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Abstract: The temperature in each cell of a battery system should be monitored to correctly track aging
behavior and ensure safety requirements. To eliminate the need for additional hardware components,
a software based prediction model is needed to track the temperature behavior. This study looks at
machine learning algorithms that learn physical behavior of non-linear systems based on sample data.
Here, it is shown how to improve the prediction accuracy using a new method called “artificial feature
extraction” compared to classical time series approaches. We show its effectiveness on tracking the
temperature behavior of a Li-ion cell with limited training data at one defined ambient temperature.
A custom measuring system was created capable of tracking the cell temperature, by installing a
temperature sensor into the cell wrap instead of attaching it to the cell housing. Additionally, a
custom early stopping algorithm was developed to eliminate the need for further hyperparameters.
This study manifests that artificially training sub models that extract features with high accuracy aids
models in predicting more complex physical behavior. On average, the prediction accuracy has been
improved by4Tcell = 0.01 ◦C for the training data and by4Tcell = 0.007 ◦C for the validation data
compared to the base model. In the field of electrical energy storage systems, this could reduce costs,
increase safety and improve knowledge about the aging progress in an individual cell to sort out for
second life applications.

Keywords: machine learning; state estimation; lithium-ion-battery; thermal management; artificial
feature extraction; battery management system

1. Introduction
Motivation

Lithium-ion-battery technology is a promising energy storage technology for tran-
sitioning to electro-mobility due to its advantages, such as low self-discharge rate, long
cycle life, scalability, high energy/power density, etc. To ensure safety requirements and
longevity, cell parameters such as cell voltage U, cell current I and ideally cell temperature
Tcell need to be monitored at all times [1–3]. From these parameters, other vital cell states,
such as state-of-charge SoC and state-of-health SoH, can be derived. The performance,
longevity, safety, and applicability for second-life-applications are strongly dependent
on the accuracy of these parameters. Obtaining the temperature Tcell is especially chal-
lenging for two reasons. First, most battery systems work with temperature sensors that
are attached to the cells’ housing. Thus, not the heat generation in the cell core is moni-
tored, but the heat dissipation from the cell interior to the environment [3,4]. Furthermore,
the cell temperature varies in a battery system depending on the location of the cell in a
module [5,6]. Therefore, a sensor-based temperature tracking of each individual cell is
recommended, however, not feasible in many applications. On the other hand, there are
various software based prediction techniques such as mathematical–physical models and
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machine learning. However, physical models are highly computationally intensive [2,7],
rely on information that is not available in real life applications [8–10] or is too specific
to apply for every scenario that a battery is exposed to in real life applications. Some
popular examples are finite element analysis, simulating the thermal field distribution
by the Newman model [11], or the heat generation model by the Bernadi model [12]. In
contrast, there are data-driven models, with their main advantages being transferability
and universality [13]. Most data-driven models aim to make predictions about SoC [14]
or SoH [15]. Temperature predictions using time series forecasts are rather rare and very
specific. For example, Kleiner et al. [16] uses real life temperature data to make predictions
for the future. The emphasis is thermal cause and thermal behavior over a cells lifetime in
contrast to more complex real life situations that can have varying results [17–19].

This paper aims to compare artificial neural network (ANN) architectures to track
thermal behavior of a single li-ion battery cell (LIBC) with a limited amount of training
data and at a constant ambient temperature. This will show the impact of artificial feature
extraction to improve the tracking capability of a physical non-linear systems.

2. Theoretical Foundations

This section will provide theoretical foundations regarding temperature behavior in
LIBCs and the machine learning aspects used in this paper. First, it is shown how heat is
generated and dissipated. This will give an insight of the complexity of dynamic non-linear
systems such as LIBCs. Secondly, a short introduction to the machine learning aspects are
given. The focus lays on recurrent neural networks to generate a time series forecast. It is
important to notice, this section does not represent the scientific contributions gained by
this paper, but shows the groundwork laid down by others.

2.1. Temperature Behavior in Lithium-Ion-Battery-Cells

The goal of this subsection is to gain an understanding of the complexity and investi-
gate the necessary information to predict the temperature behavior in a LIBC. Therefore,
we will look at the physical-thermal behavior of a single cylindrical LIBC. If we assume the
internal temperature as well as the heat generation in a cell to be evenly distributed, we
can derive from the law of energy conservation:

ccellmcell
dTcell

dt
= Qgen + Qdis, (1)

with ccell representing the specific heat capacity, mcell the mass of the LIBC and dTcell
dt the

temperature change over time t [20]. Qgen is the heat generation rate and Qdis the heat
dissipation rate. Equation (1) assumes that every additional heat source is infinitely far
from the LIBC. In other words, the ambient temperature Tamb is uniform.

