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Abstract: Effective and inexpensive electrocatalysts are significant to improve the performance of
oxygen evolution reaction. Facing the bottleneck of slow kinetics of oxygen evolution reaction, it is
highly desirable to design the electrocatalyst with high activity, good conductivity, and satisfactory
stability. In this work, nickel foam supported hierarchical Co9S8–Ni3S2 composite hollow micro-
spheres were derived from in situ-generative MOF precursors and the subsequent sulfurization
process by a simple two-step solvothermal method. The composite microspheres were directly grown
on nickel foam without any binder, and nickel foam was used as the nickel source and support
material. The morphology and constitution of the series self-supported electrodes were characterized
by SEM, TEM, XRD, XPS, and Raman, respectively. The unique porous architecture enriched the
electrode with sufficient active surface and helped to reactants and bubble evolved during electro-
chemical water oxidation. Through tuning the concentration of cobalt source and ligand, the content
ratio of Co9S8 and Ni3S2 can be modulated. The heterostructures not only afford active interfaces
between the phases but also allow electronic transfer between Co9S8 and Ni3S2. The optimized
Co9S8-Ni3S2/NF-0.6 electrode with the highest electrochemical surface area and conductivity shows
the best OER performance among the series electrodes in 1 M KOH solution. The overpotential of
Co9S8-Ni3S2/NF-0.6 is only 233 mV when the current density is 10 mA cm−2, and corresponding
Tafel slope is 116.75 mV dec−1. In addition, the current density of Co9S8-Ni3S2/NF-0.6 electrocatalyst
hardly decreased during the 12 h stability measurement. Our approach in this work may provide the
future rational design and synthesis of satisfactory OER electrocatalysts.

Keywords: oxygen evolution reaction; transition metal sulfides; MOFs; solvothermal; electrocatalysts

1. Introduction

With the growing environmental pollution crisis and rapid running out of traditional
fossil fuels around the world, the researchers are devoted to develop clean alternative
energies and explore efficient renewable energy conversion devices to meet the ever-
increasing amount of requests [1–5]. In the last decade, various micro-/nanostructured
transition-metal sulfides (TMSs) electrocatalysts have been prepared and demonstrated
high-performances in water splitting, metal–air batteries, and fuel cells fields [6–13]. Oxy-
gen evolution reaction (OER) electrocatalysts play a pivotal role in these oxygen-based
renewable energy conversion technologies [14–16]. However, the OER has intrinsically
rate-limiting, four electron–proton transfer steps and sluggish kinetic limitations. Therefore,
additional energy is needed to overcome the high overpotential when electrocatalytically
splitting water. In general, using high-performance electrocatalysts can accelerate the OER
rates and reduce the voltage of water splitting in whole [17,18]. Noble metal oxides such as
IrO2 and RuO2 still represent the state-of-the-art OER electrocatalysts up to date. However,
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the rare reserves and expensive noble metal catalysts have hampered their large-scale
application in oxygen-involved reaction energy conversion devices.

Co9S8 and Ni3S2 based TMSs have drawn extraordinary attention in electrochemical
energy storage and conversion fields, such as electrocatalytic hydrogen production, super-
capacitors, lithium-ion batteries, and rechargeable zinc–air batteries, due to their near-metal
conductivity [19,20]. To date, various morphologies and structures of Co9S8 and Ni3S2,
including nanoparticles, nanosheets, nanobelts, microplates, and composites, have been
developed [21–26]. Although Co9S8 and Ni3S2 single-metal sulfides have been extensive
researched, Co9S8-Ni3S2 composites are considered to be excellent electrocatalysts for OER
ascribe to their low cost, non-toxic nature, and synergetic effect of multiple electrocatalytic
sites [27–32]. The design and synthesis of Co9S8-Ni3S2 composites with robust structure,
tunable composition and high conductivity will endow the electrode with outstanding
properties [33,34].

