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Abstract: A multistage architecture with molybdenum nitride and oxide quantum dots (MON-
QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and
green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs).
Characterization tests show that the MON-QDs with diameters of 1–3 nm are homogeneously
anchored on or intercalated between graphene sheets. The molybdenum nitride exists in the form of
crystalline Mo2N (face-centered cubic), while molybdenum oxide exists in the form of amorphous
MoO2 in the obtained composite. Electrochemical tests show that the MON-QD/NG calcinated
at 600 ◦C has an excellent lithium storage performance with an initial discharge capacity of about
1753.3 mAh g−1 and a stable reversible capacity of 958.9 mAh g−1 at current density of 0.1 A g−1 as
well as long-term cycling stability at high current density of 5 A g−1. This is due to the multistage
architecture, which can provide plenty of active sites, buffer volume changes of electrode and enhance
electrical conductivity as well as the synergistic effect between Mo2N and MoO2.

Keywords: molybdenum nitride; molybdenum oxide; quantum dots; nitrogen-doped graphene;
lithium ion batteries; electrochemical performance

1. Introduction

Transition metal nitrides (MNx, M = Mo, Fe, Ni, V, W, etc.) are useful materials with nu-
merous industrial applications, such as abrasives, cutting tools, electronics, catalysis as well
as electrochemical applications. Due to the excellent metallic conductivity and low polariza-
tion loss, transition metal nitrides have been used widely as energy storage materials, e.g.,
LIB anode materials, in recent years. The molybdenum nitrides are promising anode mate-
rials in LIBs among the various transition metal nitrides [1–4]. For the sake of overcoming
the limitations of large volume change during the charge/discharge progress, low diffusion
rate of electrolyte and lithium ion as well as poor electron transport at high rate of cycles,
the molybdenum nitrides were prepared into all kinds of nano-shaped particles or/and
combined with other materials forming composites [3,5–17]. Zheng et al. [18] prepared
a nano-complex with Mo2N quantum dots @MoO3@nitrogen-doped carbon (MON-NC)
by a sol–gel method. Electrochemical performance tests showed that MON-NC has much
higher rate performance and longer life cycle performance than that of Mo2N@MoO3 and
nitrogen doped carbon (NC). Liu et al. [19] prepared a composite with the Mo2N-coated
hollow nanostructure of MoO2. The composite has a reversible capacity of 815 mAh g−1

after 100 cycles at current density of 0.1 A g−1. Zhang et al. [11] obtained a molybdenum
nitride-doped graphene (MoN/GNS) composite material by calcining the precursor in NH3
atmosphere. The MoN/GNS composite had good rate and cycle performance. However,
these preparation methods usually contain complicated procedures and harsh synthetic
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conditions such as the use of templates and toxic or dangerous gases (e.g., NH3 or H2),
which are adverse to its practical application and large-scale production. Calcinating the
complex AM-HMTA precursors of ammonium molybdate ((NH4)4Mo7O24•4H2O, AM)
and hexamethylenetetramine (C6H12N4, HMTA) under N2/H2 mixed atmosphere is a
relatively simple method to prepare molybdenum nitride [20,21]. In our previous research,
we found that the Mo2N products contained part of MoO2 by calcinating the AM-HMTA
precursors in pure N2 atmosphere [22]. The oxide MoO2 is also an intensely appealing
anode material for LIBs owing to its higher theoretical specific capacity (838 mAh g−1) and
higher density (6.5 g cm−3) than those of the currently used graphite anode.

Herein, we prepared molybdenum nitride and oxide quantum dots (MON-QDs)
anchored on nitrogen-doped graphene (MON-QD/NG) composite material by a facile and
green hydrothermal route followed by a one-step calcination process in pure N2 atmosphere.
In the synthesis, graphene oxide (GO) can be added as an “assembled binder” to anchor
these generated MON-QDs on reduced graphene oxide uniformly. The MON-QD/NG
showed excellent lithium storage performance owing to the synergistic effect between
0D MON-QDs and 2D nitrogen-doped graphene nanosheets. MON-QDs can improve
the electrochemical activity of electrode material by providing plenty of active sites while
graphene nanosheets can inhibit the structure collapse and shorten the lithium ion diffusion
pathway. Consequently, these superior characteristics endow MON-QD/NG with high
lithium storage capacity, good cycle stability as well as excellent rate performance, and it is
a promising anode material for LIBs.

