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Abstract: Biopolymers are promising materials as electrolytes with high flexibility, good performance,
cost effectiveness, high compatibility with solvents, and film-forming ability. Chitosan (CS) and
carboxymethylcellulose (CMC) can form an intermolecular complex, giving rise to hydrogels capable
of absorbing ionic solutions. Citric acid (CA) is an effective biological chemical crosslinker that assists
the formation of amide and ester bonds between CMC and CS, resulting in a structure with high
ionic conductivity and good structural integrity. In this study, a chemical crosslinking strategy is used
to synthesize electrolyte hydrogels for zinc–air batteries. The effects of crosslinking are studied on
the structural and electrochemical performance of the membranes. The results show an improvement
in the ionic conductivity with respect to the homologous electrolyte hydrogel systems reported, with
a maximum of 0.19 S·cm−1 at 30 ◦C. In addition, the cyclic voltammetry studies showed a current
intensity increase at higher CA content, reaching values of 360 mA·cm−2. Structural characterization
suggests a higher thermal stability and a decrease in the degree of crystallinity caused by the polymers’
crosslinking. Finally, these membranes were tested in Zn–air batteries, obtaining power densities of 85
mW·cm−2. The proposed hydrogels show to be appropriate for energy zinc–air battery applications
and present an alternative to support the sustainable energy transition.

Keywords: zinc–air batteries; electrolytes; hydrogels; biopolymers; crosslinking; casting technique

1. Introduction

To mitigate environmental problems, a transition to clean energy sources is essential,
such as wind and solar, which have the limitation of being intermittent. An attractive
alternative is the development of sustainable rechargeable batteries for renewable energy
storage, such as metal–air batteries. In aqueous metal–air batteries, zinc as an anode
presents strategic characteristics for battery performance, such as a high volumetric capacity,
low redox potential (−0.76 V vs. standard hydrogen electrode), and lower reactivity. It is a
chemical element of high abundance, and its use lowers the battery manufacturing cost and
toxicity, and it has good safety [1–8]. These characteristics make it an appropriate element
to develop ecofriendly batteries. In addition, zinc–air batteries (ZABs) are of great research
interest, since they are characterized by the electrochemical coupling of a negative metal
electrode to an air-breathing positive electrode, with high theoretical energy densities, even
10 times higher than their lithium ion counterparts [9–11].

A key feature in the design of new batteries is the physical state of the electrolyte.
Most commercial batteries use liquid electrolytes. These batteries present safety, toxicity,
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flammability, and leakage problems [12–14]. On the other hand, the growth of dendrites
on the metal electrode and the corrosion that occurs at the interfaces reduce the capacity
and life cycle of the battery and can even generate unequal currents during charging
and preferential nucleation, causing fires [15–20]. This is why great attention is currently
devoted to the development of solid or gel electrolytes.

Polymer electrolytes (PEs) have very attractive characteristics. They are flexible and
have good performance [21–24]. Mo et al. [25] proposed a polymer electrolyte for flexible
Zn batteries. The proposal of these authors demonstrated that PEs are an effective solution
to avoid dendrite penetration, hydrogen evolution reaction, and corrosion. However,
the main problems of these materials are their low battery efficiencies from poor ionic
conductivities, low electrochemical stabilities, insufficient mechanical strength, and huge
interfacial resistance [26,27].

Chitosan (CS) is an alternative for electrochemical applications, because it is an
ecofriendly and biopolymeric material that is nontoxic, biodegradable, and a good hydrogel
former [28]. Its molecular structure presents lone electron pairs at the oxygen atom from
hydroxyl and a nitrogen atom from amino groups, making it an appropriate polymer host
for ionic conduction. Due to the fact of these characteristics, hydrogels, membranes/films,
fiber, and sponges formed of chitosan biomaterial have been reported for numerous biotech-
nology, medicine engineering, environmental, and industrial applications [29,30]. CS has
been used to form blends with carboxymethylcellulose (CMC), a biopolymer that forms
intermacromolecular complexes through strong electrostatic and hydrogen bonding in-
teractions with CS [31,32]. Bakar et al. [33] reported that the highest ionic conductivity
achieved by solid CMC-CS PEs doped with dodecyl trimethyl ammonium bromide was
1.82 × 10−6 S/cm. This result was improved by Rani et al. [34] to 1.03 × 10−5 S cm−1 by
adding ammonium nitrate to the polymer blend.

Biopolymer hydrogels solve many of the drawbacks of other types of electrolytes.
They have better ductility and flexibility, adapt to various working environments because
of their self-healing ability, exhibit shape memory, and have the ability to stretch their
crosslinked network of polymer chains with fluid-filled interstitial spaces [35,36]. CMC-CS
hydrogels can be synthesized by chemical crosslinking. There is scientific evidence for the
use of glutaraldehyde [32], arginine [37], sodium alginate [38], fumaric acid, and tartaric
acid [39] as crosslinking agents. In particular, citric acid (CA) is an effective chemical
crosslinker that leads to the formation of amide and ester bonds between CMC and CS,
generating a structure with porous networks and good mechanical stability [40].