2.1.1. Heat Generation

The heat generated inside a LIBC can be further subcategorized into reversible heat Q̇r,
ohmic heat Q̇o, heat from material phase changes Q̇p and heat produced by the enthalpy
absorbed or liberated from substances mixing Q̇m [3,20,21]. To simplify the model for heat
generation, we will neglect voluminous expansion during charge and discharge cycles,
assume that the active material is uniformly distributed and the diffusion coefficient of
li-ion in solid particles is assumed as constant.

Reversible heat Q̇r is the energy needed to maintain the energy balance of the reaction
caused by the gradient between the Gibbs free energy of product and reactant. Suppose
the layer-by-layer cell structure is summarized as one block, the reversible heat Q̇r can be
calculated by

Q̇r = ITcell
∂UOCV

∂Tcell
, (2)
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with UOCV representing the open circuit voltage (OCV) potential [7,21,22]. UOCV is a
function of the State-of-Charge (SoC) without the effects of overvoltage taken into account.
Ohmic heat Q̇o is generated by collisions of charged particles in the solid and electrolyte
phase and can be simplified by

Q̇o = I(U −UOCV), (3)

with (U-UOCV ) filtering the overvoltage [21]. Thus, for Q̇o, only the potential caused by
the current load is analyzed. The heat from material phase changes Q̇p can be expressed by

Q̇p = −∑
i
4Havg

i ri, (4)

and generally represents the heat either produced or consumed by the enthalpy change
4Havg

i of a chemical reaction i multiplied by the rate ri at which the reaction i takes
place [21,23,24]. Heat produced from mixing is calculated by

Q̇m = −
∫

∑
i
(H̄i − H̄avg

i )
∂ci

∂t
dv, (5)

and is caused by the enthalpy H̄i absorbed or liberated by two or more substances
mixing [24]. To isolate H̄i, the average concentration of the enthalpy H̄avg

i of i has to
be subtracted and then multiplied by the concentration change over time ∂ci/∂t. In a LIBC,
this represents the formation and relaxation of concentration gradients within the LIBC and
has to be integrated over it’s volume v. To obtain the total heat generated by a LIBC Q̇gen,
all subcategories have to be summed up. However, it is worth knowing, that the impact of
Q̇o and Q̇r far exceeds the impact of Q̇m and Q̇p.

2.1.2. Heat Dissipation

With the aim of gaining a full understanding of the thermal behavior of a LIBC,
not only heat generation but also, heat dissipation Qdis needs to be taken into account.
Qdis describes the heat escaping from the LIBC and is caused by three main phenomena:
Radiation heat Q̇ra, convection heat Q̇cv and conduction heat Q̇cd.

Radiation heat Q̇ra describes the energy transport from its surface to the surrounding
atmosphere and can be calculated by Stefan–Boltzmann law with

Q̇ra = εσA(T4
out − T4

amb), (6)

where ε represents emissivity (dependent on the materials and colors used), σ is the Stefan–
Boltzmann constant, A is the surface area of the LIBC, Tout is the surface temperature and
Tamb the ambient temperature [25]. Heat convection Q̇cv can be further subcategorized into
forced and natural heat convection. In this study, we will only look at the natural Q̇cv. A
simplified approximation is given by Jossen [26] with

Q̇cv = AcK,n(Tout − Tamb), (7)

with cK,n representing the constant of natural convection [25]. Heat conduction Q̇cd is
caused by mechanical contact from the LIBC surface area A to other materials as well as
the electrical wiring of the terminals. With Fourier’s law, we can derive

Q̇cd = kA
dTout

dx
, (8)

as a one-dimensional representation x with the thermal conductivity between the two materials.
To summarize, aside from material constants and dimensional details, we would

need information about the OCV, enthalpy behavior and concentration changes of several
reactions and temperature data. In practical applications, this information is not accessible.
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This study aims to predict the temperature behavior with only the current profile I and its
corresponding voltage response U without the need for solving differential equations.