2. Experimental Details
2.1. Preparation of Samples

Firstly, the precursors AM-HMTA and graphene oxide (GO) were prepared. The
AM-HMTA was obtained by the following steps: (1) 3.5 g ammonium molybdate
((NH4)4Mo7O24•4H2O, AM) and 6 g hexamethylenetetramine (C6H12N4, HMTA) were
dissolved in 50 mL deionized water, respectively; (2) the aqueous HMTA solution was
added into the AM solution; (3) after magnetic stirring for 4 h, the mixed solution was
left overnight to precipitate the white complex completely; (4) the AM-HMTA precursor
was gained by filtering and then drying the white complex. The GO solution was pre-
pared using graphite powder based on the method of modified Hummers [23]. Then, the
prepared AM-HMTA was added to GO solution (4 mg mL−1) with a weight ratio of 7:3
followed by stirring for 12 h to form a stable AM-HMTA/GO solution. After the above
processes, the AM-HMTA/GO solution was sealed in an autoclave and heated at 180 ◦C
for 6 h to obtain nitrogen-doped sponge, which was freeze-dried for 72 h further. Lastly,
the freeze-dried sponge was calcinated at 500 ◦C, 600 ◦C and 700 ◦C for 2 h under N2
atmosphere, respectively. The obtained samples were abbreviated as MON-QD/NG-500,
MON-QD/NG-600 and MON-QD/NG-700 according to their calcinating temperature.
Reduced graphene oxide (rGO) was also obtained via calcinating freeze-dried GO under
the same conditions as that of MON-QD/NG.

2.2. Characterization

X-ray diffraction (XRD) tests were performed through a Rigaku Ultima IV instrument
with Cu Kα radiation. A HORIBA Scientific LabRAM HR Evolution Raman spectrometer
system was used to record the Raman spectra. X-ray photoelectron spectra (XPS) were
recorded on a Perkin-Elmer PHI ESCA system. The microstructure and morphology of
samples were observed by scanning electron microscope (SEM) (JSM-7001F) and transmis-
sion electron microscope (TEM) (JSM-2100). The specific surface area was measured by
the Barrett–Emmett–Teller (BET) method. The pore size distribution was calculated by the
Barrett–Joyner–Halenda (BJH) model.
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2.3. Electrochemical Measurement

Electrochemical performances of the samples were measured through CR2016 coin
type cells. The fabricated electrodes were prepared by mixing MON-QD/NG, polyvinyli-
dene fluoride (PVDF) and carbon black in a weight ratio of 8:1:1 using N-methyl-2-
pyrrolidone (NMP) as solvent. Then, the homogeneous slurry was coated onto a copper
foil. Celgard 2400 polypropylene and pure lithium metal sheets were used as separator and
counter electrode, respectively. The cells were assembled in an argon-filled glove box with
concentration of H2O and O2 below 0.5 ppm. The assembled cells were allowed to stand for
24 h before electrochemical testing. Galvanostatic charge/discharge measurements were
carried out in the voltage range between 0.01 and 3.00 V (vs. Li/Li+) on a battery test instru-
ment (LANHE CT2001A, Wuhan, China). Rate performance was tested at current density
from 0.1 to 5 A g−1. After rate performance tests, the samples directly underwent charge–
discharge cycles 300 times at 5 A g−1. Cyclic voltammetry (CV) tests were performed in
the voltage range of 0.01–3.00 V on an electrochemical workstation (CHI660E) at different
scan rates from 0.1 to 1 mV s−1. Electrochemical impedance spectroscopy (EIS) was used in
the frequency range of Hz to 0.01 Hz. The EIS spectra were fitted by Zview software.