Metal–organic frameworks (MOFs) are a novel class of porous organic-inorganic hy-
brid materials constructed by metal nodes and organic ligands, which demonstrate tunable
porous structures and many potential applications [35,36]. In addition, MOF-derived
transition metal micro-/nanomaterials, including transition metal oxides, chalcogenides,
phosphides, and hydroxides, with adjustable structure and large BET surface area, have
aroused considerable attention in energy storage and conversion fields [37–47]. In recent
years, our group has been devoted to designing and synthesizing transition metal oxide
and chalcogenide materials via MOF precursor conversion with different electrochemical
performance such as nonenzymatic glucose electrochemical sensing, OER electrocatalysts,
supercapacitors, and alkaline Ni–Zn batteries [48–50]. In this work, we demonstrate
MOFs-derived Co9S8–Ni3S2 composites as electrode materials for efficient alkaline OER
electrocatalysts. 1,3,5-benzenetricarboxylic acid was selected as rigid bridging ligand and
earth-abundant transition metals as node to synthesize MOF precursors, and uniformly
urchin-like MOF structures successfully grown on Ni foam substrate. Then, through sec-
ondary solvothermal sulfurization conversion, a series of Co9S8-Ni3S2 composites were
successfully integrated on the Ni foam as self-supported electrodes and denoted as Co9S8-
Ni3S2/NF-0.4, Co9S8-Ni3S2/NF-0.6 and Co9S8-Ni3S2/NF-0.8, respectively. Especially ben-
efiting from the presence of abundant active surfaces and interfaces, short ion/electron
transfer pathway, reinforced electronic transfer between Co9S8 and Ni3S2, the optimized
Co9S8-Ni3S2/NF-0.6 hierarchical microspheres self-supported electrode displayed a much
lower overpotential with 233 mV at 10 mA cm−2 for OER, which is better than that of some
recently reported TMS electrocatalysts.

2. Experimental
2.1. Reagents and Materials

Tetrabutylammonium bromide (TBAB), urea (CO(NH2)2), cobalt nitrate hexahydrate
(Co(NO3)2·6H2O), ethylene glycol (HOCH2CH2OH), potassium hydroxide (KOH), and
nickel foam (NF) were all purchased from Sinopharm Chemical Reagent CO., LTD. 1,3,5-
benzenetricarboxylic acid (C9H6O6, H3BTC) was purchased from Shanghai Maclin Bio-
chemical Technology Co., LTD. Ethanol (C2H5OH, 75%) and thioacetamide (CH3CSNH2,
TAA) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai,
China. Ethanol (C2H5OH, ≥ 99.7%) was purchased from Tianjin Fuyu Fine Chemical
Co., Ltd., Tianjing, China. All chemicals are analytical grade and do not require further
purification when used.

2.2. Synthesis of Electrocatalysts

Nickel foam was pretreated before use. Firstly, the NF was cut into 1×3 cm2 size, and
then in turn soaked in 3 M HCl and acetone for 30 min and 10 min, respectively. Then,
ultrasonic cleaning was carried out for several times in deionized H2O and ethanol solution
to remove impurities and oxides on the surface of NF.
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Electrocatalyst is synthesized by a facile two-step solvothermal process. At first,
1.2 g urea, 0.1 g TBAB, 0.6 mM Co(NO3)2·6H2O and H3BTC, 10 mL H2O and 5 mL 75%
ethanol solution were successively added to a 20 mL vial, and the mixture was then stirred
vigorously for 30 min to form a uniform solution. After that, a piece of NF was immersed
in the reaction solution and kept in an oven at 100 °C for 12 h. After the reaction, the
NF was cleaned with deionized water and ethanol and dried in a vacuum drying oven
at 60 °C to obtain the MOF precursor. For the sulfurization process, 0.2 mM TAA, 4 mL
ethanol, 2 mL ethylene glycol and 1 mL H2O were successively added to a 20 mL vial
and stirred for 30 min. After that, the MOF precursor covered NF was immersed in the
mixture and heated at 160 °C for 8 h. After the reaction, the NF was washed with deionized
water and ethanol and dried in a vacuum oven at 60 °C. Finally, Co9S8-Ni3S2/NF-0.6
electrocatalyst was obtained (Scheme 1). The preparation method of Co9S8-Ni3S2/NF-0.4
and Co9S8-Ni3S2/NF-0.8 is the same as that of Co9S8-Ni3S2/NF-0.6, only needs to adjust
both Co(NO3)2·6H2O and H3BTC to 0.4 mM and 0.8 mM, respectively. In addition, there is
no change in the condition of second sulfurization stage, and the average mass increase
of Co9S8-Ni3S2/NF series electrodes are 4~5 mg. In order to investigate the influence
of Co ions in the morphology of precursors, as a comparison, Ni3S2/NF electrode was
prepared without Co(NO3)2·6H2O in the first solvothermal step and kept other conditions
consistent with the synthesis procedure of Co9S8-Ni3S2/NF-0.6, and the mean loading
weight is 3~4 mg.
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Scheme 1. The illustration of the synthesized process of Co9S8-Ni3S2/NF electrodes.

