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Abstract: The intense increase in air pollution caused by vehicular emissions is one of the main
causes of changing weather patterns and deteriorating health conditions. Furthermore, renewable
energy sources, such as solar, wind, and biofuels, suffer from weather and supply chain-related
uncertainties. The electric vehicles’ powered energy, stored in a battery, offers an attractive option to
overcome emissions and uncertainties to a certain extent. The development and implementation of
cutting-edge electric vehicles (EVs) with long driving ranges, safety, and higher reliability have been
identified as critical to decarbonizing the transportation sector. Nonetheless, capacity deteriorating
with time and usage, environmental degradation factors, and end-of-life repurposing pose significant
challenges to the usage of lithium-ion batteries. In this aspect, determining a battery’s remaining
usable life (RUL) establishes its efficacy. It also aids in the testing and development of various EV
upgrades by identifying factors that will increase and improve their efficiency. Several nonlinear
and complicated parameters are involved in the process. Machine learning (ML) methodologies
have proven to be a promising tool for optimizing and modeling engineering challenges in this
domain (non-linearity and complexity). In contrast to the scalability and temporal limits of battery
degeneration, ML techniques provide a non-invasive solution with excellent accuracy and minimal
processing. Based on recent research, this study presents an objective and comprehensive evaluation
of these challenges. RUL estimations are explained in detail, including examples of its approach and
applicability. Furthermore, many ML techniques for RUL evaluation are thoroughly and individually
studied. Finally, an application-focused overview is offered, emphasizing the advantages in terms of
efficiency and accuracy.
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1. Introduction

Transportation infrastructure electrification is one of the significant options for deliv-
ering environmentally friendly and sustainable solutions. This is because it both satisfies
the ever-increasing need for ecologically friendly energy and the rising expense of trans-
portation [1]. It is essential for the global continuance of sustainable development. EVs,
both entirely battery-powered hybrid EVs (HEVs) and EVs that work on both fossil fuel
and batteries, will lead to capturing the low-emission market. EVs as well as HEVs operate
on both conventional fuel and batteries [2]. The most significant element of an EV is the
energy storage device, i.e., the battery. The invention of rechargeable lead-acid batteries
at the beginning of the 19th century prepared the path for the first electric car to become
accessible to the general public. Subsequently, electric cars had a stratospheric surge in
popularity that persisted till the early decades of the 20th century [3–5].

The overall number of electric vehicles sold at the time was almost double the count
of fossil fuel-powered automobiles, a record that has yet to be exceeded. Lithium-ion
(Li-ion) based batteries are essential to making electric vehicles a reality today [6]. These
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batteries are intended to power modern electric cars adapted to human needs. As electric
cars become more widespread in the road transportation domain, this count is foreseeable
to decline [7]. This may not be the sole reason for reviving a century-old concept that
has been dormant for a very long time; nevertheless, this time, it is a financially feasible
and vendible product that can compete with fossil fuel-powered automobiles. Unlike
traditional cars, electric vehicles (EVs) create little to no noise, do not need a great deal of
work to run, and have lower fuel costs. This is a big advantage, particularly if oil prices
continue to climb. The technology that has been created so far has the potential to be
used in urban transportation to address concerns such as low-cost public transportation
and traffic congestion. It does not use any of the stored energy and generates very little
waste [8,9].

The utilization of Li-ion batteries is prevalent in transportation as well as in energy
storage sectors. As one of the costliest components that provides a crucial function, they
must be properly managed and monitored [10]. A longer battery lifespan is not only crucial
for the economic viability of EVs, but also for the infrastructure supporting sources of
renewable energy combined with smart grids. The deterioration of batteries during usage
is one of the most critical and hardest challenges to overcome. This issue has become a
limiting element in the battery life duration [11]. Depending on how the battery is used, its
lifespan may vary substantially due to the various degrading processes. A Li-ion battery is
a time-varying, dynamic, and nonlinear type electrochemical framework with complicated
internal mechanics. These qualities make it harder to comprehend the battery. When
exposed to an increasing count of discharge and charge series, the efficacy and lifetime of a
Li-ion-based battery decline precipitously [12,13].

There are several causes of battery deterioration, some of which are chemical in origin,
while others are more physical, such as heat stress or mechanical stress. Figure 1 depicts the
processes of battery breakdown that occur most often. Several diverse forms of degradation
contribute to a battery’s aging, which may be divided into two basic categories utilizing
Li-ion as a result of side reactions depleting lithium reserves, as well as the forfeiture of the
active material, resulting in a reduction in the quantity of storage space available [14,15].
Among these, exfoliation of graphite, binder deterioration, deterioration of electrical contact
owing to corrosion of the electric current accumulators, and electrode particle cracking
are the primary reasons for active material loss. Degradation of solid electrolyte (SI)
interphase films, electrolyte breakdown, and lithium plating are the primary causes of
lithium depletion. Importantly, these processes of material degradation are inextricably
linked to the materials themselves. Because graphite has a negative work function, the
working voltage in the case of graphite makes anode inferior to the electrochemical window
of popular electrolytes, resulting in the production of an SE interphase layer [16,17]. In
contrast, SE interphase film formation would not occur in the anode made of lithium-
titanium (LT) oxide since LT oxide’s capacity remains within the window of electrochemical
electrolyte. The reason that changes in volume of lithium iron made cathode, in comparison
to cathode made of oxides of lithium manganese, is another example of this since it
results in less structural deformation [18,19]. In addition to variations in the materials, the
degradation processes vary substantially depending on the battery’s operating parameters
and its design. For example, the risk of lithium plating happening during rapid charging
is much greater than during battery discharge. In the design of the battery, a smaller
sized cathode’s elements result in reduced stresses, which in turn leads to less particle
breakage; however, owing to the high specific surface area, this also increases cathode
material dissolution [20–23].
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Due to the complexity of the process through which batteries deteriorate, it is be-
coming more impossible to estimate, with precision, how long a battery will continue to
perform. Nonetheless, this is important in the case of thermal management of battery
packs to maintain consistent operation, as well as time maintenance, together with future
applications involving battery reuse [24,25]. The primary aim of condition monitoring
for batteries is to anticipate their end-of-life (EOL) cycle and evaluate the uncertainties
associated with the expected values. Meng et al. [26] employed NASA’s dataset to forecast
the early EOL of four battery cells using a hybrid technique integrating empirical mode
decomposition (EMD) and particle filter (PF). It was observed that if prediction begins later
in the operating cycle, the data reveal a clear declining trend in EOL prediction uncertainty.

