend during the aging
process. Therefore, the value of the second peak (denoted as P1) and the area under the
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second peak between 3.7 V and 4.0 V (denoted as A1) are chosen as HFs to describe the
degradation of battery capacity.
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Figure 6. (a) Charged capacity curves of cell 1; (b) Smoothed IC curves of cell 1.

2.2.4. Correlation Analysis

In summary, eight HFs are extracted from partial voltage, capacity, DT, and IC curves,
respectively, which can match the feature-selecting principles mentioned in the Introduction.
First, the voltage-related features are extracted from partial charging curves, which are
suitable for practical conditions and easy to obtain. Second, the temperature-related
features consider the thermodynamic factor. Third, the multi-feature extraction strategy
can improve adaptability and robustness. Figure 7 shows the tendencies of the eight HFs
of cell 1 with the increase of cycle numbers, which can reflect the qualitative relationship
between HFs and battery SOH. It can be seen that only the V1 shows an upward trend,
while other HFs all show a downward trend with the SOH decreases. In addition, HFs of
other cells show a similar change trend as in Figure 7.
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Figure 7. Relationship between HFs and battery degradation.

To further evaluate the correlation of the selected HFs quantitatively, the Pearson
correlation analysis is employed to calculate the correlation coefficient between the HFs
and battery SOH. The equation is as follows:

ρ =
∑n

i=1
(

Fi − F
)(

Ci − C
)√

∑n
i=1
(

Fi − F
)2

∑n
i=1
(
Ci − C

)2
(4)

where Fi is the sequence of HF, Ci is the sequence of battery SOH, F and C are their
average values.
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Table 2 summarizes the Pearson correlation coefficients between the HFs and battery
SOH of eight cells. Generally, the absolute value of the correlation coefficient is closer to 1,
indicating that the relational degree is greater. According to the correlation analysis results
in Table 2, the absolute Pearson correlation coefficients of the HFs of eight cells are all
greater than 0.9, indicating a high relational grade with the battery SOH. Therefore, using
these HFs to build a data-driven method for SOH estimation is reasonable.

Table 2. Correlation analysis results.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell8 Average

T1 0.9994 0.9977 0.9993 0.9978 0.9985 0.9973 0.9990 0.9979 0.9984

Q1 0.9992 0.9976 0.9994 0.9975 0.9985 0.9973 0.9990 0.09978 0.9983

F1 0.9080 0.9169 0.8520 0.8919 0.8476 0.8836 0.9084 0.9120 0.9010

V1 −0.9916 −0.9796 −0.9597 −0.9795 −0.9609 −0.9779 −0.9671 −0.9828 −0.9749

V2 0.9147 0.9185 0.8702 0.9149 0.9324 0.9162 0.9211 0.9447 0.9166

∆V 0.9538 0.9546 0.9334 0.9557 0.9538 0.9571 0.9695 0.9686 0.9558

P1 0.9647 0.9742 0.9682 0.9669 0.9719 0.9715 0.9658 0.9684 0.9690

A1 0.9890 0.9923 0.9894 0.9932 0.9926 0.9929 0.9908 0.9910 0.9914

3. Related Algorithms
3.1. Nonlinear Autoregressive with Exogenous Input Neural Network

NARXNN is a sort of RNN that can learn to predict one time series by means of giving
past values of the same time series and another time series called the external or exogenous
time series. The structure of NARXNN is depicted in Figure 8, where TDL represents the
time–delay line. According to the feedback mechanism of NARXNN, it can be regarded as
a variant of the Jordan NN [50]. The expression of NARXNN is as follows:

y(n) = fo[bo +
l

∑
h=1

who fh(bh +
du

∑
i=0

wihx(n− i) +
dy

∑
j=0

wjhy(n− j))) (5)

where fo(·) and fh(·) are activation functions of the output layer and hidden layer re-
spectively,

[
wih, wjh, who

]
and [bh, bo] are weights and biases between the corresponding

layers, du and dy represent the input and feedback delays, respectively, and l is the number
of hidden neurons.
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Figure 8. Structure of NARXNN [43].

The most important hyperparameters of NARXNN are the input delays, feedback
delays, number of hidden neurons, feedback mode, and training methods. In this paper, the
input delays, feedback delays, and the number of hidden neurons are optimized using the
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PSO algorithm (introduced in the next section). Regarding the training methods, Levenberg–
Marquardt (LM) and Bayesian regularization (BR) methods are the most convenient and
common functions. Referring to [11], BR is chosen as the training function in this study.
Regarding the feedback mode, there are two types: close and open. The former feeds
back the predicted output to the input, while the latter feeds back the target output to
the input. Although the open-mode NARXNN has a higher estimation theoretically, the
close-mode NARXNN is adopted in this work because of the unavailability of the actual
target in practical operations. In addition, the sigmoid transfer function and a linear transfer
function are used at the hidden layer and output layer, respectively [51].

3.2. Particle Swarm Optimization

PSO was first proposed by Kennedy and Eberhart in 1995 [52]. Owing to its advantages
of easy implementation and strong robustness, PSO has been employed in numerous
applications. The basic idea of PSO is to search for the best results of particles with optimal
values through an iterative process. Two locations are used for searching for the best
solutions in PSO. The first is obtained through the current iteration, denoted as local
best, pbest. The second is achieved in earlier iterations, denoted as global best, gbest. By
calculating the objective function of each particle, the best pbest can be found in every
iteration. Moreover, the best gbest can be found through a continuous update of particles.
The position and velocity of every particle are updated as follows:

vk+1
i = wvk

i + c1r1

(
pbest k

i − xk
i

)
+ c2r2

(
gbest k − xk

i

)
(6)

xk+1
i = xk

i + vk+1
i (7)

where vk
i and xk

i represent the velocity and position of ith particle at kth iteration, respec-
tively, pbest k

i is the optimal solution of ith particle at kth iteration, gbest k is the global
optimal solution of all particles until kth iteration, w represents weigh factor, r1 and r2 are
random numbers between 0 and 1, and c1 and c2 are positive learning factor.