2.3. Materials Characterization

The phases of the electrocatalyst were characterized by Ultima III X-ray powder diffrac-
tometer (XRD) and Thermo Scientific K-Alpha X-ray photoelectron spectroscopy (XPS).
Field emission scanning electron microscope (FE-SEM), Tecnai G2S-Twin F20 field emission
transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy (EDS)
analyzer were used to characterize the morphologies and composition of the electrodes. Ra-
man spectroscopy was conducted by LabRAM HR Evol Raman microscopy under 532 nm
laser excitation.

2.4. Electrochemical Measurements

Electrochemical tests were performed in 1 M KOH solution and conducted on a CHI
760E electrochemical workstation using a standard three-electrode system at room tem-
perature. Co9S8-Ni3S2/NF-0.4, -0.6, -0.8, and Ni3S2/NF were used as working electrodes,
and their working geometric area under the electrolyte solution level is 1 cm2. Hg/HgO
electrode was used as the reference electrode, and platinum mesh (1 cm2) was the counter
electrode. The electrolyte was treated with O2 for 30 min before the test to ensure that
the electrolyte solution is oxygen saturated. The linear sweep voltammetry curve was
obtained at a sweep speed of 2 mV·s−1. The Tafel slope is obtained from the Tafel equation
(η = b logj + a, where a is a constant, j is the current density, and b is the Tafel slope). The
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electrochemical impedance was measured from 105 to 0.1Hz with an amplitude potential
of 5 mV. The electrochemical active area (ECSA) was proportional to the double layer ca-
pacitance (Cdl), which was evaluated by CV curves with various scan rates (5 to 30 mV s−1)
in the potential range from 0.1 to 0.2 V vs. Hg/HgO. Multicurrent measurements and long-
term stability measurements were also performed in 1 M KOH solution to assess the stability
of the electrocatalyst. The potential in this experiment was converted into reversible hydro-
gen potential, and the calculation formula is ERHE = EHg/HgO + (0.059 × pH + 0.098 V). It
is important to note that none of the potentials in this experiment were compensated by IR.

3. Results and Discussion

PXRD diffraction patterns were used to analyze the crystal phase of the synthesized
series of electrodes. Figure 1 represents the PXRD patterns and their standard JCPDS
profiles for Ni3S2/NF (NS), Co9S8-Ni3S2/NF-0.4 (CNS-0.4), Co9S8-Ni3S2/NF-0.6 (CNS-
0.6), and Co9S8-Ni3S2/NF-0.8 (CNS-0.8) electrodes, respectively. It can be observed from
Figure 1 that the synthesized four electrodes all have two intense and sharp diffraction
peaks at 2θ of 44.4◦ and 51.9◦, which correspond to the Ni foam, while the three electrodes
with different Ni/Co ratios showed similar diffraction peaks, all of which can correspond
well with Co9S8 (JCPDS No. 00-019-0364) and Ni3S2 (JCPDS No. 01-073-0698) phases. The
characteristic diffraction peaks of CNS-0.4, CNS-0.6, and CNS-0.8 at 2θ of 15.4◦, 29.8◦, 39.4◦,
47.3◦ and 61.3◦ are attributed to the lattice planes (111), (311), (331), (511) and (533) of Co9S8,
respectively. On the other side, the characteristic diffraction peaks at 21.8◦, 30.9◦, 31.1◦,
37.8◦, 49.8◦ and 55.3◦ belong to the crystal planes (100), (110), (1–10), (111), (210) and (333)
of Ni3S2, respectively. The results confirmed the formation of Co9S8 and Ni3S2 phases on
the NF of these catalysts. The diffraction peak intensity of Co9S8 phase can be optimized
by the amount of cobalt ions added.
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Figure 1. PXRD patterns of Ni3S2/NF, Co9S8–Ni3S2/NF-0.4, Co9S8–Ni3S2/NF-0.6, and Co9S8–
Ni3S2/NF-0.8 electrodes.