As mentioned in previous paragraphs, the battery deterioration process is quite non-
linear, complex, and difficult to model. In recent times, machine learning-based model
prediction and optimization has been employed by numerous researchers to solve this
impending issue. Generally, RUL prediction methods may be categorized as model-based
methods, data-based approaches, and their hybrids. Model-based methods often consist of
physical models, electrochemical models, etc. [27,28]. The electrochemical model employs
intricate logical models to precisely represent the chemical kinetics of the battery. To achieve
a high level of estimating precision, these approaches will also incur significant levels of
complexity and calculating expense [14,29]. In addition, in order to finish the parameteri-
zation phase of the electrochemical framework, dismantling the battery is often required,
which greatly complicates the application procedure. A Li-ion battery is an extremely
intricate system working on an electrochemical framework. The model-based approaches
are generally complicated and tough to execute for predicting the RUL of Lithium-ion
batteries, but the methods using data are ideal for assessing the RUL of Li-ion batteries,
particularly for a significant number of historical data-based utilization [30]. Consequently,
data-based forecasting systems have garnered considerable interest. The investigators have
extensively used adaptive neuro-fuzzy inference systems (ANFIS) [31,32], regression trees
(RTs) [33,34], artificial neural networks (ANN) [35,36], and response surface methodology
(RSM) [37–40]. For optimization, several metaheuristics are used: a genetic algorithm
(GA) [41,42], ant colony optimization (ACO), particle swarm optimization (PSO) [43,44],
simulated annealing, bat algorithm, spiral optimization algorithm, and artificial swarm
optimization [45].

Besides conventional ML techniques, such as ANN, neuro-fuzzy, GEP, etc., there is
another class of ML techniques known as ensemble ML. In order to provide a single, best
solution to a problem, the EML technique builds numerous instances of conventional ML
methods and combines them. Better prediction models can be produced using this method
than with the conventional method [46]. The main reasons to apply the EML approach in-
clude circumstances when there are uncertainties in data representation, solution objectives,
modeling methodologies, or the availability of random beginning seeds in a model [47,48].
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Base learners are the instances or candidate ways. As with standard ML methods, each base
learner operates separately until the final findings are integrated to create a single, reliable
output [49,50]. Several ELM techniques, such as XGBoost, random forest, and Boosted and
Bagged regression trees, have been successfully used for RUL prediction [51].

The most important factor for building good prediction models for RUL is the avail-
ability of robust data sets. Several publicly available datasets are employed by several re-
searchers to develop prediction models for the RUL of Li-ion batteries [52]. A dataset on bat-
teries is available on NASA’s “https://c3.nasa.gov/dashlink/resources/133/ (accessed on
24 September 2022)” website [53]. Another publicly available dataset on the life cycle
analysis of batteries is available at the Center for Advanced Life Cycle Engineering web-
site “https://web.calce.umd.edu/batteries/data.htm (accessed on 24 September 2022)”.
Besides these sources, the datasets on battery health, RUL, and chemistry are also avail-
able at Oxford’s Battery Intelligence lab “https://howey.eng.ox.ac.uk/data-and-code/
(accessed on 24 September 2022)” and Toyota, in collaboration with MIT and Stanford,
made their data available at their website “https://data.matr.io/1/ (accessed on 24 Septem-
ber 2022)” [52,53].

Among artificial intelligence (AI) based approaches, the ML trains a machine to follow
the human instinct to accomplish hitherto inaccessible functionalities and performance,
and it fosters the interaction between people and ML systems to make ML judgments
comprehensible to humans. While employed for the prediction of the RUL of Li-ion-
based batteries, ML technology offers the capacity for both higher prognostic efficiency
and great computation efficacy [54–56]. The study examined the functions, configuration,
structure, precision, benefits, barriers, and downsides of intelligent algorithms in battery
state estimation. The research was focused on the practicability of the efficient use of
data-based AI methodologies in the area of Li-ion batteries’ RUL forecast.

Objectives of the Study

The precise prediction of RUL remains a challenge. Several approaches have been
used by researchers working in this field, such as contemporary approaches like ANN and
ANFIS for prediction and RSM and PSO for optimization. However, in recent times, more
modern approaches, such as gaussian process regression boosted regression trees, XGBoost,
support vector regression, CatBoost, and AdaBoost, were being employed. Furthermore,
the model’s training improving methods, such as Bayesian optimization, random and
grid search, and unscented Kalman filters, are being employed. However, the review
studies published in the last few years do not provide comprehensive information on these
approaches. Thus, the present work is an endeavor to present the latest update on ML,
hyperparameters optimization, and parametric optimization in the domain of remailing
useful life modeling.