3.3. Flowchart of the PSO-NARXNN

It is well-known that building a high-performance neural network requires appropriate
hyperparameter settings. As for the NARXNN, input delays, feedback delays, and the
number of hidden neurons are the three most essential hyperparameters determining its
overall performance. Hence, in this paper, the PSO algorithm is applied to improve the
performance of NARXNN by searching for the optimal value of input delays, feedback
delays, and the number of hidden neurons. The flowchart of the PSO-NARXNN is depicted
in Figure 9, and the specific steps are as follows:

Step 1: Data processing. Feature extraction and data normalization are the basis for
model training. In this paper, the eight HFs mentioned in Section 2.2 are first extracted,
then the Z-score normalization method is utilized to transform the original data to no-
dimensional forms.

Step 2: PSO algorithm is used to optimize the hyperparameters of NARXNN.

1. The main parameters of the PSO algorithm are assigned as follows: the particle
dimension D is 3, population size N is 10, maximum iteration M is 100, the boundary
limit of input and feedback delays is set between ‘1′ and ‘5′, and the boundary limit
of hidden neurons is set between ‘1′ and ‘20′. Then, the initial position is generated
randomly within the boundary.

2. According to the initial position, which contains the values of input delays, feedback
delays, and the number of hidden neurons, the NARXNN is trained based on BR
algorithm. The mean square error (MSE) is taken as the objective function to calculate
the fitness value, and the lowest value is considered ‘gbest’.
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3. The particle velocity and position are updated according to Equations (6) and (7), and
then the fitness value is calculated to update the ‘pbest’ and ‘gbest’. In addition, the
position of particles is verified by whether they are situated in the boundary.

4. If the termination conditions are met, the algorithm ends and outputs the optimization
results; otherwise, return to 3 in Step 2.

Step 3: The optimized hyperparameters are used to train the NARXNN. Then, the
trained NARXNN is tested based on the testing datasets. Moreover, several statistical
metrics are used to evaluate the model error. The experimental results will be discussed in
the next section.
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Figure 9. Flowchart of the PSO-NARXNN.

Note that MATLAB version 2022b (MathWorks, Natick, MA, USA) is used to develop
all related algorithms proposed in this paper.

4. Results and Discussion

This section discusses the experimental results of the proposed muti-feature extraction
strategy and PSO-NARXNN for SOH estimation. It should be noted that the reference SOH
is calculated based on the CC charging characteristic test, as summarized in Table 1. Several
statistical metrics, such as the mean absolute error (MAE), the root mean square error
(RMSE), and the maximum error (MaxE), are employed to evaluate the estimation results
quantitatively. The MAE can measure the average error size, while the RMSE describes the
dispersion and convergence performance. The expressions are as follows:

MAE =
1
N

N

∑
i=1

∣∣∣ŜOHi − SOHi

∣∣∣ (8)
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RMSE =

√√√√ 1
N

N

∑
i=1

(
ŜOHi − SOHi

)2
(9)

where ŜOHi represents the predicted value, SOHi represents the reference value, and N is
the number of samples.

To fully use the Oxford aging dataset and verify the generalization of the proposed
SOH estimation method, the aging datasets of eight cells are constructed into eight groups
for experiments. For example, experimental group 1 represents that the aging dataset
of cell 1 is used as a training dataset for model training. Then, the aging datasets of the
other seven cells are used as testing datasets. In this way, the feasibility of the selected
HFs and the generalization of the proposed SOH method can be evaluated comprehen-
sively.Sections 4.1.1–4.1.3 explain the results of group 1, and Section 4.1.4 gives the results
of the other seven experimental groups.

4.1. Results
4.1.1. Optimal Parameters

Firstly, the optimal values of input delays, output delays, and the number of hidden
neurons are optimized by the PSO algorithm. The convergence curve is shown in Figure 10.
It can be seen that the minimum value of the objective function is achieved after 32 iterations
when the relative change in the objective function value over the last iteration is less than
the tolerance. Moreover, the optimal values of input delays, output delays, and the number
of hidden neurons are attained as 1, 2, and 15, respectively. Then, the NARXNN is trained
using the optimal values and compared with other algorithms in the following sections.
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Figure 10. Convergence curve of PSO algorithm.

4.1.2. Comparison with Different Feature Extraction Strategies

As mentioned in the Introduction, health feature extraction is essential for building a
high-performance SOH estimation model. To verify the effectiveness of the proposed multi-
feature extraction strategy, the voltage, temperature, IC, and fusion features are separately
used to train the PSO-NARXNN and compared in this section. The SOH estimation results
based on different feature extraction strategies are shown in Figure 11, and the statistical
metrics are given in Table 3.
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Figure 11. SOH estimation results of different feature extraction strategies.

Table 3. Summary of MAE and RMSE of different feature extraction strategies.