X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical
composition and elemental valence of CNS-0.4, -0.6, -0.8 samples. The measured scanning
spectra in Figure 2a shows that there are three elements Co, Ni and S in CNS-0.4, -0.6,
and -0.8 samples. The Co 2p high-resolution spectrum can be divided into two spin-orbit
doublet peaks and two satellite peaks, as shown in Figure 2b. The binding energies at 780.0
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and 795.1 eV correspond to 2p3/2 and 2p1/2 of Co3+, respectively. The binding energies
at 781.4 and 797.8 eV correspond to 2p3/2 and 2p1/2 of Co2+, respectively. The binding
energies at 787.0 and 803.5eV are satellite peaks [29,30] Compared with CNS-0.4 and CNS-
0.8 samples, the dominant valence state of Co ions in CNS-0.6 sample is +2. Figure 2c
displays the high-resolution XPS spectra in the Ni 2p region, and the three sets of peaks
obtained correspond to two spin-orbit peaks and two satellite peaks, respectively. The
peaks at 852.0 and 872.8 eV correspond to 2p3/2 and 2p1/2 of Ni2+, respectively. The peaks
at 855.8 and 874.3 eV correspond to 2p3/2 and 2p1/2 of Ni3+, respectively. The peaks at 861.6
and 879.6 eV are satellite peaks [31,32]. In addition, the Ni 2p XPS result also indicated
the Ni3+/Ni2+ peak area ratios of the CNS-0.6 sample are largest among the three samples,
which indicated that the proper Co doping may modulate the electronic structure of Co9S8-
Ni3S2 composites. The S 2p spectrum in Figure 2d shows that there are three peaks at
the binding energies of 161.1, 162.2 and 163.3 eV, corresponding to the M-S bond in S2

2−

(M is Ni, Co), which is the sulfide ion in the electron transport between Ni3S2 and Co9S8
nanostructures, and the peak at 169.8 eV is the satellite peak [33].
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Figure 2. XPS of Co9S8–Ni3S2/NF-(0.4, 0.6, 0.8), (a) survey spectra, high-resolution spectra of (b) Co
2p, (c) Ni 2p, and (d) S 2p.

Raman spectra were also utilized to examine the composition of the NS, CNS-0.4,
CNS-0.6, and CNS-0.8 samples grown on Ni foam directly (Figure S1). The peaks located in
202, 223, 304, 321, and 350 cm−1, which corresponded to the characteristic peaks of Ni3S2
phase [51,52]. Moreover, the samples of CNS-0.4, CNS-0.6, and CNS-0.8 have new peaks
centered at 373, 450, 517, and 673 cm−1, indicating the existence of Co9S8 phase [53,54].