3. Results and Discussion
3.1. Structural and Characterization

The crystal structures of the MON-QD/NG samples were confirmed by XRD patterns,
as shown in Figure 1 The XRD pattern of rGO shows a broad diffraction peak at about
24◦ corresponding to the (002) diffraction plane of graphite, which may be related to the
semi-graphitized nature [24,25]. Similarly, XRD patterns of MON-QD/NG samples show
obvious diffraction characteristic peaks of graphene, corresponding to the rGO. Only weak
diffraction peaks at 37.3◦, 43.6◦, 63.2◦ and 75.5◦ corresponding to the (111), (200), (220) and
(311) crystal planes of the face-centered cubic (fcc) Mo2N (JCPDS:25-1366) can be observed.
The weak and broadened characteristic peaks of fcc Mo2N may be related to the different
micromorphology, such as crystal size. However, no diffraction peaks of MoO2 can be
detected, due to the amorphous state.
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Figure 1. XRD pattern of MON-QD/NG, rGO and the standard card of face-centered cubic Mo2N.

Raman tests were conducted on MON-QD/NG to further explore the structural in-
formation of the composites prepared at different temperatures, as shown in Figure 2.
There are two strong peaks at about 1350 cm−1 and 1595 cm−1 of the three composites,
which belong to D peak (associated with the sp3 defective) and G peak (arises from the
bond stretching of all sp2−bonded pairs), respectively. In general, peak D represents the
disordered induction peak of sp3 carbon, while peak G represents the stretching vibration
of the C−C bond, which is related to the defect or small crystal size of graphene and the
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graphite lattice pattern and sp2 bond, respectively. The strength ratio of ID/IG was used to
characterize the structural disorder degree, defect degree and graphitization properties of
carbon materials [26]. Figure 2a shows the two characteristic peaks D, and G of graphene,
and the intensity of peak D is significantly higher than that of peak G. Meanwhile, the
asymmetric trailing extension of peak D extends to about 970 cm−1, which is caused by the
nitrogen-doped graphene [27]. The strength ratios (ID/IG) of MON-QD/NG-500, MON-
QD/NG-600 and MON-QD/NG-700 are 1.08, 1.09 and 1.12, respectively, indicating the
higher graphitization degree of MON-QD/NG with the increase in temperature. Mean-
while, there are many topological edge defects in the three composites, and these defects
may come from the small size of graphite fragments and residual functional groups. A
large number of studies have pointed out that atom replacement defects in and outside
the graphene surface formed by nitrogen and boron atoms can improve the electrical
conductivity of graphene, which is more beneficial to the lithium storage performance of
the materials. In addition, from the lower Raman shift spectra (Figure 2b), it is observed
that the scattering peaks at 275, 329 and 364 cm−1 in the three composites are related to the
phonon vibration modes of MoO2, suggesting the existence of MoO2 in the composites [28].
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Figure 2. Raman spectra of MON-QD/NG at different calcination temperatures (a,b).