Cell
Voltage Temperature IC Fusion

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

1 0.29 0.36 0.16 0.20 0.18 0.26 0.09 0.116

2 0.51 0.57 0.29 0.39 0.90 1.06 0.84 0.95

3 0.79 0.87 1.24 1.35 0.43 0.49 0.17 0.22

4 1.21 1.34 1.96 2.27 0.47 0.59 0.28 0.36

5 0.51 0.59 0.24 0.31 1.03 1.16 0.85 1.01

6 0.17 0.22 0.67 0.81 0.71 0.83 0.65 0.74

7 1.40 1.60 2.82 3.04 0.73 0.94 0.55 0.66

8 0.98 1.10 1.56 1.80 0.43 0.56 0.32 0.41

Average 0.73 0.83 1.12 1.27 0.61 0.73 0.47 0.56

Overall, the fusion feature-based method can obtain accurate and robust estimation
results under all testing datasets. In contrast, single feature-based methods can only achieve
acceptable estimation results on specific testing datasets. For example, the temperature
feature-based method can obtain great estimation accuracy for cell 2 and cell 5 with the
MAEs less than 0.3% and RMSEs less than 0.4%. However, the estimation results of other
cells are the worst, where the MAEs of cell 3, cell 4, cell 7, and cell 8 are 1.24%, 1.96%, 2.82%,
and 1.56%, respectively, while the RMSEs are 1.35%, 2.27%, 3.04%, and 1.80%, respectively.
Moreover, the MaxE of cell 7 exceeds 4%, which is unacceptable. The DT curve can reflect
the thermodynamic characteristics of LiBs during the degradation process. However, the
differential operation may magnify the noise in measurement, and the filtering algorithm
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may influence the feature extraction process. Thus, only using the temperature feature
cannot obtain accurate and robust estimation results for all testing datasets. Regarding the
voltage feature, the overall estimation performance is better than the temperature feature,
according to the error curves in Figure 11. However, only using the voltage feature cannot
guarantee the estimation robustness under different testing datasets. It can be seen that the
MAE of cell 6 achieves the lowest value, while the MAEs of cell 4 and cell 7 exceed 1%. The
MaxEs of cell 4 and cell 7 exceed 2%. Regarding the IC feature, the IC curve can describe
the electrochemical characteristics of LiBs during the aging process. It can be seen that the
overall SOH estimation results based on the IC feature are better than the temperature and
voltage features, especially for cell 3, cell 4, cell 7, and cell 8. However, compared with the
fusion feature-based method, the error curves of the IC feature-based method show more
fluctuations, resulting in larger RMSEs and MaxEs, where the MaxEs of cell 2, cell 5, and
cell 7 exceed 2%. Finally, the multi-feature extraction strategy can fully use the advantages
of different kinds of features and avoid their disadvantages, resulting in more accurate
and robust estimation results. It can be seen from Figure 12 that although the MAEs of the
fusion feature-based method for cell 2 and cell 5 are not the lowest, it remains within 1%.
Moreover, the fusion feature-based method can obtain the best estimation performance for
other cells. The average MAE of the fusion feature-based method is 0.47%, which is 57.79%,
35.63%, and 22.73% lower than the temperature, voltage, and IC feature-based methods,
respectively. As such, the effectiveness of the proposed multi-feature extraction strategy is
verified based on the above analysis.
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Figure 12. (a) MAE of different feature extraction strategies; (b) RMSE of different feature extrac-
tion strategies.

4.1.3. Comparison with Different Algorithms

As concluded in Section 4.1.1, the optimal values of input delays, feedback delays,
and the number of hidden neurons are optimized by the PSO algorithm. To verify the
effectiveness of the optimal hyperparameters, a conventional NARXNN whose input delays,
feedback delays, and the number of hidden neurons are randomly assigned is built for
comparison. Additionally, to further verify the validity of the selected HFs, a simple three-
layer BPNN is trained for comparison, too. For a fair comparison, the hyperparameters
and training settings of the above two methods, including the number of hidden neurons,
activation function, and training method, are entirely consistent with the PSO-NARXNN
method. Figure 13 shows the SOH estimation results, and Figure 14 visually compares the
MAE and RMSE of the above three methods. The statistical metrics are given in Table 4.
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Figure 13. SOH estimation results of different algorithms.
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Figure 14. (a) MAE of different algorithms; (b) RMSE of different algorithms.

According to the SOH estimation curves shown in Figure 13, the estimated SOH of the
three methods can generally follow the aging path. However, the SOH curves estimated
based on the PSO-NARXNN method have better consistency and smoothness with the real
SOH trajectory. In contrast, the estimated curves based on the BPNN and conventional
NARXNN methods show different degrees of fluctuations. Specifically, regarding the BPNN
method, the MAEs of all cells are less than 1%, and only the RMSE of cell 2 exceeds 1%,
indicating 1.10%. Moreover, the MAEs of cell 4 and cell 5 achieve the lowest values among
the three methods. Therefore, the effectiveness of the proposed multi-feature extraction
strategy is further verified because a simple BPNN can obtain a relatively satisfactory
estimation performance. However, the MaxEs of the BPNN method are all larger than 2%,
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and the estimated SOH curves show significant fluctuations, especially during the EOL of
LiBs, according to the error curves in Figure 13. As a result of the fluctuation, the BPNN
method has an average MAE and RMSE of 0.64% and 0.84%, which are larger than the other
two methods. Regarding the conventional NARXNN method, it can achieve an overall
better performance in comparison to the BPNN method. Especially, the estimation errors
of cell 3 and cell 7 are reduced to a larger extent. The average MAE is 0.60%, 6.7% lower
than the BPNN method. Moreover, the average RMSE is 0.70%, which is 16.7% lower than
the BPNN method. In addition, according to the error curves in Figure 13, the MaxEs of the
conventional NARXNN method are all less than those of the BPNN method, showing a
more robust estimation result. This is because the feedback mechanism of the NARXNN
can learn information from the past values of output and previous values of exogenous
input data. Regarding the PSO-NARXNN, it can be seen from Figure 14 that all MAEs
and RMSEs are reduced in comparison to the conventional NARXNN. The error curves
in Figure 13 also demonstrate that the PSO-NARXNN has an overall better estimation
performance than the conventional NARXNN. The MAE of cell 3 reaches the lowest value,
0.17%. The average MAE and RMSE are 0.47% and 0.56%, which are 21.67% and 20% lower
than the conventional NARXNN method and 26.56% and 33.33% lower than the BPNN
method. Therefore, the effectiveness of the PSO algorithm is verified.