SEM technique is used to study the morphology of as-synthesized materials,
Figures S2 and 3 shows the images of the MOF precursors of (a, d) CNS-0.4, (b, e) CNS-0.6,
and (c, f) CNS-0.8 after the first step of solvothermal synthesis. As can be observed from
the Figure S2, nickel foam covered with microsphere precursors. The further magnified
SEM images in Figure 3 shows that the microspheres were composed of many willow-leaf-
like nanosheets, and the average diameter of the microspheres was around 2.33–4.39 µm
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(Figure S3). For comparison, the images of Ni3S2/NF sample without Co ions formed
rough nanosheets on the surface of nickel foam (Figure S4).
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SEM images and EDS elemental mapping of CNS-0.4, -0.6, -0.8 are exhibited in Figure 4.
Compared with the MOF precursors, the morphology of the MOF-derived samples, CNS-
0.4 (Figure 4a–c), CNS-0.6 (Figure 4d–f), and CNS-0.8 (Figure 4g–i), still maintained the
morphology of microspheres, but the average diameter increased significantly due to
agglomeration, ranging from 3.11–9.08 µm (Figure S3). There are many small nanoparticles
on the surface of the nanosheets, which may be the building block of nanosheets, that make
up the microspheres, whose surface is very rough. At the same time, it can also be observed
from Figure 4e that these microspheres are hollow inside. The unique hollow spherical
structure and rough surface are not only conducive to the exposure of the catalytic active
sites, but also can further accelerate the electrolyte penetration and OER reaction kinetics.

Furthermore, SEM-EDX element mapping test was also carried out on Co9S8-Ni3S2/NF
series samples, and the results were shown in Figure 4c,f,i, respectively. All the as-
synthesized materials are composed of Co, Ni and S elements, and these elements are
uniformly distributed. Figure S5 shows the EDS patterns of the samples, in which the Co
content of Co9S8-Ni3S2/NF-0.6 is higher than the other two samples, which is consistent
with the PXRD test results.
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Figure 5a shows the low-magnification TEM image of CNS-0.6 via ultrasonic stripping
from Ni foam. HRTEM image in Figure 5b show clear lattice fringes, with the crystal plane
spacing of 0.552 nm and 0.298 nm attributed to (111) and (311) planes of Co9S8, and the
crystal plane spacing of 0.289 nm attributed to (110) plane of Ni3S2. The results are in
accordance with the PXRD patterns exhibited in Figure 1. Figure 5c is the HAADF-STEM
element mapping images of CNS-0.6. It can also be seen from the image that the morphology
of the sample is a microsphere composed of many thin lance-shaped nanosheets, and the
three elements of Co, Ni and S are evenly distributed in the sample. From the HRTEM
result, it can be inferred that the upper layer is Co9S8 and the bottom is Ni3S2. This result is
mainly supported by Figure 5b.
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Figure 5. The low (a) and high-resolution (b) TEM images of Co9S8–Ni3S2/NF-0.6 sample.
(c) HAADF-STEM images of the Co9S8–Ni3S2/NF-0.6 and the corresponding EDX mapping of
Co, Ni, and S elements.

The effect of electrocatalysts with different cobalt content on the OER performance
was investigated in O2-saturated 1.0 M KOH electrolyte solution and the relevant results
are displayed in Figure 6. Figure 6a shows the LSV curves of all the electrodes towards
OER. The Ni3S2/NF shows weak catalytic activity toward OER, while CNS-0.6 shows
clearly the highest activity compared to the other electrocatalysts. The CNS-0.6 only needs
a very small overpotential (η = 233 mV) to drive a current density of 10 mA cm−2. This
value is outperformed than that of NS (η10 = 381 mV), CNS-0.4 (η10 = 275 mV) and CNS-0.8
(η10 = 247 mV) electrodes, and even lower than previously reported catalysts such as Fe–
Co9S8 NM/NF [55], Ni–Co–S/NSC [56], 3D Ni3S2/NF-4 [57], NiS/NiFe2O4 [58], Ni–Co3S4-
2 nanospheres [59], Ni3S2–Co9S8/NF [60], NiCo2S4 [61], and Co9S8 NTs/Ni [62] (Table 1).
Evidently, the Co incorporation can significantly increase the activity of OER performance
compared with Ni3S2/NF sample with the absence of Co element. In addition, the effective
regulation of Co ions doping amount have great influence on the electrocatalytic activity of
synthesized Co9S8–Ni3S2/NF series samples. Moreover, compared with the other three
electrodes, CNS-0.6 has the largest current density in the measured potential range, which
proves that it has excellent catalytic performance for OER.
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Figure 6. (a) The LSV curves of series electrodes at a scan rate of 2 mV s−1 in 1 M KOH solution;
(b) The corresponding Tafel plots; (c) Nyquist plots; (d) Cdl at different scan rates. Capacitive currents
at 0.15 V (vs. Hg/HgO) (∆j = ja − jc).