The chemical composition and electronic state of the prepared MON-QD/NG were
investigated by XPS. The full spectrum of MON-QD/NG-600 is shown in Figure 3a. The
sample mainly contains Mo, N, C and O elements. It can be seen from the full spectrum
that the sample contains more O elements, which is caused by the existence of MoO2 and
oxidation of the surface of the sample. Figure 3b is the peak fitting result of O element,
which can be fitted into three peaks: peak I at 529.9 eV is characteristic of the Mo-O bond,
while peaks II at 531.2 eV and III at 532.8 eV are characteristic of the C-O-C bond and C=O
bond, respectively, suggesting strong chemical interaction between MoO2 and graphene. In
the N1s spectrum (Figure 3c), peak II at 397.5 eV is the characteristic peak of the Mo-N bond,
indicating the formation of Mo2N. Peaks III, IV and V at 398.2 eV, 399.7 eV and 401.6 eV
correspond to pyridine nitrogen, pyrrole nitrogen and graphene nitrogen, respectively,
indicating that nitrogen-doped graphene has been successfully prepared. In Figure 3d,
there are four characteristic peaks in the C1s spectrum, which are respectively attributed
to carbon in different chemical states: peak I at 284.6 eV is the characteristic peak of the
C-C bond, peak II at 285.5 eV and peak IV at 289.3 eV are the characteristic peaks of the
C-O bond and O=C-O bond, respectively, and peak III at 287.3 eV is the characteristic
peak of the C-N bond. These characteristic peaks indicate that MoO2 and Mo2N have
strong chemical interactions with graphene, which is beneficial to charge transfer during
charge and discharge. Figure 3e–g are the test results of Mo elements of MON-QD/NG-500,
MON-QD/NG-600 and MON-QD/NG-700, respectively. The Mo3d spectra of the three
composites can be divided into six peaks: peak I located at about 229.8 eV and peak II
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located at 232.0 eV can be identified as the presence of Mo4+, which corresponds to MoO2
phase. Peaks II and IV at 231.7 eV and 232.7 eV are characteristic peaks of the Mo-N bond
in the samples, indicating the further formation of Mo2N in the composites; peaks V and VI
at 233.4 eV and 235.2 eV are characteristic peaks of Mo6+, corresponding to the formation
of MoO3 phase, which is caused by the oxidation of oxygen in the air. In addition, it is
found from the Mo3d spectra of three composite materials that the content of Mo2N in
the sample increases first and then decreases, while the content of MoO2 increases all the
time with the increase in calcination temperature. It can also be found that the content
of Mo2N in MON-QD/NG-700 composite is the lowest, while the content of MoO2 is the
highest among the three kinds of composites. This is because Mo element itself is easily
combined with O element. Furthermore, the activity of O atoms increases with the increase
in calcination temperature. However, the poor conductivity of MoO2 restricts the cyclic
and rate capability of the materials, which greatly affect the lithium storage properties of
MON-QD/NG-700.

Batteries 2023, 9, 32 5 of 13 
 

QD/NG-600 and MON-QD/NG-700, respectively. The Mo3d spectra of the three compo-

sites can be divided into six peaks: peak Ⅰ located at about 229.8 eV and peak Ⅱ located at 

232.0 eV can be identified as the presence of Mo4+, which corresponds to MoO2 phase. 

Peaks Ⅱ and Ⅳ at 231.7 eV and 232.7 eV are characteristic peaks of the Mo-N bond in the 

samples, indicating the further formation of Mo2N in the composites; peaks Ⅴ and Ⅵ at 

233.4 eV and 235.2 eV are characteristic peaks of Mo6+, corresponding to the formation of 

MoO3 phase, which is caused by the oxidation of oxygen in the air. In addition, it is found 

from the Mo3d spectra of three composite materials that the content of Mo2N in the sample 

increases first and then decreases, while the content of MoO2 increases all the time with 

the increase in calcination temperature. It can also be found that the content of Mo2N in 

MON-QD/NG-700 composite is the lowest, while the content of MoO2 is the highest 

among the three kinds of composites. This is because Mo element itself is easily combined 

with O element. Furthermore, the activity of O atoms increases with the increase in calci-

nation temperature. However, the poor conductivity of MoO2 restricts the cyclic and rate 

capability of the materials, which greatly affect the lithium storage properties of MON-

QD/NG-700. 

  

  

  

200 400 600 800 1000 1200

O1s

Mo3p

N1s

C1s

Mo3d

(a)
Survey

 

 

In
te

n
si

ty
 (

a
.u

.)

Binding Energy (eV)

528 529 530 531 532 533 534 535

(b)
O1s

Ⅲ

Ⅱ

Ⅰ

 

 

In
te

n
si

ty
 (

a
.u

.)

Binding Energy (eV)

Mo-O

C-O-C

C=O

394 396 398 400 402

(c)
N1s

Ⅴ

Ⅳ
Ⅲ

Ⅱ

Ⅰ

 

 

In
te

n
si

ty
 (

a
.u

.)