KOH is an ionic salt used as an ion source to improve the ionic conductivity of the
system [41,42]. Iles et al. [43] achieved a maximum ionic conductivity of 0.019 S cm−1 with
a polymer gel electrolyte composed of polyvinyl alcohol (PVA) and a terpolymer composed
of butyl acrylate, vinyl acetate, and vinyl neodecanoate (VAVTD) and a KOH solution. In
this work, hydrogels were synthesized from CS and CMC with the addition of CA to form
the host matrix doped with a concentrated 12 M KOH solution. The structural, thermal,
and electrochemical properties of the synthesized membranes were analyzed as a function
of the crosslinker addition and ratios. The results indicate that it is a good material to be
applied as hydrogel electrolytes in Zn–air batteries.

2. Materials and Methods

Chitosan food grade (90.6% deacetylated [44]) (purity 100%, BioFitnest), carboxymethyl
cellulose sodium salt (sodium glycolate max. 0.4%, high viscosity grade), and citric acid
anhydrous (purity 99.5%) were acquired from Loba Chemie. Acetic acid glacial anhydrous
for the analysis (purity 100%) and KOH pellets anhydrous (purity ≥ 99.95%) were acquired
from Sigma Aldrich. The reagents were used directly for electrolyte membrane preparation.
Distilled water was used as a solvent in the polymer blending.

The Zn discs (99.999%) and Pt plates (99.97%) used in these cells were purchased
from Goodfellow. Hydrogel electrolytes were sandwiches between Zn and Pt electrodes
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(Zn/Hydrogel/Pt cell) or two Zn discs (Zn/hydrogel/Zn cell) (Beit Shemesh, Israel) and
Al2O3 polishing suspension (1 and 0.05 micron), Buehler (Lake Bluff, IL, USA).

2.1. Preparation of the CMC-CS and CMC-CS-CA Hydrogels

The hydrogels were synthesized using the solution polymerization/crosslinking meth-
ods reported by Calderon et al., with some modifications [44]. The hydrogel components
were prepared separately; 2 g of CS was dissolved in 100 mL of 1% (v/v) acetic acid solution,
2 g of CMC in 100 mL of distilled water, and 4 g of CA in 100 mL of distilled water. The
polymer solutions were stirred overnight until homogeneous solutions were obtained.
Subsequently, the hydrogels were synthesized in a 3:1 CMC/CS volume ratio, varying the
amounts of CA added (Table 1). A membrane without CA was prepared to contrast the
results of the crosslinker effect. The different mixtures were prepared using an immersion
mixer for 3 min. Then, the mixtures were sonicated at 40 kHz at 60 ◦C for 60 min. The
hydrogels were dried in an oven at 80 ◦C for 60 min. The excess liquid was removed to
proceed to drying under a fume hood for over a week. The resulting membranes were
stored in a desiccator for further characterization in a dry form. In parallel, another set of
hydrogels was immersed in a 12 M KOH solution for 48 h before being subjected to the
different characterization techniques. To label the latter as hydrogels, “sw” was added to
the hydrogel codes (Table 1).

Table 1. Codes to name the hydrogel polymer electrolytes used in this work.

Electrolyte Hydrogel Code

CMC90/CS30 CMC-CS
CMC90/CS30/CA30 CA30
CMC90/CS30/CA40 CA40
CMC90/CS30/CA50 CA50
CMC90/CS30 “sw” CMC-CS sw

CMC90/CS30/CA30 “sw” CA30 sw
CMC90/CS30/CA40 “sw” CA40 sw
CMC90/CS30/CA50 “sw” CA50 sw

2.2. Swelling Behavior of the Hydrogels

The hydrogels were weighed before the hydration in 12 M KOH and after 48 h of
being immersed. For calculation, the swelling ratio (SR) shown in Equation (1) was used.

SR =
WT −W0

W0
× 100% (1)

where W is weight or volume, and the subindexes T and 0 represent the swollen hydrogel
and the initial hydrogel, respectively.

2.3. Structural, Thermal, and Electrochemical Characterization
2.3.1. ATR-FTIR Methods

To analyze the specific functional groups of the CMC and CS polymers and the
developed composite hydrogels, FT-infrared spectroscopy (FTIR) was conducted in the
solid state by attenuated total reflectance (ATR) using a spectrophotometer (Cary 630,
Agilent Technologies Inc., Santa Clara, CA, USA) equipped with a 1-bounce diamond ATR
accessory. The spectra were registered in the range of 4000–400 cm−1, with a resolution of
4 cm−1, and 64 scans were performed.