2. RUL Modeling with ML

The following modern ML techniques have been primarily used in recent times:

2.1. Gaussian Process Regression

Gaussian process regression, often known as GPR, is a form of supervised type ML
that can be implemented to solve problems relating to probabilistic classification and
regression [57–59]. The following are some of the benefits that Gaussian processes offer;
the predictions are derived from the observations through the process of interpolation.
Empirical probabilities can be calculated and utilized to determine whether to adapt the
forecast in a particular region of interest since the forecast is stochastic (Gaussian). Since the
forecast is based on a Gaussian distribution, this means that the prediction can be improved
by using adaptive fitting [60–62]. It has the provision of using different kernels, thus
making it adaptable to a different environment. Although standard kernels are provided,
it is also possible to prescribe one’s kernels. The GPR does have some drawbacks. For
example, they show marginally poor efficiency when the data size is too large. Additionally,

https://c3.nasa.gov/dashlink/resources/133/
https://web.calce.umd.edu/batteries/data.htm
https://howey.eng.ox.ac.uk/data-and-code/
https://data.matr.io/1/
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GPR Algorithms are not sparse, since, for model prediction, they use all the information
that is available about the data sample [63,64]. The typical schematics of GPR are depicted
in Figure 2.
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Liu and Chen [65] used GPR for the prediction of RUL. The indirect health indicator
and GPR were employed for RUL prediction to overcome the issue of the unpredictability
of the capacity quantification problem. The model anticipated capacity, compared to the
prediction of RUL, within a given threshold. The proposed technique was verified by two
separate datasets based on life-cycle approaches. The findings show that the suggested
method can provide an accurate and dependable RUL prediction for Li-ion batteries.
Pang et al. [66] also employed GPR as an incremental capacity (IC) for the modeling of
RUL for Li-ion batteries. To begin, the curve of IC, which is more sensitive compared to
the classic discharge/charging curve, was employed to examine the degrading process
of the Li-ion battery’s performance. It was concluded that the suggested technique offers
several benefits, such as dependability, high precision, and higher probabilistic output. In a
similar study by Li et al. [67], GPR was employed to predict the health as well as the RUL
for Li-ion batteries. Using the feature variables, the GPR was employed to simulate the
battery’s SOH estimate. Fourth, utilizing the findings of the battery SOH values and earlier
output, a longer autoregressive RUL estimate model was developed. Four battery datasets
under varied cycle test settings were employed to exemplify the prediction capabilities
and usefulness of the two proposed models. Furthermore, the resilience of the proposed
models was tested using four datasets with varying degrees of health. The experimental
findings demonstrate that the suggested technique can accurately estimate battery health
state and the remaining usable lifespan.

2.2. XGBoost

Extreme Gradient Boosting (XGBoost) is a modern ML approach for feature selection
and regression. It has become an ML technique of choice owing to its adaptability to
any environment. The most notable is Extreme Gradient Boosting (XGBoost), which is an
adaptable machine-learning technique for tree boosting. The most important contribution
that XGBoost makes to ML is the addition of a regularization component to the loss
function [68,69]. This component adopts the prognostics at each split in addition to the
complexity of the generating ensemble. In addition, XGBoost gives its users the ability to
reduce the likelihood of their models being overfitted by modifying a number of hyper-
parameters, including tree single complexity, rate of learning, forest complexity, terms of
regularization terms, dropouts, column subspaces, and so on. XGBoost presents brand
new capabilities, such as the ability to manage missing data by defaulting node directions,
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swiftly enumerating likely splitting thresholds during node splits, and interoperability
with distributed system frameworks [70,71]. The schematics of the XGBoost process are
shown in Figure 3.
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Zhang et al. [72] used XGBoost to model-predict the battery’s health parameters more
thoroughly and accurately to identify the battery’s (Li-ion) state of health. The outcomes
of the experiments indicate the value of the coefficient of determination (R2) for XGboost
models used in battery prediction research was greater than 0.97. At a signal-to-noise ratio
of 10 dB, the XGBoost model has an absolute error (AE) of 0 and a Theil index coefficient
(TIC) of less than 3%. In the same experiment about the battery forecast, the TIC in the
case of the proposed model was lower than 0.3%. Ma et al. [73] employed the XGBoost
model to prognosticate Li-ion battery’s RUL. First, it was assumed that the oscillations
in the RUL series had inherent features. Next, key health indicators (HI) were obtained
from the voltage series, including changes comparable to those of the RUL series. The
selection of HIs was then determined using the indicators of feature importance. After
that, the RUL prediction results were gathered by utilizing XGBoost to learn the HIs that
were previously chosen. Experiments conducted on the dataset supplied by the NASA
Prognostic Center of Excellence indicate that the suggested XGBoost method has excellent
prediction performance. Meng et al. [7] also used XGBoost for model prediction of RUL
while comparing it with several ML techniques. A hybrid technique was proposed to
precisely predict the Li-ion battery’s capacity, taking regeneration into account. To produce
the final prediction results, the separate outcome of test ANFIS models were recomposed.
An application of the suggested approach to the observed data of NASA lithium-ion battery
validates the method. The collected findings demonstrate that the suggested technique
may achieve adequate prediction accuracy, with the detrimental influence of capacity
regeneration on forecast accuracy being mitigated.

2.3. AdaBoost

A statistical classification meta-algorithm, known as AdaBoost (which is an acronym
for Adaptive Boosting), can be found here. To achieve improved overall performance,
it may be used with a wide range of distinct learning methods. The ultimate output of
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the boosted classifier is determined by computing the weighted average of the results
from the additional training algorithms (also called “weak learners”) [74–77]. Although
AdaBoost is most often shown for binary classification, it may be used for a large number
of classes, as well as intervals on the real line. AdaBoost is an adaptive algorithm since it
modifies successive weak learners to prioritize examples that were incorrectly identified by
previous classifiers [78–80]. This approach has fewer chances of the problem being caused
by overfitting problems, compared to contemporary learning techniques, when used in
certain circumstances. It is feasible to show that if the efficiency of each learner is just
marginally better than a random prediction, the entire model will ultimately converge to a
robust learner.