2.2. Time Series Forecast

This section gives an overview of the machine learning aspects needed to follow along
with this paper. ANNs are a subset of machine learning and at the heart of deep learning
applications. A basic ANN is built with node layers, consisting of an input layer, a number
of hidden layers, and an output layer [27]. Each layer has one or more neurons with
individually associated weights and activation function. A training data set consists of
labeled data points and is needed to train the weights [28]. During a supervised-learning–
training process, the input layer provides the ANN with new information. This information
is passed onto the first hidden layer, where it is forwarded to the following hidden layers.
If all the information from one layer is passed onto each neuron from the next layer, it
is called a fully connected layer [29]. The information passing through the neurons is
altered by the weights. Once the information arrives at the output layer, it is compared
with the label and an error value τloss is calculated via the mean squared error method.
After a number of data points pass through the ANN (batch) a backpropagation algorithm
corrects the weights of each neuron so that τloss is minimized [30]. This process is repeated
for a number of iterations (epochs). For a time series forecast, it is not only important
to know the information provided by the input layer, but it is crucial to know several
time steps leading up to the information (window size hwin) and the previously predicted
value. This is made possible by a recurrent neural network (RNN). A special kind of
RNN is an architecture made out of long short-term memory (LSTM) cells [31]. This is
a four layered ANN compromised into one neuron that can learn to filter information
based on its importance [32]. To ensure that the ANN is learning the nature behind the
predicting values and not fitting to the training data, a validation data set is needed as
well. With the validation data set, an additional validation error τval,loss is calculated. If
the behavior of τloss and τval,loss drift into different directions during the training process,
overfitting occurs.

3. Experimental
3.1. Method of Measurement

The LIBC used in this study is a high power LIBC (INR18650-15L1) from Samsung.
According to the manufacture, the LIBC can be cycled in a range of 2.5 V ≤ U ≤ 4.5 V and
has a nominal discharge capacity of CN = 1.5 Ah. To avoid an offset from heat generation
Qgen to the actual measurement, a negative temperature coefficient (NTC)-sensor (NTC
Thermistor 10k Perle SC30F103V by Amphenol) Rsens is placed in the center of the cell.

As seen in Figure 1 cylindrical cells come with a production-related cavity in the center
of the cell wrap, where the sensor is located. To access the cavity, a through-hole was drilled
in the center of the negative terminal. After positioning the sensor, the through-hole was
sealed with a two-components-epoxide resin glue. This process took place in a glovebox
filled with an argon atmosphere.

An electrochemical impedance spectroscopy (EIS) in the range of 0.01 Hz ≤ f ≤
10,000 Hz had been carried out before and after the procedure. Figure 2 shows the results in
a Nyquist plot with a negative Im(Z)-axis. The graph marked as “Pre” represents the data
measured before the LIBC was equipped with the sensor and the graph marked as “Post”,
the data after the sensor was inserted. Two regions are highlighted by a zoom window.
The zoom window on the right focuses on the zero crossing of Im(Z) = 0. This is where
the ohmic internal resistance Ri of the LIBC can be determined. The resistance after the
procedure Ri,post = 0.02240 Ω has only a minor increase compared to before the procedure
Ri,pre = 0.02237 Ω. The zoom window on the right shows the other side of the semi-circle.
The two high points (a) and (b) are (0.03078 Ω|-0.00080 Ω) and (0.03174 Ω|-0.00082 Ω),
respectively. According to H. Ruan, B. Sun, and J. Jiang et al. [33], the accuracy in the low-
frequency range can be drastically improved with the modified-electrochemical impedance
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spectroscopy-based multi-time-scale fractional-order model. However, here the focus lies
on the two marked regions, rather than on the diffusion dynamics. In addition, Figure 2 is
meant to compare relative changes instead of absolute values.

cavity
NTC-sensor

negative terminal

through hole

Figure 1. LIBC equipped with temperature sensor. On the left is a photograph of the prepared cell.
On the left is a sectional view of sensor placement in LIBC. The figure shows the production-related
cavity with an NTC-sensor placed in the middle. The cavity is accessed by a through-hole in the
center of the negative terminal.

0.02 0.03 0.04
Re(Z) [ ]

0.01

0.00

0.01

0.02

0.03

Im
(Z

) [
]

Pre

Post
0.022

0

0.030 0.032

0.002

0.000 a)

b)

Figure 2. Nyquist plot of the EIS measurement carried out before (Pre) and after (Post) the LIBC
was equipped with a temperature sensor. Point (a) and (b) compare the two high points of the first
semi-circle.