Binding Energy (eV)

Mo3p3/2

Mo-N
Pyridinic N

Pyrrolic N

Graphitic N

283 284 285 286 287 288 289 290

(d)
C1s

 

 

In
te

n
si

ty
 (

a
.u

.)

Binding Energy (eV)

C-C

C-O

C-N
O=C-O

Ⅰ

Ⅱ

Ⅲ
Ⅳ

228 230 232 234 236

Mo3d

MoO
3

Mo-NMoO
2

Ⅵ

Ⅴ
Ⅳ

Ⅱ

Ⅲ

Ⅰ

 

 

In
te

n
si

ty
 (

a
.u

.)

Binding Energy (eV)

(e)

230 232 234 236

Mo3d

MoO
3

Mo-N

MoO
2

Ⅵ

ⅤⅣ

Ⅱ

Ⅲ

Ⅰ

 

 

In
te

n
si

ty
 (

a
.u

.)

Binding Energy (eV)

(f)

Figure 3. Cont.



Batteries 2023, 9, 32 6 of 13
Batteries 2023, 9, 32 6 of 13 
 

 

 

Figure 3. XPS spectra of MON-QD/NG-600 sample: (a) survey; (b) O1s; (c) N1s; (d) C1s; (e) Mo3d 

spectrum of MON-QD/NG-500; (f) Mo3d spectrum of MON-QD/NG-600; (g) Mo3d spectrum of 

MON-QD/NG-700. 

The morphology of MON-QD/NG-600 composite was observed by SEM and TEM, 

as shown in Figure 4a–d. Only the typical folded lamellar morphology of graphene can be 

observed in the SEM image (Figure 4a). However, from the TEM (Figure 4b) and HRTEM 

(Figure 4c) images, it can be found that a large number of small quantum dots with size 

of 1–3 nm evenly distribute on the graphene lamellae. Further observation from Figure 4c 

revealed that Mo2N quantum dots are evenly distributed in MoO2. The diffraction rings 

in the SAED image (Figure 4d) are correspond to the (111), (200) and (220) crystal planes 

of Mo2N, indicating the existence of Mo2N quantum dots in the composite material. How-

ever, the diffraction rings of MoO2 are not found in the SAED image, which indicates that 

MoO2 quantum dots exist in an amorphous state. The morphology of quantum dots can 

alleviate the volume change in electrode materials in the charging and discharging pro-

cess, and GO also plays the role of template in the preparation process, resulting in a great 

change in the morphology of composite materials. 

 

Figure 4. Morphology of MON-QD/NG-600: (a) SEM; (b) TEM; (c) HRTEM; (d) SAED. 

Figure 5a,b are the adsorption and desorption isothermal curves and pore size distri-

bution of the three MON-QD/NG samples, respectively. There are obvious hysteresis 

loops in the three MON-QD/NG composites with a pressure ratio of about 0.8–1.0 (Figure 
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spectrum of MON-QD/NG-500; (f) Mo3d spectrum of MON-QD/NG-600; (g) Mo3d spectrum of
MON-QD/NG-700.