It is common to practice using AdaBoost to combine weak base learners, such as
decision stumps. However, it has been shown that it is also capable of effectively combining
strong base learners, such as deep decision trees, which results in a model with improved
accuracy. When compared to other ML algorithms, AdaBoost offers various benefits owing
to its simplicity of use and fewer parameter tinkering. Furthermore, AdaBoost may be
utilized in hybrid mode. Overfitting is not a hallmark of AdaBoost implementations,
presumably because the parameters are not tuned concurrently, and the process of learning
is hampered by stage-wise estimations. AdaBoost utilizes a method of progressive training
and boosting. As a consequence, AdaBoost demonstrations must use high-quality data.
Additionally, it is vulnerable to noise and outliers in data, necessitating the removal of
these elements before utilizing the data [79,81–83]. A schematic depicting the AdaBoost
process is depicted in Figure 4.
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Zhu et al. [84] used the hybrid of AdaBoost with LSTM for the prognostics of RUL.
In the process, the LSTM was first modified to train the time-series correlations of the
learning data, and subsequently, the test data’s trajectories were extended. This is done to
reduce the amount by which the extents of the data trajectories differ between the test and
training data sets. After that, the extra time-series data was employed as the recommended
way to modify the regression of the AdaBoost approach to predict the RUL. The proposed
technique proves to be a robust one with modern methods by signifying its effectiveness
on two different deterioration data-groups. Li et al. [82] used AdaBoost to estimate the
SOC in the case of Li-ion batteries. The authors combined AdaBoost with a recurrent type
of neural network. This tactic allows for the spatio-temporal correlation adaptability of
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sample data. According to the findings of experiments and simulation assessments, the
integrated approach suggested in this research may be used to increase the precision of
SOC prediction as well as the model’s generalization performance. Liu et al. [85] conducted
a comparative analysis of three types of ML methods, namely TotalBoost, LPBoost, and
AdaBoost, to predict the design process of Li-ion’s battery electrode. To determine the extent
to which four important elements, with three slurry extracted features and parameters of
the protective layer process, influence the porosity and mass loading of battery electrodes,
a quantitative study was conducted. According to the findings, the test tree model-based
system can provide an effectual quantitative analysis of the significance and correlation
of factors associated, in addition to giving satisfactory early forecasts of battery electrode
attributes, with prognostic efficiency.

2.4. Boosted Regression Trees

The BRT is an ML approach that is based on ensemble trees and decision trees [86]. To
reduce the amount of variation within a dataset, a decision tree may break it up into more
manageable subsets by using a series of splits. Each time a split is performed on the data,
it is based on the predictor variable that achieves the greatest reduction in the amount of
variance in the response variable [49]. In reality, a mono-type intricate decision tree may be
learned to get a higher degree of accuracy; nonetheless, it is utterly incapable of making
new predictions on its own, even though it can be educated to this level. To improve the
accuracy of forecasts, BRT and other techniques for ensemble learning combine a significant
number of very tiny decision trees. The term “weak learners” is used rather often to refer
to these fundamental trees [87].

The BRT-based model is distinct from other ensemble-based techniques as it builds
trees in a step-by-step fashion using the residuals of earlier predictions as the starting
point. The BRT approach is gradually shifting its emphasis to the facets that are the most
challenging to foresee [33]. The performance and complexity of a BRT model are both
influenced by five hyperparameters: the count of trees, the depth of interaction, the least
count of observations per tree node, the learning rate, and the bagging fraction [88,89]. The
schematics of the BRT are depicted in Figure 5.
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Several authors employed a BRT-based approach for the model prediction of RUL
and other aspects of batteries. Wang and Mamo [90] employed a tree-based ML approach
to develop a model for RUL predictions. In a hybrid approach, BRT combined an ABC
algorithm to investigate the degradation in the capacity of prismatic cells. The ABC method
was employed in this study to find optimal parameters of GBR. The suggested model’s
mean absolute percentage errors (MAPE) for four unknown datasets were 0.46%, 0.70%,
0.87%, and 0.62%. The findings reveal that the proposed model can estimate capacity
deterioration with high accuracy.

Eleftheroglou et al. [91] employed a BRT-based data-driven model-prediction approach
for the RUL prediction of Li-Polymer batteries. In addition to the mean estimates, the
level of uncertainty that is connected with the point predictions was assessed, and upper
and lower confidence intervals were also explored. The projections for the remaining
useful life of six different flights, all of which started with fully charged batteries, were
depicted, explored, and contrasted. The effectiveness of the predictive algorithms was
evaluated using several distinct metrics, and it was observed that the proposed models
were highly precise in prediction. In another example of ML application in this domain,
Chandran et al. [92] developed SOC prediction models for Li-ion battery systems. The study
explored both boosting and bagging regression trees for a comprehensive exploration of the
prognostic efficiency of this ML technique. The mean squared error (MSE) was well within
the 5% range for both approaches, establishing these as an efficient forecasting approach.

2.5. Support Vector Regression

Support vector machine has been employed extensively as a classification approach
in the last decade. However, it can also be used as a regression method while keeping all
the algorithm’s important properties. The SVM, when used for the regression of data, is
named support vector regression (SVR). SVR also employs similar grouping ideas, as does
SVM [93,94]. It works backward from the given points to determine the shape of the curve.
However, since it is a regression method, rather than employing the curve as a decision
boundary, it leverages the curve to discover a match between the vector and the point of
the curve. This is done by using the curve to find the best fit. Support vectors are used to
assist in locating the function that provides the most accurate fit to the data points [95,96].
The schematics of SVR are depicted in Figure 6.

Dong et al. [97] used the SVR technique to model-predict the RUL for Li-ion based
batteries. It was determined by the hybrid approach of the SVR particle filter method
(SVR-PF). In addition, an RUL prediction model, that can supply the value of RUL while
updating probability distribution, was supplied for the terminal life cycle. The outcome
demonstrated that the suggested methods for predicting RUL function, as well as SVR-PF,
performs superior in terms of prediction and monitoring than the conventional particle
filter does. In a similar approach to using SVR-PF, Wei et al. [98] developed models for SOH
as well as RUL to simulate the aging process of a battery. This approach used capacity as the
condition variable and characteristics, derived from a procedure that employs continuous
current and a fixed voltage, as supply variables. Because of the relationship that occurs
between storage capacity and the total charge transition resistance and electrolyte resistance,
the expected impedance parameters were utilized as the outcome. The data shows that the
proposed method provided results that are accurate and reliable, ensuring RUL prediction
results were precise in the study. Patil et al. [99] used a novel multiple-phase SCR-based
ML approach to model and predict the RUL of Li-ion batteries. It was recommended that if
the battery is near its terminal life, the classification model will generate an approximation
of the exact RUL, and the SVR model will be utilized to make the prediction. Since the
approach using a multistage process leads to rapid computations, a learned model may be
employed for the actual estimation of onboard RUL for EV battery packs. This is because,
in addition to accuracy, the multistage method produces accurate results.
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2.6. CatBoost