To read and interpret the sensor values, a custom measuring system was designed. The
resistance value from the sensor was measured in a voltage divider against a SL1TTE1002F
by KOA Speer Electronics inc, and digitalized by an ADS1115 by Adafruit. The data is then
processed with an Arduino Mega 2560 and logged onto a Micro-SD-Card. The measuring
system is able to log roughly 4.5 data points per second. In post production, the digitalized
data was calculated to temperature values according to the sensors manual. In order to get
a sense of the noise produced, every data point is logged and averaged out. To account for
contact resistance and other influences by the circuit, the sensors were validated at various
ambient temperatures Tamb,c = (283.15 K, 298.15 K, 313.26 K, 333.15 K). The equation

Rsens,x,new = 1.027Rsens,x − Roffset, (9)
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is capable to compensate the offset with Roffset = 80.561 Ω. The cell was placed in the
climate chamber IPP260plus by Memmert and kept at Tamb = 298.15 K for the entirety of
the experiment.

3.2. Current Profile

Figure 3 shows the data used to train the models. First Tcell as measured as in
Section 3.1 is presented. Derived from Tcell is the linear approximation of dTcell/dt(ti) =
(Tcell(ti)− Tcell(ti−1))/(ti − ti−1) followed by the current profile I and it’s corresponding
voltage response U. The profile can be subdivided into four sections. Each section is pre-
sented with a sample of an enlarged view of the temperature Tcell as well as the current I in
Figure 4. First, the LIBC is strained with 21 full constant current (C = 1 C) charge/discharge
cycles with no rest in-between. An enlarged view is given in Figure 4a). This is followed by
three full random constant current charge/discharge cycles in the range of −4 A ≤ I ≤ 4 A
and can be viewed in Figure 4b). Positive values represent charging- and negative values
discharge-mode. To ensure that the temperature Tcell starts every cycle with Tcell = Tamb,
there is an I = 0 A phase for t = 1 h in-between each charge/discharge cycle. After that
nine different pulse cycles are implemented. The first four cycles are t = 10 s pulses, with
t = 10 s rest in-between discharge cycles with random current values analogous to section
(b) and the remaining cycles are charge-/discharge cycles for t = 30 s with no rest in
between. One example can be viewed in Figure 4c). It is important to use full cycles in
order to ensure the models ability to learn the temperature Tcell to SoC relationship. The
last section is meant to increase the level of complexity. The LIBC starts with SoC = 50 %.
From there, a random value in the range of −4 A ≤ I ≤ 4 A is applied to the LIBC for
a random time segment in the range of 5 s ≤ t ≤ 40 s. A zoomed view is extracted in
Figure 4d).
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Figure 3. Selected data to train the algorithm. Presented are four subfigures showing temperature
response Tcell(ttrain), temperature change over time dTcell/dt(ttrain), current profile I(ttrain) and
voltage response U(ttrain). Four areas are marked (a–d).
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Figure 4. Enlarged view of the areas marked in Figure 3. Presented are temperature response
Tcell(ttrain) and current profile I(ttrain) of each of the marked ares (a–d).

Figure 5 shows the data used to validate the models. Every scenario described for the
training data is implemented here as well. However, it was ensured that the current values
I differ from the training data set. Analogous to Figure 4, there is an enlarged view of all
scenarios in Figure 6 showing Tcell as well as the current I.
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Figure 5. Selected data to test the algorithm. Presented are four subfigures showing temperature
response Tcell(ttest), temperature change over time dTcell/dt(ttest), current profile I(ttest) and voltage
response U(ttest). Four areas are marked (a–d).
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Figure 6. Enlarged view of the areas marked in Figure 5. Presented are temperature response
Tcell(ttest) and current profile I(ttest) of each of the marked ares (a–d).

3.3. Data Preparation

The LIBC was cycled by the PEC ACT0550. In order to merge the temperature data
with the cell data, the time stamps (tpec for PEC and ttemp for the measuring system) of the
two systems have to be synchronized. Analyzing the data, leads to the equation

tpec = 1.0009ttemp − toffset, (10)

with the intercept toffset = 2.5011 s representing the offset in which the two systems
measuring state were started. The cell is placed in a climate chamber as described in
Section 3.1.