Table 4. Summary of MAE and RMSE of different algorithms.

Cell
BPNN NARXNN PSO-NARXNN

MAE RMSE MAE RMSE MAE RMSE

1 0.06 0.33 0.14 0.19 0.09 0.116

2 0.95 1.10 0.88 1.00 0.84 0.95

3 0.45 0.88 0.27 0.32 0.17 0.22

4 0.23 0.44 0.39 0.45 0.28 0.36

5 0.71 0.88 0.93 1.09 0.85 1.01

6 0.76 0.95 0.69 0.80 0.65 0.74

7 0.84 0.98 0.66 0.76 0.55 0.66

8 0.52 0.64 0.43 0.51 0.32 0.41

Average 0.64 0.84 0.60 0.70 0.47 0.56

In summary, by comparing the BPNN and conventional NARXNN methods, the
effectiveness of the multi-feature extraction strategy is further demonstrated. Moreover, by
comparing the conventional NARXNN and PSO-NARXNN methods, the effectiveness of
the optimal values by the PSO algorithm is verified.

4.1.4. Results of Other Experimental Groups

As explained at the beginning of Section 4, there are eight experimental groups to
comprehensively evaluate the effectiveness of the proposed multi-feature extraction strat-
egy and PSO-NARXNN model. Section 4.1.2 and 4.1.3 has discussed the experimental
results of group 1, which uses the aging dataset of cell 1 to train the model, and then
the aging datasets of the other seven cells to test it. In this section, the results of other
experimental groups are explained. Owing to space limitation, the average MAE and RMSE
of 7 experimental groups are given in Table 5, and Figure 15 intuitively compares them.
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Table 5. Summary of MAE and RMSE of other experimental groups.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Average

MAE 0.47 0.71 0.49 0.55 0.69 0.57 0.74 0.48 0.59

RMSE 0.56 0.77 0.58 0.65 0.79 0.63 0.80 0.54 0.66
Batteries 2022, 8, x FOR PEER REVIEW 18 of 21 
 

 

Figure 15. Comparison of MAE and RMSE of other experimental groups. 

Table 5. Summary of MAE and RMSE of other experimental groups. 

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Average 

MAE 0.47 0.71 0.49 0.55 0.69 0.57 0.74 0.48 0.59 

RMSE 0.56 0.77 0.58 0.65 0.79 0.63 0.80 0.54 0.66 

Table 6. Comparison with other similar works. 

Method Ref. MAE RMSE MaxE 

GRU-CNN [53] 0.62 - 1.62 

GRU [49] 0.73 0.86 1.75 

GPR [54] 0.83 1.13 - 

RF regressor  [17] 0.64 0.70 - 

SRU-decoder3 [55] 0.46 0.51 1.02 

PSO-NARXNN - 0.47 0.56 1.48 

4.2. Discussion 

The above results demonstrate the validity of the multi-feature extraction strategy 

and the performance of the PSO-NARXNN for SOH estimation, but there are still some 

limitations and shortcomings. First, the selected HFs and the proposed method are veri-

fied on one type of LiB. The feasibility on other types of LiBs needs to be further validated. 

Second, it can be concluded from Section 4.1.3 that a simple three-layer BPNN can obtain 

a relatively satisfactory estimation accuracy when the HFs are reasonable. Therefore, how 

to further optimize the HFs and then achieve high-precision estimation using only a sim-

ple algorithm deserves further investigation. Third, this research only focuses on SOH 

estimation methods for cell, while SOH estimation methods for the battery pack are not 

covered. More studies need to determine whether the selected HFs are suitable for battery 

pack SOH estimation. Additionally, the computation requirements would become larger 

when applying the cell estimation method to pack estimation. How to maintain a trade-

off between model accuracy and complexity deserves further investigation. Therefore, our 

future work will employ other aging datasets, such as the NASA dataset [56] and CALCE 

(Center Advanced Life Cycle Engineering) dataset [57], to validate the feasibility of the 

proposed multi-feature extraction strategy as well as the PSO-NARXNN. In addition, 

SOH estimation methods for the battery pack will be investigated based on the research 

in this paper. 

5. Conclusions 

To improve the SOH estimation performance, this paper proposes a multi-feature 

extraction strategy and PSO-NARXNN for accurate SOH estimation of LiBs. Firstly, eight 

MAE
RMSE

0

0.2

0.4

0.6

0.8

Group number
1 2 3 4 5 6 7 8 Average

Figure 15. Comparison of MAE and RMSE of other experimental groups.

As shown in Figure 15, it can be seen that average MAE and RMSE are all less
than 1%, which means that no matter which cell aging dataset is used to train the PSO-
NARXNN SOH estimation model, it can achieve excellent estimation accuracy for other
aging datasets. This result demonstrates the generalization of the proposed PSO-NARXNN
SOH estimation method and proves that the multi-feature extraction strategy is valid
for different cells. This conclusion also coincides with the observation in the above two
sections. To further validate the superior performance of the proposed PSO-NARXNN
method, similar methods, especially those with SOH estimation works based on the Oxford
dataset, are compared in Table 6. It is evident from Table 6 that the proposed method has
higher or at least comparable accuracy than those of other existing approaches. In addition,
as explained in the Introduction, the NARXNN has a more straightforward structure and
fewer parameters than the GRU, CNN, and RF regressor.

Table 6. Comparison with other similar works.

Method Ref. MAE RMSE MaxE

GRU-CNN [53] 0.62 - 1.62

GRU [49] 0.73 0.86 1.75

GPR [54] 0.83 1.13 -

RF regressor [17] 0.64 0.70 -

SRU-decoder3 [55] 0.46 0.51 1.02

PSO-NARXNN - 0.47 0.56 1.48

Overall, the analysis above comprehensively verifies the effectiveness of the multi-
feature extraction strategy and the proposed PSO-NARXNN SOH estimation method on
the Oxford aging dataset.