Most of the ML approaches require numeric data. Therefore, before we can train a
model, we must first transform categorical input into numeric data. CatBoost is one such
category encoder, which can convert categorical data to numerical data. Target encoding is
a well-known approach for category encoding. It substitutes a categorical feature with the
mean value of the target in the training data, paired with the target probability throughout
the whole dataset. However, because the target is employed to anticipate the target, this
causes target leakage [100,101]. Such models are overfitted and do not generalize well in
unknown situations. CatBoost is a modern ML algorithm, having its root in a gradient-
boosting decision tree. CatBoost was proposed in the year 2017 by Yandex developers.
Gradient boosting is a highly effective ML strategy for dealing with issues including noisy
data, heterogeneous features, and complicated relationships. CatBoost has been proven
to be superior to other contemporary GBDT-based ML algorithms because the CatBoost
algorithm is adept at the management of categorical features [102,103]. The other GBDT
algorithms may substitute categorical characteristics with average label values. The average
label worth will be employed as the criterion for node splitting in a decision tree. This
technique is known as greedy target-based statistics [104–106].

CatBoost integrates a variety of category properties as it combines all categorical
characteristics and then combines them into a current tree, having all categorical features
in the test data group in a greedy manner [107]. CatBoost is capable of overcoming bias in
the gradient approach. A weaker learner in the GBDT is generated in every iteration, while
each learner is made to learn depending on the gradient of the preceding learner; the sum of
all learners’ categorized results produces the output [106]. It will, however, provide biased
pointwise gradient estimations, leading the final learned model to significantly outperform.
CatBoost replaces the gradient estimation approach of the standard algorithm with an
organized boosting technique. This method can mitigate gradient bias-induced prediction
changes and increase the model’s generalization capabilities [106,108]. A schematic flow
chart of CatBoost is shown in Figure 7.
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Zhang et al. [108] employed CatBoost for health monitoring-based prediction. The
experimental findings demonstrated the ability of the model used in this study to realize
predictions amongst various battery packs. The R2 for the hybrid CatBoost prediction
model was greater than 0.99, while the MSE value was below one. The higher efficiency
of the CatBoost strategy was confirmed, by comparison, with other cutting-edge predic-
tion models. In an advanced study on operating vehicles powered with Li-ion batteries,
Gong et al. [109] developed a metamodel for RUL prediction. A hybrid approach of ML
with the integral method of ampere-hour was used for model development. Li et al. [110]
proposed a novel approach using CatBoost for the model prediction of SOC. The annual
operation data of an EV was used with each charging segment segregated. Subsequently,
incremental capacity analysis was employed to derive a general aging characteristic of
the interval capacity. Additionally, a comparison to the six types of ML was made, and
five main inputs—probe temperature, distance, electric current, start and stop of state of
charge—were identified based on the R-value. The findings demonstrate that the CatBoost-
based prediction framework provides the greatest precision, with the RMSE and MAPE
being constrained to 1.12% and 2.74%, respectively.

2.7. Traditional ML Methods

In the domain of traditional ML methods, the ANN, ANFIS, gene expression program-
ming (GEP), and random forests (RFs) have been extensively employed by researchers in
recent times. There are several review studies that have already published those present
exhaustive studies. The review papers published by the authors, such as Lv et al. [111],
discuss artificial intelligence and ML applied to the battery’s properties and its design.
Shal et al. [112] offered a comprehensive review of the effects of ML on SOC, RUN, and knee
points estimation using ML approaches like neuro-fuzzy, ANN, XGBoost, etc. Jin et al. [113]
published a precise review work on RUL’s prediction employing ML techniques like sup-
port vector, ANN, logistic regression, and GPR. Ng et al. [114] presented a review work
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on the RUL of Li-ion batteries, employing traditional ML techniques like ANNs, RFs,
regression, and Kalman filter. Mao et al. [115] reviewed the ML applications on battery
health and state predictions employing ML techniques, such as different types of regression,
decision trees, RFs, and RNN. The study by Rauf et al. [116] presented a comprehensive
review of traditional as well as hybrid ML techniques. Overall, it can be observed that
neural networks, neuro-fuzzy, support vector machines, and linear regression have mostly
been employed by investigators in the domain of RUL forecast of Li-ion based batteries.

2.8. Discussion

Battery degradation modeling has gotten increasingly sophisticated as the dynamics
and complexity of Li-ion battery storage systems have increased. There are qualitative
differences in the Li-ion battery deterioration process. However, identifying quantitative
variables associated with deterioration is difficult. The data-driven prognostics techniques
tackle this problem by taking actual, quasi-observations on the battery modeling without
considering the physical mechanism involved. The statistical-based ML techniques make
use of complex mathematical and linking patterns involved between input and output
to correlate RUL to battery deterioration. In the literature, many ML approaches for
modeling battery deterioration utilizing health RUL prognostics of Li-ion based batteries
are proposed. Each of the given ML for the prediction of RUL has its peculiar set of
applications, and greater outcomes can be attained in some circumstances. However, newer
ML techniques are easy to implement, explainable, and overcome the barriers of missing,
noisy, and outlier data.

3. Challenges and Future Scope

Several researchers are currently developing innovative battery materials and tech-
niques. The research and manufacturing of improved safety and energy-dense batteries
is critical. In contrast, research in the related disciplines of status monitoring and health
management is still in its infancy. The authors aim to sketch out a route for battery health
management and investigate future concerns to spur increased technological innovation
and innovative discoveries.

Although ML-based techniques have made substantial contributions to trustwor-
thy RUL prediction, they still face several challenges and have a long way to go before
producing high-fidelity RUL estimations. Traditional ML approaches are based on the
black box idea. Modern ML approaches are more like gray boxes, but more explain-
able/ethical/trustworthy AI & ML strategies that consider the physics of the problem and
can manage massive data are required.