Finally, the data was normalized. Since I-data consists of positive as well as negative
values, the scaling range is −1 ≤ I ≤ 1. The scaling range for U and T are 0 ≤ U ≤ 1 and
0 ≤ T ≤ 1, respectively. This impacts the resolution by 50 %; however, during the research
conducted, it was revealed, that the ANN benefits more from learning the importance of
the value zero.

4. ANN-Architectures

Every sub-model is constructed the same way as a function of:

• Input block (red) consists of the input nodes (U,I) as described in Section 2.1.
• Hidden block (green) is a function of the number of hidden layers hlay and the number

of neurons hneu. Each neuron is a LSTM neuron and each layer is fully connected as
described in Section 2.2.

• dT block (purple) is a fully trained LSTM model built as in Figure 7—Model-dT. It is
structured like Model A; however, it was trained to predict the linear approximation
dTcell/dt as calculated in Section 3.2.

• Output block (blue) is a single LSTM neuron to bundle all the information coming
from the hidden block.

The minimal time span necessary to predict a temperature value is depended on the
window size hwin. This means if hwin = x the ANN will be able to make a prediction of
T(x) based on the input values of I(x− hwin) to I(x) and U(x− hwin) to U(x). In this study,
three different model architectures are being investigated. The schematic of each model
is represented in Figure 7. Model-A will function as the base model consisting of input-,
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hidden- and output blocks. Model-B has the same structure as Model-A except in-between
the input block and hidden block is a fully trained dT block (Model-dT). Therefore, Model-B
takes advantage of a form of artificial feature extraction, since the feature dTcell/dt(t) is not
a product of how a model was trained, but has been trained in a controlled environment to
produce dTcell/dt(t). Model-C includes the dT block as well. However, the hidden block is
being supplied with the information from the input block as well as the dT block.

I

U
T

I

U
T

I

U
T

Model-A Model-B Model-C

I

U
dT/dt

Model-dT

Figure 7. Layer schematic of different models. I-block (red) is the input layer, H-block (green) the
hidden layer, D-block (blue) the output layer and dT-block (purple) summarizes the pre trained
Model-dT.

Figure 8 illustrates an example of a model structure like Model-A or Model-dT. White
neurons represent input neurons and yellow neurons represent LSTM neurons. Each
neuron is fully connected to the upcoming layer. The background colors are analogous to
Figure 7. This example uses three neurons for two layers in the hidden layer. The input and
output structure is the same across all models. Model-B and Model-C have a fully trained
dT-Model in-between input and hidden layer as described.

Input 1

Output

Input 2

Figure 8. Example of a single model like Model-A or Model-dT with two inputs (Input 1 and Input 2)
and one output (Output). White neurons represent input neurons and yellow neurons represent
LSTM neurons.

Five hyperparameters were investigated:

• Window size hwin: This is the number of data points the ANN will see at each time step.
If the algorithm is supposed to estimate a temperature value for T(100) and hwin =
10, then the ANN would be fed T(89) − T(99). In order to make all architectures
comparable, hwin will only be dynamic at the base model (Model-A). For Model-B, -C
and –dT, hwin will be static. In case a value T(x) needs to be estimated with a window
size hwin = y with y > x, the data padding approach will be used [34]. This means,
that the values will be automatically filled in to create an array with the appropriate
dimensions.

• Number of neurons hneu: This value represents the total number of neurons in the
hidden block.

• Number of hidden layers hlay: This is representative of the number of hidden layers
in the hidden block. The number of neurons hnpl of each individual layer l can be
calculated by

hnpl(l) =


⌊

hneu
hlay

⌋
,

⌊
hneu
hlay

⌋
− hneu

hlay
< l

hlay⌊
hneu
hlay

⌋
+ 1,

⌊
hneu
hlay

⌋
− hneu

hlay
≥ l

hlay
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with hneu ≥ hlay and hlay ≥ l
• Learning rate: During the backpropagation process, the weights are being adjusted

according to Section 2.2. Learning rate hlear is the order of magnitude by which the
weights are adjusted. A strong hlear is unlikely to find the optimal solution while a
small hlear will make it challenging to reach a conclusion in a reasonable time frame.
This is especially important when using an early stopping approach. In addition,
this study uses an ADAM (derived from adaptive moment estimation) optimization
algorithm to dynamically change the hlear during the training process [35].

• Drop rate hdrop: This parameter is meant to counteract overfitting by stochastically
taking weights out of the equation. If we assume hdrop = 0.1, this would mean every
neuron has a 10 % chance of being bypassed.