4.2. Discussion

The above results demonstrate the validity of the multi-feature extraction strategy
and the performance of the PSO-NARXNN for SOH estimation, but there are still some
limitations and shortcomings. First, the selected HFs and the proposed method are verified
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on one type of LiB. The feasibility on other types of LiBs needs to be further validated.
Second, it can be concluded from Section 4.1.3 that a simple three-layer BPNN can obtain
a relatively satisfactory estimation accuracy when the HFs are reasonable. Therefore,
how to further optimize the HFs and then achieve high-precision estimation using only a
simple algorithm deserves further investigation. Third, this research only focuses on SOH
estimation methods for cell, while SOH estimation methods for the battery pack are not
covered. More studies need to determine whether the selected HFs are suitable for battery
pack SOH estimation. Additionally, the computation requirements would become larger
when applying the cell estimation method to pack estimation. How to maintain a trade-off
between model accuracy and complexity deserves further investigation. Therefore, our
future work will employ other aging datasets, such as the NASA dataset [56] and CALCE
(Center Advanced Life Cycle Engineering) dataset [57], to validate the feasibility of the
proposed multi-feature extraction strategy as well as the PSO-NARXNN. In addition, SOH
estimation methods for the battery pack will be investigated based on the research in
this paper.

5. Conclusions

To improve the SOH estimation performance, this paper proposes a multi-feature
extraction strategy and PSO-NARXNN for accurate SOH estimation of LiBs. Firstly, eight
HFs are extracted from partial voltage, capacity, DT, and IC curves to reflect the battery
aging process comprehensively. Then, qualitative and quantitative analyses are used to
evaluate the effectiveness of the selected HFs. Second, owing to the advantages of simple
structure, easy implementation, and high estimation accuracy, the NARXNN is adopted
to build an accurate SOH estimation model. To improve the training efficiency, the PSO
algorithm is applied to optimize the hyperparameters of NARXNN, including input delays,
feedback delays, and the number of hidden neurons. Finally, the proposed multi-feature
extraction strategy and PSO-NARXNN are systematically validated using the Oxford
aging dataset. The results show that in comparison to a simple three-layer BPNN and a
conventional NARXNN, the proposed PSO-NARXNN can achieve higher accuracy and
stronger robustness, where the average MAE and RMSE of eight experimental groups are
0.59% and 0.66%, respectively.

Our future work will use other types of LiBs to validate the proposed multi-feature
extraction strategy and PSO-NARXNN method. Moreover, the multi-feature extraction
strategy will be further optimized, and a simpler algorithm will be used for accurate SOH
estimation. Then, the optimized algorithm will be used for battery pack SOH estimation.

Author Contributions: Conceptualization, Z.R. and C.D.; Funding acquisition, C.D. and W.R.;
Methodology, Z.R.; Software, Z.R.; Supervision, C.D. and W.R.; Validation, Z.R.; Visualization,
Z.R.; Writing—original draft, Z.R.; Writing—review and editing, Z.R., C.D. and W.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key R&D project of Hubei Province China, grant num-
ber 2021AAA006; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology
Guangdong Laboratory, grant number XHD2020-003.

Data Availability Statement: The data of this paper are available on the following website: https:
//ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac (accessed on 2 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Balasingam, B.; Ahmed, M.; Pattipati, K. Battery Management Systems-Challenges and Some Solutions. Energies 2020, 13, 2825.

[CrossRef]
2. Pastor-Fernández, C.; Yu, T.F.; Widanage, W.D.; Marco, J. Critical Review of Non-Invasive Diagnosis Techniques for Quantification

of Degradation Modes in Lithium-Ion Batteries. Renew. Sustain. Energy Rev. 2019, 109, 138–159. [CrossRef]

https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac
https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac
http://doi.org/10.3390/en13112825
http://doi.org/10.1016/j.rser.2019.03.060


Batteries 2023, 9, 7 19 of 21

3. Waldmann, T.; Iturrondobeitia, A.; Kasper, M.; Ghanbari, N.; Aguesse, F.; Bekaert, E.; Daniel, L.; Genies, S.; Gordon, I.J.;
Löble, M.W.; et al. Review—Post-Mortem Analysis of Aged Lithium-Ion Batteries: Disassembly Methodology and Physico-
Chemical Analysis Techniques. J. Electrochem. Soc. 2016, 163, A2149–A2164. [CrossRef]

4. Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A Review on the Key Issues of the Lithium Ion Battery Degradation
among the Whole Life Cycle. eTransportation 2019, 1, 100005. [CrossRef]

5. Che, Y.; Deng, Z.; Li, P.; Tang, X.; Khosravinia, K.; Lin, X.; Hu, X. State of Health Prognostics for Series Battery Packs: A Universal
Deep Learning Method. Energy 2022, 238, 121857. [CrossRef]

6. Xiong, R.; Li, L.; Tian, J. Towards a Smarter Battery Management System: A Critical Review on Battery State of Health Monitoring
Methods. J. Power Sources 2018, 405, 18–29. [CrossRef]

7. Ren, Z.; Du, C.; Wu, Z.; Shao, J.; Deng, W. A Comparative Study of the Influence of Different Open Circuit Voltage Tests on
Model-Based State of Charge Estimation for Lithium-Ion Batteries. Int. J. Energy Res. 2021, 45, 13692–13711. [CrossRef]

8. Vennam, G.; Sahoo, A.; Ahmed, S. A Novel Coupled Electro-Thermal-Aging Model for Simultaneous SOC, SOH, and Parameter
Estimation of Lithium-Ion Batteries. In Proceedings of the 2022 American Control Conference (ACC), Atlanta, GA, USA,
8–10 June 2022; pp. 5259–5264.