Most RUL forecasting systems struggle to predict RUL properly at an early stage.
As a result, developing an early prediction method is crucial for avoiding battery failure
and improving battery technology advancement. Several recommendations may be made
to increase the potential and effectiveness of early RUL prediction. Using sensitivity
analysis, the original data for factors that have a high association with early capacity
decline and create the linked health indicators may be established. However, the use of the
discovered indirect health factors in various working environments must be validated in
several methods. Another method for improving early prediction is to train the predictive
algorithm offline using accessible data and then retrain it with a limited quantity of live
data. In addition, the categorization model may be used to roughly anticipate RUL in the
early stages, and the regression model can then be utilized to create an accurate prediction
of RUL. Overall, additional research is needed on algorithms that provide early prediction
with little data [117].

Another big issue is identifying qualified individuals to perform data modeling using
these ML methods. In this regard, new ML approaches are also easier to deploy when
leveraging open-source libraries and online platforms like Kaggle and Jupyter notebook.
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4. Conclusions

This review paper offers a ready-to-use perspective on cutting-edge ML approaches
for battery deterioration modeling using RUL estimates. These modern ML techniques are
newly developed and their implementation in the domain of RUL prediction is still in its
infancy. Hence, a primer with example studies was very much necessary. Machine learning
approaches, which are reinforced by a platform of data sharing and open-source tools,
have the potential to transform the battery health monitoring system. More research into
improving RUL estimate methodologies for Li-ion batteries will help achieve sustainability,
especially in the case of the EV industry. The growth of the EV market, which employs
Li-ion based batteries, together with improved manufacturing and reprocessing techniques,
will assist the global environment by cutting GHG emissions. The authors anticipate that
by publishing this study, those interested in ML-based battery deterioration modeling
may profit from their work. Engineers can use appropriate ML algorithms to predict
the best RUL built on specific necessities. Researchers can advance ideas for improving
these approaches.
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71. Amjad, M.; Ahmad, I.; Ahmad, M.; Wróblewski, P.; Kamiński, P.; Amjad, U. Prediction of Pile Bearing Capacity Using XGBoost

Algorithm: Modeling and Performance Evaluation. Appl. Sci. 2022, 12, 2126. [CrossRef]
72. Zhang, J.; Jiang, Y.; Li, X.; Huo, M.; Luo, H.; Yin, S. An Adaptive Remaining Useful Life Prediction Approach for Single Battery

with Unlabeled Small Sample Data and Parameter Uncertainty. Reliab. Eng. Syst. Saf. 2022, 222, 108357. [CrossRef]
73. Ma, Z.; Chen, M.; Cao, J.; Yao, Y.; Liu, Y. Suitable Feature Selection for Prediction of Lithium-Ion Batteries Remaining Useful Life.

In Proceedings of the 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS),
Guangzhou, China, 13–15 November 2020; pp. 728–732.

74. Busari, G.A.; Lim, D.H. Crude Oil Price Prediction: A Comparison between AdaBoost-LSTM and AdaBoost-GRU for Improving
Forecasting Performance. Comput. Chem. Eng. 2021, 155, 107513. [CrossRef]

75. Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Gong, J.; Chen, Z. Short and Mid-Term Sea Surface Temperature Prediction Using Time-Series
Satellite Data and LSTM-AdaBoost Combination Approach. Remote Sens. Environ. 2019, 233, 111358. [CrossRef]

76. Shahraki, A.; Abbasi, M.; Haugen, Ø. Boosting Algorithms for Network Intrusion Detection: A Comparative Evaluation of Real
AdaBoost, Gentle AdaBoost and Modest AdaBoost. Eng. Appl. Artif. Intell. 2020, 94, 103770. [CrossRef]

77. Sevinç, E. An Empowered AdaBoost Algorithm Implementation: A COVID-19 Dataset Study. Comput. Ind. Eng. 2022, 165, 107912.
[CrossRef] [PubMed]

78. Liu, B.; Liu, C.; Xiao, Y.; Liu, L.; Li, W.; Chen, X. AdaBoost-Based Transfer Learning Method for Positive and Unlabelled Learning
Problem. Knowl. Based Syst. 2022, 241, 108162. [CrossRef]

79. Wan, S.; Li, X.; Yin, Y.; Hong, J. Milling Chatter Detection by Multi-Feature Fusion and Adaboost-SVM. Mech. Syst. Signal Process
2021, 156, 107671. [CrossRef]

80. Wu, Y.; Ke, Y.; Chen, Z.; Liang, S.; Zhao, H.; Hong, H. Application of Alternating Decision Tree with AdaBoost and Bagging
Ensembles for Landslide Susceptibility Mapping. Catena 2020, 187, 104396. [CrossRef]

81. Pham, B.T.; Nguyen, M.D.; Nguyen-Thoi, T.; Ho, L.S.; Koopialipoor, M.; Kim Quoc, N.; Armaghani, D.J.; Van Le, H. A Novel
Approach for Classification of Soils Based on Laboratory Tests Using Adaboost, Tree and ANN Modeling. Transp. Geotech. 2021,
27, 100508. [CrossRef]

82. Li, R.; Sun, H.; Wei, X.; Ta, W.; Wang, H. Lithium Battery State-of-Charge Estimation Based on AdaBoost.Rt-RNN. Energies 2022,
15, 6056. [CrossRef]

83. Wang, C.; Xu, S.; Yang, J. Adaboost Algorithm in Artificial Intelligence for Optimizing the IRI Prediction Accuracy of Asphalt
Concrete Pavement. Sensors 2021, 21, 5682. [CrossRef]

84. Zhu, X.; Zhang, P.; Xie, M. A Joint Long Short-Term Memory and AdaBoost Regression Approach with Application to Remaining
Useful Life Estimation. Measurement 2021, 170, 108707. [CrossRef]