To bypass the need for the number of training epochs nep being yet another hyper-
paramter, a custom early-stopping approach has been integrated. If the training process
is running for nep > 10, the training will stop if either τloss(nep) < τloss(1) or if the slope
areg of

areg = τloss(nep)− nep
∑

nep
i=nep−10

(nep,i − nep)(τloss(nep,i)− τloss(nep))

∑
nep
i=nep−10

(nep,i − nep)2
, (11)

with

nep =
1
10

nep

∑
i=nep−10

nep,i, (12)

and

τloss(nep) =
1
10

nep

∑
i=nep−10

τloss(nep,i), (13)

is positive.
To evaluate the models with individual hyperparameters, a constrained global op-

timization package built upon Bayesian inference and the Gaussian process were used.
It attempts to find the maximum value of an unknown high cost function in as many
few iterations as possible by adjusting the aforementioned hyperparameters [36]. It starts
with a random grid search with ngrid = 10 epochs. From there, the algorithm picks the
best result as a starting point for the Bayesian optimization that runs for a maximum of
nbays = 100 epochs. Because of the stochastic nature of ANN every iteration went through
the training process twice and the arithmetic mean of the two error rates was calculated.

5. Results and Discussion

In this section, the results of all the models will be presented, compared and discussed.
Table 1 shows the best results achieved in this experiment and is structured in the “Bayesian”
and “Individual” areas. All models are trained to reduce τtrain, and the hyperparamter hwin
is set static after the hyperparameter investigation of Model-A is completed as described in
Section 3.

The area “Bayesian” is the arithmetic mean of the two results for the training loss τtrain
with the corresponding hyperparameters. Model-C was able to achieve the best results. To
reduce the impact of the arithmetic mean, every individual model trained in “Bayesian”
was investigated for “Individual”. Again, Model-C outperformed Model-A and Model-B.

The results shown in Table 1 are illustrated in Figure 9 for the training data set and
Figure 10 for the validation data set.
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Figure 9. Predicted values of all models in four subfigures are given for the training data set. Model-A
to Model-C show ground truth, Bayesian #1, Bayesian #2 and the most promising individual results.
Model-dT illustrates ground truth and the predicted values of the dT-Model. Four areas are marked
from (a–d).
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Figure 10. Predicted values of all models in four subfigures are given for the testing data set. Model-A
to Model-C show ground truth, Bayesian #1, Bayesian #2 and the most promising individual results.
Model-dT illustrates ground truth and the predicted values of the dT-Model. Four areas are marked
from (a–d).
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Table 1. Hyperparameter results. The table shows the hyperparameter configuration for the hyperpa-
rameters hwin, hlay, hneu, hdrop and hlearn for each model. The “Bayesian” area shows the arithmetic
mean of two results with the same hyperparameter configuration and “Individual” area shows the
results for each individual model.

Model τtrain hwin hlay hneu hdrop hlearn

A 9.02× 10−3 8 2 5 0.0670 4.23× 10−6

Bayesian B 5.48× 10−2 8 1 5 0.0818 1.72× 10−6

C 7.44× 10−3 8 1 5 0.0876 8.95× 10−6

A 2.05× 10−3 10 1 28 0.0419 6.88× 10−6

Individual B 5.73× 10−3 8 1 24 0.0687 8.36× 10−6

C 1.04× 10−3 8 1 82 0.0373 2.12× 10−5

Both figures show the predicted temperature values for the two models trained in
the area “Bayesian” (“Bayesian #1” and “Bayesian #2”) and the overall best result in the
area “Individual” for all models (Model-A, Model-B, Model-C and Model-dT) in contrast
to the measured values (Ground Truth). In addition, each figure is subdivided into four
areas (a)–(d).

These areas provide four enlarged views for a more detailed analysis on the training
data in Figure 11 and validation data in Figure 12. The time span and position of all areas
are identical to the areas in Figures 3 and 5, respectively.