9. Zeng, M.; Zhang, P.; Yang, Y.; Xie, C.; Shi, Y. SOC and SOH Joint Estimation of the Power Batteries Based on Fuzzy Unscented
Kalman Filtering Algorithm. Energies 2019, 12, 3122. [CrossRef]

10. Sui, X.; He, S.; Vilsen, S.B.; Meng, J.; Teodorescu, R.; Stroe, D.I. A Review of Non-Probabilistic Machine Learning-Based State of
Health Estimation Techniques for Lithium-Ion Battery. Appl. Energy 2021, 300, 117346. [CrossRef]

11. Cui, Z.; Wang, C.; Gao, X.; Tian, S. State of Health Estimation for Lithium-Ion Battery Based on the Coupling-Loop Nonlinear
Autoregressive with Exogenous Inputs Neural Network. Electrochim. Acta 2021, 393, 139047. [CrossRef]

12. Liu, D.; Zhou, J.; Liao, H.; Peng, Y.; Peng, X. A Health Indicator Extraction and Optimization Framework for Lithium-Ion Battery
Degradation Modeling and Prognostics. IEEE Trans. Syst. Man, Cybern. Syst. 2015, 45, 915–928. [CrossRef]

13. Cao, M.; Zhang, T.; Wang, J.; Liu, Y. A Deep Belief Network Approach to Remaining Capacity Estimation for Lithium-Ion Batteries
Based on Charging Process Features. J. Energy Storage 2022, 48, 103825. [CrossRef]

14. Yang, D.; Zhang, X.; Pan, R.; Wang, Y.; Chen, Z. A Novel Gaussian Process Regression Model for State-of-Health Estimation of
Lithium-Ion Battery Using Charging Curve. J. Power Sources 2018, 384, 387–395. [CrossRef]

15. Li, X.; Wang, Z.; Yan, J. Prognostic Health Condition for Lithium Battery Using the Partial Incremental Capacity and Gaussian
Process Regression. J. Power Sources 2019, 421, 56–67. [CrossRef]

16. Wang, Z.; Yuan, C.; Li, X. Lithium Battery State-of-Health Estimation via Differential Thermal Voltammetry with Gaussian Process
Regression. IEEE Trans. Transp. Electrif. 2021, 7, 16–25. [CrossRef]

17. Lin, M.; Wu, D.; Meng, J.; Wu, J.; Wu, H. A Multi-Feature-Based Multi-Model Fusion Method for State of Health Estimation of
Lithium-Ion Batteries. J. Power Sources 2022, 518, 230774. [CrossRef]

18. Li, X.; Yuan, C.; Li, X.; Wang, Z. State of Health Estimation for Li-Ion Battery Using Incremental Capacity Analysis and Gaussian
Process Regression. Energy 2020, 190, 116467. [CrossRef]

19. Zhao, Q.; Jiang, H.; Chen, B.; Wang, C.; Chang, L. Research on the SOH Prediction Based on the Feature Points of Incremental
Capacity Curve. J. Electrochem. Soc. 2021, 168, 110554. [CrossRef]

20. Yang, S.; Luo, B.; Wang, J.; Kang, J.; Zhu, G. State of Health Estimation for Lithium-Ion Batteries Based on Peak Region Feature
Parameters of Incremental Capacity Curve. Diangong Jishu Xuebao/Transactions China Electrotech. Soc. 2021, 36, 2277–2287.
[CrossRef]

21. Zhou, R.; Zhu, R.; Huang, C.G.; Peng, W. State of Health Estimation for Fast-Charging Lithium-Ion Battery Based on Incremental
Capacity Analysis. J. Energy Storage 2022, 51, 104560. [CrossRef]

22. Zhang, S.; Zhai, B.; Guo, X.; Wang, K.; Peng, N.; Zhang, X. Synchronous Estimation of State of Health and Remaining Useful
Lifetime for Lithium-Ion Battery Using the Incremental Capacity and Artificial Neural Networks. J. Energy Storage 2019, 26, 100951.
[CrossRef]

23. Lyu, Z.; Wang, G.; Tan, C. A Novel Bayesian Multivariate Linear Regression Model for Online State-of-Health Estimation of
Lithium-Ion Battery Using Multiple Health Indicators. Microelectron. Reliab. 2022, 131, 114500. [CrossRef]

24. Yang, D.; Wang, Y.; Pan, R.; Chen, R.; Chen, Z. State-of-Health Estimation for the Lithium-Ion Battery Based on Support Vector
Regression. Appl. Energy 2018, 227, 273–283. [CrossRef]

25. Cao, M.; Zhang, T.; Yu, B.; Liu, Y. A Method for Interval Prediction of Satellite Battery State of Health Based on Sample Entropy.
IEEE Access 2019, 7, 141549–141561. [CrossRef]

26. Lin, M.; Zeng, X.; Wu, J. State of Health Estimation of Lithium-Ion Battery Based on an Adaptive Tunable Hybrid Radial Basis
Function Network. J. Power Sources 2021, 504, 230063. [CrossRef]

27. Fan, L.; Wang, P.; Cheng, Z. A Remaining Capacity Estimation Approach of Lithium-Ion Batteries Based on Partial Charging
Curve and Health Feature Fusion. J. Energy Storage 2021, 43, 103115. [CrossRef]

28. Kashkooli, A.G.; Fathiannasab, H.; Mao, Z.; Chen, Z. Application of Artificial Intelligence to State-of-Charge and State-of-Health
Estimation of Calendar-Aged Lithium-Ion Pouch Cells. J. Electrochem. Soc. 2019, 166, A605–A615. [CrossRef]