85. Liu, K.; Peng, Q.; Li, K.; Chen, T. Data-Based Interpretable Modeling for Property Forecasting and Sensitivity Analysis of Li-Ion
Battery Electrode. Automot. Innov. 2022, 5, 121–133. [CrossRef]

86. Elith, J.; Leathwick, J.R.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [CrossRef]
87. Knierim, K.J.; Kingsbury, J.A.; Belitz, K.; Stackelberg, P.E.; Minsley, B.J.; Rigby, J.R. Mapped Predictions of Manganese and Arsenic

in an Alluvial Aquifer Using Boosted Regression Trees. Groundwater 2022, 60, 362–376. [CrossRef]
88. Persson, C.; Bacher, P.; Shiga, T.; Madsen, H. Multi-Site Solar Power Forecasting Using Gradient Boosted Regression Trees. Solar

Energy 2017, 150, 423–436. [CrossRef]
89. Chung, Y.S. Factor Complexity of Crash Occurrence: An Empirical Demonstration Using Boosted Regression Trees. Accid. Anal.

Prev. 2013, 61, 107–118. [CrossRef]
90. Wang, F.-K.; Mamo, T. Gradient Boosted Regression Model for the Degradation Analysis of Prismatic Cells. Comput. Ind. Eng.

2020, 144, 106494. [CrossRef]
91. Eleftheroglou, N.; Mansouri, S.S.; Loutas, T.; Karvelis, P.; Georgoulas, G.; Nikolakopoulos, G.; Zarouchas, D. Intelligent

Data-Driven Prognostic Methodologies for the Real-Time Remaining Useful Life until the End-of-Discharge Estimation of the
Lithium-Polymer Batteries of Unmanned Aerial Vehicles with Uncertainty Quantification. Appl. Energy 2019, 254, 113677.
[CrossRef]

92. Chandran, V.; Patil, C.K.; Karthick, A.; Ganeshaperumal, D.; Rahim, R.; Ghosh, A. State of Charge Estimation of Lithium-Ion
Battery for Electric Vehicles Using Machine Learning Algorithms. World Electr. Veh. J. 2021, 12, 38. [CrossRef]

93. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn 1995, 20, 273–297. [CrossRef]
94. Wang, Y.; Sun, S.; Chen, X.; Zeng, X.; Kong, Y.; Chen, J.; Guo, Y.; Wang, T. Short-Term Load Forecasting of Industrial Customers

Based on SVMD and XGBoost. Int. J. Electr. Power Energy Syst. 2021, 129, 106830. [CrossRef]
95. Meenal, R.; Selvakumar, A.I. Assessment of SVM, Empirical and ANN Based Solar Radiation Prediction Models with Most

Influencing Input Parameters. Renew. Energy 2018, 121, 324–343. [CrossRef]

http://doi.org/10.1016/j.jpowsour.2019.03.008
http://doi.org/10.1016/j.jrmge.2021.06.012
http://doi.org/10.1016/j.ins.2021.05.055
http://doi.org/10.3390/app12042126
http://doi.org/10.1016/j.ress.2022.108357
http://doi.org/10.1016/j.compchemeng.2021.107513
http://doi.org/10.1016/j.rse.2019.111358
http://doi.org/10.1016/j.engappai.2020.103770
http://doi.org/10.1016/j.cie.2021.107912
http://www.ncbi.nlm.nih.gov/pubmed/35013637
http://doi.org/10.1016/j.knosys.2022.108162
http://doi.org/10.1016/j.ymssp.2021.107671
http://doi.org/10.1016/j.catena.2019.104396
http://doi.org/10.1016/j.trgeo.2020.100508
http://doi.org/10.3390/en15166056
http://doi.org/10.3390/s21175682
http://doi.org/10.1016/j.measurement.2020.108707
http://doi.org/10.1007/s42154-021-00169-7
http://doi.org/10.1111/j.1365-2656.2008.01390.x
http://doi.org/10.1111/gwat.13164
http://doi.org/10.1016/j.solener.2017.04.066
http://doi.org/10.1016/j.aap.2012.08.015
http://doi.org/10.1016/j.cie.2020.106494
http://doi.org/10.1016/j.apenergy.2019.113677
http://doi.org/10.3390/wevj12010038
http://doi.org/10.1007/BF00994018
http://doi.org/10.1016/j.ijepes.2021.106830
http://doi.org/10.1016/j.renene.2017.12.005


Batteries 2023, 9, 13 17 of 17

96. Niu, X.; Yang, C.; Wang, H.; Wang, Y. Investigation of ANN and SVM Based on Limited Samples for Performance and Emissions
Prediction of a CRDI-Assisted Marine Diesel Engine. Appl. Therm. Eng. 2017, 111, 1353–1364. [CrossRef]

97. Dong, H.; Jin, X.; Lou, Y.; Wang, C. Lithium-Ion Battery State of Health Monitoring and Remaining Useful Life Prediction Based
on Support Vector Regression-Particle Filter. J. Power Sources 2014, 271, 114–123. [CrossRef]

98. Wei, J.; Dong, G.; Chen, Z. Remaining Useful Life Prediction and State of Health Diagnosis for Lithium-Ion Batteries Using
Particle Filter and Support Vector Regression. IEEE Trans. Ind. Electron. 2018, 65, 5634–5643. [CrossRef]

99. Patil, M.A.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S. A Novel Multistage Support Vector Machine Based
Approach for Li Ion Battery Remaining Useful Life Estimation. Appl. Energy 2015, 159, 285–297. [CrossRef]

100. Lu, C.; Zhang, S.; Xue, D.; Xiao, F.; Liu, C. Improved Estimation of Coalbed Methane Content Using the Revised Estimate of
Depth and CatBoost Algorithm: A Case Study from Southern Sichuan Basin, China. Comput. Geosci. 2022, 158, 104973. [CrossRef]

101. Hussain, S.; Mustafa, M.W.; Jumani, T.A.; Baloch, S.K.; Alotaibi, H.; Khan, I.; Khan, A. A Novel Feature Engineered-CatBoost-
Based Supervised Machine Learning Framework for Electricity Theft Detection. Energy Rep. 2021, 7, 4425–4436. [CrossRef]

102. Jabeur, S.B.; Gharib, C.; Mefteh-Wali, S.; Arfi, W.B. CatBoost Model and Artificial Intelligence Techniques for Corporate Failure
Prediction. Technol Forecast. Soc Change 2021, 166, 120658. [CrossRef]

103. Huang, G.; Wu, L.; Ma, X.; Zhang, W.; Fan, J.; Yu, X.; Zeng, W.; Zhou, H. Evaluation of CatBoost Method for Prediction of
Reference Evapotranspiration in Humid Regions. J. Hydrol. 2019, 574, 1029–1041. [CrossRef]

104. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features.
Adv. Neural Inf. Process. Syst. 2018, 31.