Table 1. Comparison of the catalytic properties of Co9S8-Ni3S2/NF-0.6 with reported catalysts
towards OER performances in alkaline medium.

Catalysts Overpotential (mV) Tafel Slope (mV dec−1) Ref.

Fe-Co9S8 NM/NF η10 = 270 70.0 [55]
Ni–Co-S/NSC η10 = 309 87.0 [56]
3D Ni3S2/NF-4 η10 = 242 76.0 [57]
NiS/NiFe2O4 η10 = 230 88.0 [58]

Ni–Co3S4-2 nanospheres η10 = 298 90.5 [59]
Ni3S2–Co9S8/NF η20 = 294 80.0 [60]

NiCo2S4 η10 = 260 55.0 [61]
Co9S8 NTs/Ni η50 = 394 136.4 [62]

Co9S8–Ni3S2/NF-0.6
η10 = 224
η10 = 233
η20 = 292
η50 = 355

116.75 This work

The reaction kinetics for OER was further discussed by Tafel slope. Figure 6b displays
the Tafel slope of NS, CNS-0.4, CNS-0.6 and CNS-0.8, which were calculated as 137.72,
130.44, 116.75 and 124.56 mV dec−1, respectively. The reason for the large Tafel slope values
is due to the strong redox peak in testing the LSV curves. It turns out that the Tafel of
CNS-0.6 is relatively small compared to the other samples, indicating its outstanding OER
dynamics. Electrochemical impedance spectroscopy (EIS) was also used to evaluate the
charge transfer resistance of all catalysts, and Nyquist plots of all electrodes were shown in
Figure 6c. It can be concluded that the semicircle diameter of CNS-0.6 is smaller than that
of the other electrodes, and its measured Rct value 0.47 Ω is the smallest among of the four
electrodes. In contrast, NS exhibits the largest Rct value of 58.10 Ω, the Rct values of CNS-0.4
and CNS-0.8 are 37.31 Ω and 1.03 Ω, respectively. It is proved that the charge transfer
ability of CNS-0.6 on the electrode surface and electrolyte is relatively excellent. This result
may be related to the Co doping content. With appropriate Co doping content, the electron
transfer rate and resistance value are optimized, and the OER activity is satisfactory.
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In order to evaluate the true catalytic activity of the as-synthesized electrodes, it
is necessary to analyze the surface area that is actually involved in the electrochemical
catalytic reaction. The ECSA is proportional to the capacitance of the double electric layer
(Cdl). Cdl values were obtained by performing CV measurements in the non-Faraday region,
and the CV curves measured at different scan rates (5–30 mV s−1) were shown in Figure S6.
The liner slopes were obtained by linear fitting of the current density at 0.15 V and scan
rate, which correspond to the 2Cdl values of all the samples. The measured Cdl values of
CNS-0.6, CNS-0.8, CNS-0.4 and NS are 135.59, 98.82, 98.20 and 2.08 mF cm−2, respectively
(Figure 6d). This result indicates that CNS-0.6 exhibits the largest electrochemical active
surface area among all the four electrodes. This indicates the CNS-0.6 catalyst exposed
more active sites and showed excellent OER activity when appropriate Co content doped.