29. Ren, Z.; Du, C. State of Charge Estimation for Lithium-Ion Batteries Using Extreme Learning Machine and Extended Kalman
Filter. IFAC Pap. 2022, 55, 197–202. [CrossRef]

http://doi.org/10.1149/2.1211609jes
http://doi.org/10.1016/j.etran.2019.100005
http://doi.org/10.1016/j.energy.2021.121857
http://doi.org/10.1016/j.jpowsour.2018.10.019
http://doi.org/10.1002/er.6700
http://doi.org/10.3390/en12163122
http://doi.org/10.1016/j.apenergy.2021.117346
http://doi.org/10.1016/j.electacta.2021.139047
http://doi.org/10.1109/TSMC.2015.2389757
http://doi.org/10.1016/j.est.2021.103825
http://doi.org/10.1016/j.jpowsour.2018.03.015
http://doi.org/10.1016/j.jpowsour.2019.03.008
http://doi.org/10.1109/TTE.2020.3028784
http://doi.org/10.1016/j.jpowsour.2021.230774
http://doi.org/10.1016/j.energy.2019.116467
http://doi.org/10.1149/1945-7111/ac38f2
http://doi.org/10.19595/j.cnki.1000-6753.tces.L90355
http://doi.org/10.1016/j.est.2022.104560
http://doi.org/10.1016/j.est.2019.100951
http://doi.org/10.1016/j.microrel.2022.114500
http://doi.org/10.1016/j.apenergy.2017.08.096
http://doi.org/10.1109/ACCESS.2019.2939593
http://doi.org/10.1016/j.jpowsour.2021.230063
http://doi.org/10.1016/j.est.2021.103115
http://doi.org/10.1149/2.0411904jes
http://doi.org/10.1016/j.ifacol.2022.10.284


Batteries 2023, 9, 7 20 of 21

30. Mao, L.; Hu, H.; Chen, J.; Zhao, J.; Qu, K.; Jiang, L. Online State of Health Estimation Method for Lithium-Ion Battery Based on
CEEMDAN for Feature Analysis and RBF Neural Network. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 6777. [CrossRef]

31. Kim, S.; Choi, Y.Y.; Kim, K.J.; Choi, J. Il Forecasting State-of-Health of Lithium-Ion Batteries Using Variational Long Short-Term
Memory with Transfer Learning. J. Energy Storage 2021, 41, 102893. [CrossRef]

32. Rouhi Ardeshiri, R.; Ma, C. Multivariate Gated Recurrent Unit for Battery Remaining Useful Life Prediction: A Deep Learning
Approach. Int. J. Energy Res. 2021, 45, 16633–16648. [CrossRef]

33. Yang, Y. A Machine-Learning Prediction Method of Lithium-Ion Battery Life Based on Charge Process for Different Applications.
Appl. Energy 2021, 292, 116897. [CrossRef]

34. Liu, K.; Li, Y.; Hu, X.; Lucu, M.; Widanage, W.D. Gaussian Process Regression with Automatic Relevance Determination Kernel
for Calendar Aging Prediction of Lithium-Ion Batteries. IEEE Trans. Ind. Inform. 2020, 16, 3767–3777. [CrossRef]

35. Li, R.; Li, W.; Zhang, H. State of Health and Charge Estimation Based on Adaptive Boosting Integrated with Particle Swarm
Optimization/Support Vector Machine (AdaBoost-PSO-SVM) Model for Lithium-Ion Batteries. Int. J. Electrochem. Sci. 2022,
17, 1–17. [CrossRef]

36. Qin, P.; Zhao, L.; Liu, Z. State of Health Prediction for Lithium-Ion Battery Using a Gradient Boosting-Based Data-Driven Method.
J. Energy Storage 2022, 47, 103644. [CrossRef]

37. Li, X.; Yuan, C.; Wang, Z. State of Health Estimation for Li-Ion Battery via Partial Incremental Capacity Analysis Based on Support
Vector Regression. Energy 2020, 203, 117852. [CrossRef]

38. Guo, Y.F.; Huang, K.; Hu, X.Y. A State-of-Health Estimation Method of Lithium-Ion Batteries Based on Multi-Feature Extracted
from Constant Current Charging Curve. J. Energy Storage 2021, 36, 102372. [CrossRef]

39. Sun, W.; Qiu, Y.; Sun, L.; Hua, Q. Neural Network-Based Learning and Estimation of Battery State-of-Charge: A Comparison
Study between Direct and Indirect Methodology. Int. J. Energy Res. 2020, 44, 10307–10319. [CrossRef]

40. Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Ker, P.J.; Mahlia, T.M.I.; Mansor, M.; Ayob, A.; Saad, M.H.; Dong, Z.Y. Toward Enhanced
State of Charge Estimation of Lithium-Ion Batteries Using Optimized Machine Learning Techniques. Sci. Rep. 2020, 10, 4687.
[CrossRef]

41. Hossain Lipu, M.S.; Hussain, A.; Saad, M.H.M.; Ayob, A.; Hannan, M.A. Improved Recurrent NARX Neural Network Model
for State of Charge Estimation of Lithium-Ion Battery Using Pso Algorithm. In Proceedings of the 2018 IEEE Symposium on
Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 28–29 April 2018; pp. 354–359. [CrossRef]

42. Wang, Q.; Gu, H.; Ye, M.; Wei, M.; Xu, X. State of Charge Estimation for Lithium-Ion Battery Based on NARX Recurrent Neural
Network and Moving Window Method. IEEE Access 2021, 9, 83364–83375. [CrossRef]

43. Khaleghi, S.; Karimi, D.; Beheshti, S.H.; Hosen, M.S.; Behi, H.; Berecibar, M.; Van Mierlo, J. Online Health Diagnosis of Lithium-Ion
Batteries Based on Nonlinear Autoregressive Neural Network. Appl. Energy 2021, 282, 116159. [CrossRef]