105. Ding, Y.; Chen, Z.; Lu, W.; Wang, X. A CatBoost Approach with Wavelet Decomposition to Improve Satellite-Derived High-
Resolution PM2.5 Estimates in Beijing-Tianjin-Hebei. Atmos. Environ. 2021, 249, 118212. [CrossRef]

106. Zhang, Y.; Zhao, Z.; Zheng, J. CatBoost: A New Approach for Estimating Daily Reference Crop Evapotranspiration in Arid and
Semi-Arid Regions of Northern China. J. Hydrol. 2020, 588, 125087. [CrossRef]

107. Niu, D.; Diao, L.; Zang, Z.; Che, H.; Zhang, T.; Chen, X. A Machine-Learning Approach Combining Wavelet Packet Denoising
with Catboost for Weather Forecasting. Atmosphere 2021, 12, 1618. [CrossRef]

108. Zhang, M.; Chen, W.; Yin, J.; Feng, T. Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and
SOH Prediction Based on CatBoost. Energies 2022, 15, 5331. [CrossRef]

109. Gong, X.; Ma, Y.; Mu, Q.; Ding, L.; Li, M.; Ma, J. Data-Driven Lithium-Ion Battery Remaining Life Prediction on Actual Operating
Vehicles. In Proceedings of the 6th International Conference on Transportation Information and Safety: New Infrastructure
Construction for Better Transportation, ICTIS 2021, Wuhan, China, 22–24 October 2021; Institute of Electrical and Electronics
Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 1118–1128.

110. Li, R.; Hong, J.; Zhang, H.; Chen, X. Data-Driven Battery State of Health Estimation Based on Interval Capacity for Real-World
Electric Vehicles. Energy 2022, 257, 124771. [CrossRef]

111. Lv, C.; Zhou, X.; Zhong, L.; Yan, C.; Srinivasan, M.; Seh, Z.W.; Liu, C.; Pan, H.; Li, S.; Wen, Y.; et al. Machine Learning: An
Advanced Platform for Materials Development and State Prediction in Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2101474.
[CrossRef]

112. Shah, A.; Shah, K.; Shah, C.; Shah, M. State of Charge, Remaining Useful Life and Knee Point Estimation Based on Artificial
Intelligence and Machine Learning in Lithium-Ion EV Batteries: A Comprehensive Review. Renew. Energy Focus 2022, 42, 146–164.
[CrossRef]

113. Jin, S.; Sui, X.; Huang, X.; Wang, S.; Teodorescu, R.; Stroe, D.-I. Overview of Machine Learning Methods for Lithium-Ion Battery
Remaining Useful Lifetime Prediction. Electronics 2021, 10, 3126. [CrossRef]

114. Ng, M.-F.; Zhao, J.; Yan, Q.; Conduit, G.J.; Seh, Z.W. Predicting the State of Charge and Health of Batteries Using Data-Driven
Machine Learning. Nat. Mach. Intell. 2020, 2, 161–170. [CrossRef]

115. Mao, J.; Miao, J.; Lu, Y.; Tong, Z. Machine Learning of Materials Design and State Prediction for Lithium Ion Batteries. Chin J
Chem. Eng. 2021, 37, 1–11. [CrossRef]

116. Rauf, H.; Khalid, M.; Arshad, N. Machine Learning in State of Health and Remaining Useful Life Estimation: Theoretical and
Technological Development in Battery Degradation Modelling. Renew. Sustain. Energy Rev. 2022, 156, 111903. [CrossRef]

117. Ge, M.-F.; Liu, Y.; Jiang, X.; Liu, J. A Review on State of Health Estimations and Remaining Useful Life Prognostics of Lithium-Ion
Batteries. Measurement 2021, 174, 109057. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.applthermaleng.2016.10.042
http://doi.org/10.1016/j.jpowsour.2014.07.176
http://doi.org/10.1109/TIE.2017.2782224
http://doi.org/10.1016/j.apenergy.2015.08.119
http://doi.org/10.1016/j.cageo.2021.104973
http://doi.org/10.1016/j.egyr.2021.07.008
http://doi.org/10.1016/j.techfore.2021.120658
http://doi.org/10.1016/j.jhydrol.2019.04.085
http://doi.org/10.1016/j.atmosenv.2021.118212
http://doi.org/10.1016/j.jhydrol.2020.125087
http://doi.org/10.3390/atmos12121618
http://doi.org/10.3390/en15155331
http://doi.org/10.1016/j.energy.2022.124771
http://doi.org/10.1002/adma.202101474
http://doi.org/10.1016/j.ref.2022.06.001
http://doi.org/10.3390/electronics10243126
http://doi.org/10.1038/s42256-020-0156-7
http://doi.org/10.1016/j.cjche.2021.04.009
http://doi.org/10.1016/j.rser.2021.111903
http://doi.org/10.1016/j.measurement.2021.109057

	Introduction 
	RUL Modeling with ML 
	Gaussian Process Regression 
	XGBoost 
	AdaBoost 
	Boosted Regression Trees 
	Support Vector Regression 
	CatBoost 
	Traditional ML Methods 
	Discussion 

	Challenges and Future Scope 
	Conclusions 
	References