The morphology of MON-QD/NG-600 composite was observed by SEM and TEM, as
shown in Figure 4a–d. Only the typical folded lamellar morphology of graphene can be
observed in the SEM image (Figure 4a). However, from the TEM (Figure 4b) and HRTEM
(Figure 4c) images, it can be found that a large number of small quantum dots with size
of 1–3 nm evenly distribute on the graphene lamellae. Further observation from Figure 4c
revealed that Mo2N quantum dots are evenly distributed in MoO2. The diffraction rings in
the SAED image (Figure 4d) are correspond to the (111), (200) and (220) crystal planes of
Mo2N, indicating the existence of Mo2N quantum dots in the composite material. However,
the diffraction rings of MoO2 are not found in the SAED image, which indicates that MoO2
quantum dots exist in an amorphous state. The morphology of quantum dots can alleviate
the volume change in electrode materials in the charging and discharging process, and GO
also plays the role of template in the preparation process, resulting in a great change in the
morphology of composite materials.
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Figure 5a,b are the adsorption and desorption isothermal curves and pore size distri-
bution of the three MON-QD/NG samples, respectively. There are obvious hysteresis loops
in the three MON-QD/NG composites with a pressure ratio of about 0.8–1.0 (Figure 5a),
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indicating the existence of mesoporous structures in the composites. It can also be observed
from Figure 5b that a large number of mesopores with pore sizes of about 2–50 nm exist in
the three composites. The specific surface area of MON-QD/NG-600 is 116.9 m2 g−1 and
pore volume is 0.60 cm3 g−1, which is larger than those of MON-QD/NG-500 (105 m2 g−1,
0.53 cm3 g−1) and MON-QD/NG-700 (100 m2 g−1, 0.48 cm3 g−1). The large specific surface
area provides a fast channel for the migration of Li+ ions and the diffusion of electrolyte,
which is conductive to the rapid insertion and extraction of electrolyte ions, thereby greatly
improving electrochemical performance, particularly rate performance [8,29]. Meanwhile,
high pore volume can provide buffer for material volume change during the charging and
discharging process, thus improving energy density.
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3.2. Electrochemical Characterization

The cyclic voltammetry curve of MON-QD/NG-600 at 0.1 mV s−1 in the 0.01–3.0 V
voltage range is shown in Figure 6. During the initial lithium process, the diffusion peak
from about 1.65 V to 1.0 V may be Li+ inserted into the amorphous MoO2, accompanied
by the formation of LixMoO2. However, during the first cathodic process, the peak of Li+

insertion into the MoO2 lattice (usually above 2.2 V) is not visible, which may be related
to the amorphous nature of MoO2 [18,30]. When the electrode discharge voltage is lower
than 1 V, the original LixMoO2 reacts with Li+ and gradually transforms into Mo and
Li2O [30]. In addition, a significant reduction peak was observed at about 0.7 V in the first
CV curve, which disappeared in the subsequent CV test, probably due to the formation of
the solid electrolyte interface layer (SEI) [31]. Subsequently, two oxidation peaks at 1.41 V
and 1.70 V are related to the transformation process of LixMoO2 and Mo to MoO2. The CV
curves of the second and third cycles almost coincide, indicating that the electrode material
has high reversibility.

Charge and discharge curves at 0.1 A g−1 of MON-QD/NG-500, MON-QD/NG-600
and MON-QD/NG-700 are shown in Figures 7a, 7b and 7c, respectively. It is observed
from the figures that the charge–discharge curves of the three composite materials all have
obvious charge–discharge platforms. This is consistent with the redox peak in the CV curve.
Additionally, the initial discharge-specific capacities of the three composites are 1445.6,
1753.3 and 1347.6 mAh g−1, respectively, while the initial charging capacities are 837, 957.7
and 777.3 mAh g−1, respectively. It is observed that MON-QD/NG-500 and MON-QD/NG-
700 composites decay rapidly in subsequent cycles, while MON-QD/NG-600 composites
exhibit excellent lithium storage performance. In order to explore the electrochemical
lithium storage performance of the three electrode materials, the charge and discharge rate
performance at current density from 0.1 to 5 A g−1 and the subsequent cycling property at
5 A g−1 of MON-QD/NG-500, MON-QD/NG-600 and MON-QD/NG-700 were tested, as
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shown in Figure 8a. In addition, charge–discharge curves at different current densities of
the three materials are provided in the SI (Figure S1a–c). Obviously, MON-QD/NG-600
displays the best rate capability which has reversible capacity of 958.9, 727.4, 610.5, 476.0,
350.5, 297.2 mAh g−1 at the current density of 0.1, 0.2, 0.5, 1, 2, 5 A g−1, respectively.
Furthermore, the reversible capacity of MON-QD/NG-600 is superior to the MoN/GNS
(see Table S1 in the SI) [11], Mo2N nanolayer coated MoO2 hollow nanostructure [19],
MON-NC [18], etc.
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Figure 7. Charge and discharge curves of composite materials at different calcination temperatures:
(a) MON-QD/NG-500; (b) MON-QD/NG-600; (c) MON-QD/NG-700.
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Subsequently, the three composites were cycled 300 times at a current density of
5 A g−1. Some selected charge–discharge curves (the first, 100, 200 and 300 cycles) dur-
ing cycling tests at 5 A g−1 of MON-QD/NG-600 are also provided in the SI (as shown
in Figure S2). The test results show that MON-QD/NG-600 still has a reversible capac-
ity of about 180.1 mAh g−1 after about 300 cycles. However, MON-QD/NG-500 and
MON-QD/NG-700 have a reversible capacity of 105.5 and 68.1 mAh g−1 after 300 cycles,
respectively. It is quite evident that the cycling performance of MON-QD/NG-600 is
obviously superior to that of MON-QD/NG-500 and MON-QD/NG-700.