The practicability of electrocatalysts needs to be investigated by measuring the stability
of the materials. Figure 7a shows multistep chronopotentiometric curves for all synthesized
materials tested at current densities ranging from 10 to 100 mA cm−2. It can be seen that,
in each step of the test, the current density increases by 10 mA cm−2 every 500 s while
the potential tends to be stable. At the same time, with the gradual increase of the current
density, the order height of the potential also gradually decreases. In addition, the working
potential of CNS-0.6 is the lowest in all electrodes, indicating it maintained well stability in
a wide range of current density, and the mass diffusion rate is relatively high. Figure 7b
exhibits the long-term stability test of these catalysts at a potential of 0.7 V (vs. Hg/HgO).
The current density of CNS-0.6 remained at 50 mA cm−2 during the electrolysis process
up to 12 h, and the current density almost did not decay. Figure 7c shows the polarization
curves of CNS-0.6 electrode before and after accelerated cycle stability test for 1000 cycles,
the two polarization curves basically coincided, which further verified the superior OER
stability of CNS-0.6 electrode. SEM images of the electrodes after long-term OER stability
test were shown in Figure S7, it can be observed from the figure that all the Co9S8-Ni3S2/NF
samples maintain the morphology of the microspheres. The XPS after stability test were
displayed in Figure S8, take the CNS-0.6 electrode as an example, the Co3+ peaks at 778.1
and 792.5 eV were enhanced after stability test, which shown an opposite trend of CNS-0.4
and CNS-0.8 electrodes, indicating that the valence state of cobalt ion has changed in
the long-term stability test, and increased Co3+ is good for charge transfer process and is
contributed to the high activity of the CNS-0.6 electrode [63,64]. In addition, the diffraction
peaks in the PXRD patterns did not change after the OER stability test (Figure S9), except
the intensity of the diffraction peaks of Co9S8 fade, also indicating that the incorporation of
Co element played a key role in catalytic activity.
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Co9S8-Ni3S2/NF-0.8 electrodes with the current density range of 10–100 mA cm−2. (b) OER stability
measurements for Ni3S2/NF, Co9S8-Ni3S2/NF-0.4, Co9S8-Ni3S2/NF-0.6 and Co9S8-Ni3S2/NF-0.8
at a potential of 0.7 V (vs. Hg/HgO) for 12 h. (c) The polarization curves of Co9S8-Ni3S2/NF-0.6
electrode before and after accelerated cycle stability test for 1000 cycles.

4. Conclusions

An excellent self-supported electrocatalyst for OER was developed by in situ growth
of Co9S8-Ni3S2 composite urchin-like hollow microspheres on nickel foam via a facile
solvothermal sulfurization conversion method. Meanwhile, the MOF precursor derivative
synthetic method is simple and low power consuming. The constructed self-supported
electrode without any binder has unique pore and hierarchical morphology, which is
conducive to electrolysis process. The optimized self-supported electrode, denoted as
Co9S8-Ni3S2/NF-0.6, showed the highest OER activity in alkaline solution. The OER
overpotential of the self-supported electrode at 10 mA cm−2 is 233 mV. There is no decay
of current density for Co9S8-Ni3S2/NF-0.6 electrode during the stability evaluation for
12 h. The as-prepared urchin-like Co9S8-Ni3S2 composite self-supported electrode with
modulated electronic structure and the presence of heterointerfaces provides intrinsic
OER activity and facilitates the electron/mass transport. The porous hollow features can
provide large electrochemical surface area and further accelerate the OER reaction kinetics.
The structural integrity of the electrode also endows it with improved excellent catalytic
stability. Our research may provide the rational design and synthesis of satisfactory OER
electrocatalysts in future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/batteries9010046/s1, Figure S1: Raman spectra of series electrodes;
Figure S2: SEM images of series electrodes; Figure S3: Particle size distribution images of series
samples; Figure S4: SEM images of precursor of Ni3S2/NF, after vulcanization and stability test;
Figure S5: EDS diagrams of Co9S8-Ni3S2 composites; Figure S6: CV plots of Ni3S2/NF, Co9S8-
Ni3S2/NF-0.4, -0.6 and -0.8 electrodes with different scan rates; Figure S7: SEM images of series
electrodes after stability test; Figure S8: XPS images of Co9S8-Ni3S2/NF-0.4, -0.6 and -0.8 after OER
stability test; Figure S9: PXRD patterns after OER stability test.
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