The success rate of the Model-dT is higher than predicting the absolute value. Cal-
culating the linear approximation dT/dt as shown in Section 3.2 will amplify the noise
produced by Tcell. Figures 9 and 10 show, that the ANN successfully performs a noise
reduction and therefore, compresses the upper and lower limits. However, it filters out the
information when heat is generated Qgen (dTcell/dt(ti) > 0) and when heat is dissipated
Qdis (dTcell/dt(ti) < 0). Thus, it aids Model-C to produce absolute values, which is to be
taken as the key message of this research. Model-dT by itself is not sufficient to extrapolate
the absolute values since every error is being summed up, resulting in a temperature drift
which is not suitable for real life applications.
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Figure 11. Predicted values of all models in four subfigures are given for the training data set.
Model-A to Model-C show ground truth, Bayesian #1, Bayesian #2 and the most promising individual
results. Model-dT illustrates ground truth and the predicted values of the dT-Model. Four areas are
marked from (a–d).
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Figure 12. Predicted values of all models in four subfigures are given for the testing data set. Model-A
to Model-C show ground truth, Bayesian #1, Bayesian #2 and the most promising individal results.
Model-dT illustrates ground truth and the predicted values of the dT-Model. Four areas are marked
from (a–d).

The predictions in Figure 9 show similar performance results to the predictions in
Figure 10. Therefore, no signs of overfitting occurred.

The models do not aim to simply classify the sections in Section 3.2 and predict a mean
value. Analyzing the enlarged sections (Figures 11a–d and 12a–d) shows the models’ ability
to learn the physical behavior of the LIBC. The model knows when Tcell increases/decreases
depending on the previous time step, and the active current load and voltage response
that had been given in hwin. Therefore, the model understands when the effects of Qgen or
Qdis dominate.

Due to the limited amount of training data, not every situation gets a sufficient amount
of attention. This is most notably when the LIBC heats up from Tamb or cools down to Tamb.

The “Individual” predictions perform visually the poorest of all graphs. This shows
the importance of having more than one ANN trained with the same hyperparameter
settings to reduce the effects of the stochastic nature.

The overall investigated temperature range is 24.53 ◦C± 0.01 ◦C ≤ Tcell ≤ 35.76 ◦C±
0.01 ◦C. In this spectrum, Model-A achieved an accuracy of 4Tcell = 0.023 ◦C during
training and 4Tcell = 0.015 ◦C during validation, Model-B 4Tcell = 0.064 ◦C during
training and4Tcell = 0.043 ◦C during validation and Model-C4Tcell = 0.012 ◦C during
training and4Tcell = 0.008 ◦C during validation.

Model-B shows the poorest performance. This is most likely due to the dimensionality
reduction. Where the input layer of Model-A has a dimension of two (U,I) and Model-C a
dimension of three (U,I,dTcell/dt(ti)), the hidden block in Model-B is only provided one
dimension (dTcell/dt(ti)). Model-A and Model-C both show that the physical temperature
behavior of a cell was learned. This is best illustrated in section (d) of Figures 11 and 12.
The LIBC can correctly predict the trend when to cool down and when to heat up based
on the current inputs (U,I) and the previous cell states. Model-C outperformed Model-A
and Model-B.

6. Conclusions and Future Work

The impact of artificial feature extraction using the first derivative in combination with
ANN has been investigated. In this regard, the following steps have been taken to show
its effectiveness:
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• A LIBC has been prepared with an internal NTC-temperature sensor with the aim to
prevent a time delay from heat generation to heat dissipation.

• A custom measuring system was designed to track the temperature and to synchronize
the temperature data with the data of the battery system.

• Using this approach, a training- and validation dataset was created to investigate three
LSTM-architectures. A hyperparameter analysis for each model has been carried out
to find the optimal model structure for each sub model. Model-A architecture is the
base model, Model-B architecture uses an additional dT-layer, that has been separately
trained to forecast the linear approximation of dTcell/dt(ti) and the third Model-C
benefits from both approaches (Model-A and Model-B). Model-C was able to outper-
form Model-A and Model-B, which shows that artificial feature extraction is a useful
method to improve model accuracy in the non-linear state of temperature prediction
in LIBCs. This method made it possible to increase the accuracy by4Tcell = 0.01 ◦C
for the training data and by4Tcell = 0.007 ◦C for the validation data compared to the
base model with only the information of the current profile I and its corresponding
voltage response U.

To show the full potential of data driven temperature prediction models for lithium-
ion-battery systems, I would like to make the following suggestions for the data set used to
train the model:

• Broader temperature range;
• Variable ambient temperature;
• Implementing real life drive cycles.

In addition, the transferability needs to be looked at. That would include transferability
between cell technologies and extrapolation from cell to module level. To compensate
for the high computational effort to train an ANNs and the need for training data, a
cloud server can be implemented, trying to find patterns across battery technologies and
different topologies.
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