The electrochemical kinetics of the three composites were analyzed by EIS spectra
(as shown in Figure 8b). Each of them possesses one depressed semicircle in the high-
frequency region and an inclined line in the low-frequency region, which relate to the charge
transfer resistance and Li+ diffusion process, respectively [32–34]. Therefore, an equivalent
circuit, as shown in the illustration in Figure 8b, was selected for fitting the impedance
spectra, where RL, RCT, CPECT and ZW represent the electrolyte resistance, charge transfer
resistance, double layer capacitance and Warburg impedance, respectively [35,36]. It is
clearly shown that the fitted data are basically consistent with the test data. The calculated
charge transfer resistances of MON-QD/NG-500, MON-QD/NG-600 and MON-QD/NG-
700 are 45 Ω, 28 Ω and 78 Ω, respectively. Furthermore, the MON-QD/NG-600 electrode
has a larger slope straight line, suggesting a faster Li+ diffusion process. Although the
graphitization degree of graphene increases and the conductivity is enhanced with the
increase in temperature, the content of MoO2 increases, which is not conducive to the
lithium storage performance of electrode materials under high current density.

In order to gain additional understanding of the lithium storage mechanism of MON-
QD/NG-600, CV curves at different scan rates from 0.1 to 1 mV s−1 were tested. As shown
in Figure 9a, the CV curves at different scan rates exhibit a pair of redox peaks between 1.0
and 1.7 V. Obviously, the height and area of redox peak increase as the scan rate increases,
which is due to electrode capacity obtained by dividing the peak area by scan rate which
should be constant [37,38]. In addition, it can be observed that the oxidation peak shifted
to higher potential slightly while the corresponding reduction peak shifted to a lower
potential slightly, indicating that the MON-QD/NG-600 electrode showed increasingly
obvious irreversible reaction at relatively high scan rates. Hence, the Randles–Ševčík
equation (Equation (1)) was applied to calculate the diffusion constant D, which can well
describe the relationship between square root of the scan rate v1/2 and peak current ip:

ip = 2.69 × 105n3/2 AD1/2
Li v1/2∆Co (1)

where ip is the peak current, A is the effective contact area between the electrode and
electrolyte (cm2), n is the number of electrons involved in the reaction, DLi is the diffusion
coefficient of Li+ (cm2 s−1), v is the scan rate (V s−1), ∆Co is the change in Li+ concentration
in the electrode before and after the reaction (mol cm−3). According to Equation (1), the
Li+ diffusion coefficients of the electrochemical reaction corresponding to the anodic and
cathodic peaks are 4.08 × 10−10 and 4.71 × 10−10 cm2 s−1, respectively. Obviously, the Li+

diffusion coefficients of anodic and cathodic reaction have the same order of magnitude,
indicating the excellent reversibility of the MON-QD/NG-600 electrode. Usually, the stored
charge of an electrode can be divided into three components: (1) the faradaic contribution
due to Li+ insertion process, (2) the faradaic contribution caused by charge transfer behavior,
(3) the double layer capacitance. Generally, (1) and (2) are grouped into the same monomial,
namely, the capacity-controlled process and the diffusion-controlled process. The current
(i) and the scan rate (v) obey the power law in the CV curves, which can be proved by
Equations (2) and (3) [39]:

i = avb (2)

log(i) = blog(v) + log(a) (3)

where a and b are variables. The b value can be determined by the slope of the plot log
(i) versus log (v) curves [40]. b = 0.5 indicates a diffusion-controlled behavior, whereas
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b = 1 reflects that the electrochemical reaction is controlled by a capacitance-dominated
process. As shown in Figure 9b, the slopes of the anodic and cathodic peak are 0.77 and
0.81, respectively, indicating fast kinetics contributed by both behaviors. Therefore, there is
a good relationship between v1/2 and ip. Hence, the CV curves with different scan rates can
be used to quantitatively calculate the capacitive contribution by using Equation (4) [41,42]:

i = k1v + k2v1/2
(

equivalent to
i

v1/2 = k1v1/2 + k2

)
(4)

where k is a constant. k1v and k2v1/2 are consistent with the contribution of the capacitance
effect and the diffusion-controlled behavior, respectively [43]. The contribution of the
capacitive process was also calculated. As shown in Figure 9c, the capacitive process
contributes about 67.5% of the total capacity at a scan rate of 0.6 mV s−1. The contribution
ratios of the two processes at various scan rates were also incidentally calculated. The
capacitive contribution progressively increases from 48.7% at 0.1 mV s−1 to a maximum
value of 77.8% at 1 mV s−1, as shown in Figure 9d. With the consideration of these, it
shows that most of the charge stored in MON-QD/NG-600 was a capacitive process. This
characteristic is highly beneficial for the fast transport of Li+, resulting in high reversible
rate performance and cycling performance.
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Figure 9. Kinetics analysis of the electrochemical performance toward Li+ for the MON-QD/NG-600
electrode: (a) CV curves at scan rates from 0.1 to 1.0 mV s−1; (b) the corresponding relationship
between the scan rate and peak current; (c) CV curves and capacitive contribution to the total charge
storage of MON-QD/NG-600 electrode at 0.6 mVs−1; (d) contribution ratios of the capacitive and
diffusion-controlled capacities at different scan rates.
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4. Conclusions

MON-QD/NG was successfully synthesized through a green and facile hydrothermal
route, followed by an annealing process. The electrochemical lithium storage performance
test of electrode materials indicates that temperature has a great influence on the growth
of Mo2N and MoO2. The content of MoO2 in the composite increases with the increase
in temperature. However, the poor conductivity of MoO2 affects the electrochemical
performance of the materials. Therefore, MON-QD/NG-600 has the best lithium storage
performance. It has a reversible capacity of about 958.9 mAh g−1 at current density of
0.1 A g−1, and even has a reversible capacity of about 350.5 mAh g−1 and 297.2 mAh g−1

at 2 A g−1 and 5 A g−1, respectively. The characterization of MON-QD/NG-600 found that
the prepared Mo2N and MoO2 exist in the shape of quantum dots with size of about 1–3 nm.
The quantum dots inhibit the volume change in materials during charging and discharging,
reduce the diffusion path of lithium ions as well as prevent the agglomeration between
graphene sheets effectively. Moreover, the distribution of quantum dots on or between
graphene sheets also provides a large number of reaction sites for electrochemical reactions.
Due to the unique structure and synergy of Mo2N and MoO2, MON-QD/NG-600 exhibits
excellent lithium storage performance in terms of stable long cycle life and superior rate
capability. Therefore, the MON-QD/NG composite can be used as a promising electrode
material candidate for high-performance LIBs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/batteries9010032/s1, Figure S1: Charge-discharge curves of
different current density; Figure S2: Some selected charge-discharge curves (the first, 100, 200 and
300 cycles) during cycling tests at 5 A g-1 of MON- QD/NG-600; Table S1: The comparison of
molybdenum nitride related anode material for lithium ion battery [44–46].
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