44. Ren, X.; Liu, S.; Yu, X.; Dong, X. A Method for State-of-Charge Estimation of Lithium-Ion Batteries Based on PSO-LSTM. Energy
2021, 234, 121236. [CrossRef]

45. Zhang, L.; Zheng, M.; Du, D.; Li, Y.; Fei, M.; Guo, Y.; Li, K. State-of-Charge Estimation of Lithium-Ion Battery Pack Based on
Improved RBF Neural Networks. Complexity 2020, 2020, 8840240. [CrossRef]

46. Hossain Lipu, M.S.; Hannan, M.A.; Hussain, A.; Saad, M.H.; Ayob, A.; Uddin, M.N. Extreme Learning Machine Model for
State-of-Charge Estimation of Lithium-Ion Battery Using Gravitational Search Algorithm. IEEE Trans. Ind. Appl. 2019, 55,
4225–4234. [CrossRef]

47. Christoph, R.B. Diagnosis and Prognosis of Degradation in Lithium-Ion Batteries. Ph.D. Thesis, Department of Engineering
Science, University of Oxford, Oxford, UK, 2017.

48. Birkl, C.R.; McTurk, E.; Roberts, M.R.; Bruce, P.G.; Howey, D.A. A Parametric Open Circuit Voltage Model for Lithium Ion
Batteries. J. Electrochem. Soc. 2015, 162, A2271–A2280. [CrossRef]

49. Chen, Z.; Zhao, H.; Zhang, Y.; Shen, S.; Shen, J.; Liu, Y. State of Health Estimation for Lithium-Ion Batteries Based on Temperature
Prediction and Gated Recurrent Unit Neural Network. J. Power Sources 2022, 521, 230892. [CrossRef]

50. Jordan, M.I. Serial Order: A Parallel Distributed Processing Approach; Ies Report 8604; Institute for Cognitive Science University of
California: San Diego, CA, USA, 1986.

51. Lipu, M.S.H.; Hannan, M.A.; Hussain, A.; Saad, M.H.M.; Ayob, A.; Blaabjerg, F. State of Charge Estimation for Lithium-Ion
Battery Using Recurrent NARX Neural Network Model Based Lighting Search Algorithm. IEEE Access 2018, 6, 28150–28161.
[CrossRef]

52. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95–International Conference on Neural
Networks, Perth, WA, Australia, 27 November–01 December 1995; Volume 4, pp. 1942–1948.

53. Fan, Y.; Xiao, F.; Li, C.; Yang, G.; Tang, X. A Novel Deep Learning Framework for State of Health Estimation of Lithium-Ion
Battery. J. Energy Storage 2020, 32, 101741. [CrossRef]

54. Goh, H.H.; Lan, Z.; Zhang, D.; Dai, W.; Kurniawan, T.A.; Goh, K.C. Estimation of the State of Health (SOH) of Batteries Using
Discrete Curvature Feature Extraction. J. Energy Storage 2022, 50, 104646. [CrossRef]

55. Gong, Q.; Wang, P.; Cheng, Z. An Encoder-Decoder Model Based on Deep Learning for State of Health Estimation of Lithium-Ion
Battery. J. Energy Storage 2022, 46, 103804. [CrossRef]

http://doi.org/10.1109/JESTPE.2021.3106708
http://doi.org/10.1016/j.est.2021.102893
http://doi.org/10.1002/er.6910
http://doi.org/10.1016/j.apenergy.2021.116897
http://doi.org/10.1109/TII.2019.2941747
http://doi.org/10.20964/2022.02.03
http://doi.org/10.1016/j.est.2021.103644
http://doi.org/10.1016/j.energy.2020.117852
http://doi.org/10.1016/j.est.2021.102372
http://doi.org/10.1002/er.5654
http://doi.org/10.1038/s41598-020-61464-7
http://doi.org/10.1109/ISCAIE.2018.8405498
http://doi.org/10.1109/ACCESS.2021.3086507
http://doi.org/10.1016/j.apenergy.2020.116159
http://doi.org/10.1016/j.energy.2021.121236
http://doi.org/10.1155/2020/8840240
http://doi.org/10.1109/TIA.2019.2902532
http://doi.org/10.1149/2.0331512jes
http://doi.org/10.1016/j.jpowsour.2021.230892
http://doi.org/10.1109/ACCESS.2018.2837156
http://doi.org/10.1016/j.est.2020.101741
http://doi.org/10.1016/j.est.2022.104646
http://doi.org/10.1016/j.est.2021.103804


Batteries 2023, 9, 7 21 of 21

56. Saha, B.; Goebel, K. Battery Data Set; NASA Ames Prognostics Data Repository; NASA Ames: Moffett Field, CA, USA, 2007.
Available online: http://ti.arc.nasa.gov/project/prognostic-data-repository (accessed on 5 November 2022).

57. University of Maryland Battery Data|Center for Advanced Life Cycle Engineering (CALCE). Available online: https://calce.
umd.edu/battery-data (accessed on 21 September 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://ti.arc.nasa.gov/project/prognostic-data-repository
https://calce.umd.edu/battery-data
https://calce.umd.edu/battery-data

	Introduction 
	Data Analysis and Feature Extraction 
	Oxford Battery Degradation Dataset 
	Health Feature Extraction 
	Voltage Feature Extraction 
	Temperature Feature Extraction 
	IC Feature Extraction 
	Correlation Analysis 


	Related Algorithms 
	Nonlinear Autoregressive with Exogenous Input Neural Network 
	Particle Swarm Optimization 
	Flowchart of the PSO-NARXNN 

	Results and Discussion 
	Results 
	Optimal Parameters 
	Comparison with Different Feature Extraction Strategies 
	Comparison with Different Algorithms 
	Results of Other Experimental Groups 

	Discussion 

	Conclusions 
	References