2.3.2. XRD Characterization

X-ray diffraction (XRD) patterns were recorded using a computer-controlled Rigaku
Mini-flex-600 with a D/tex Ultra 2 detector 26 (Rigaku, Tokyo, Japan). The measurement
conditions were 40 kV and 15 mA for the X-ray generator in a sealed tube with a Ni-filtered
Cu Kα radiation source (λ = 0.15418 nm). For data collection, the membranes were placed
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in a sample holder, and the angular region selected was 2θ = 5◦–80◦ with a step width of
0.01◦. Match! Software (Crystal Impact, Bonn, Germany) was used to quantify the degree
of crystallinity of each membrane [45].

2.3.3. SEM and BET Characterization

In order to study the hydrogels’ morphology, field–emission scanning electron mi-
croscopy was used (FE–SEM, JEOL JSM–7401F microscope, JEOL Ltd., Tokyo, Japan). A
Brunauer–Emmett–Teller (BET) analysis was performed using N2 adsorption/desorption
isotherms at −195 ◦C employing a S–BET Autosorb iQ2 (Quantachrome Instruments, Boyn-
ton Beach, FL, USA). Before the adsorption/desorption test, each membrane was treated at
80 ◦C in a vacuum for 1 h.

2.3.4. Thermal Analysis

The thermal properties of hydrogels were studied by thermogravimetric analysis
(TGA) and differential scanning calorimetry (DSC) using a DSC-TGA Q600 (TA Instruments,
New Castle, DE, USA). Nitrogen was employed as the purge gas. The temperature range
used was from 25 to 800 ◦C with a heating rate of 10 ◦C min−1.

2.3.5. Electrochemical Measurements

To evaluate the electrochemical behavior of the hydrogels, potential electrochemical
impedance spectroscopy (PEIS) was performed using a VIONIC instrument (Metrohm
model, Ecuador). The frequency range for the PEIS varied from 100 kHz to 1 Hz, and the
cell configuration used was Pt/hydrogel/Pt, with a 1 cm2 area Pt blocking the electrodes.
The conductivity at different temperatures was examined in the range of 0 to 60 ◦C with
±1 ◦C precision using a Julabo circulator Polyscience (−40 ◦C, 15 L). Four measurements
were performed for each hydrogel and temperature. The system was stabilized after
each temperature drop for 5 min before taking the resistance measurement. The ionic
conductivity (σ) was calculated using Equation (2):

σ =
l

A× Rb
(2)

where l is the film thickness, A is the Pt electrode area, and Rb is the bulk resistance
obtained from the intersections of the impedance curve with the x-axis. Four impedance
measurements were carried out for each membrane. To determine the activation energy
(Ea) of each electrolyte, the Arrhenius Equation (3) was used with a linear fitting by plotting
a logarithmic relationship between ln(σ) and 1000/T:

σ = σ0 exp
(
− Ea

Kb × (T)

)
(3)

where Kb is the Boltzmann’s constant, T is the absolute temperature, and σ0 is a pre-
exponential factor [46].

The linear sweep voltammetry (LSV) staircase of the hydrogels was registered between
0.0 and +4.0 V using a Zn/hydrogel/Pt cell. Pt was used as the working electrode, and a Zn
disc served both as the counter electrode and the reference electrode. The measurements
were performed at a speed of 1 mV/s. Cyclic voltammetry (CV) was performed to evaluate
the electrochemical behavior of the hydrogels. The CV studies were carried out using a
Zn/hydrogel/Zn symmetric two-electrode cell with Zn electrodes of 0.5 cm2 and a scanning
speed of 50 mV·s−1 in a symmetric potential window from −1.5 to +1.5 V.

2.4. Battery Tests

The battery tests were conducted in an AMETEK® VersaSTAT 3 potentiostat/galvanostat
(Princeton Applied Research, Berwyn, IL, USA). The anode consisted of a piece of polished
high-purity Zn foil (15 × 10 mm length and width, 0.2 mm in depth, purity 99.9%, Yun-
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express Inc., Shenzhen, China). SIGRACET® 39 B slides (15 × 10 mm length and width,
0.4 mm in depth) impregnated with commercial catalytic ink and Pt/C (20% wt.%) were
used as a cathode. The catalyst mass loading was 1 mg cm−2. For the battery assembly,
the hydrogels were placed between the two electrodes. The discharge current density was
−3 mA cm−2, and the cut-off voltage was 0.2 V. The specific capacitance was determined
through the zinc weight loss after discharging the Zn–air battery at 1.98 mA cm−2.

3. Results
3.1. Formation Reaction of the Hydrogels

The CMC in an anionic polyelectrolyte form reacts with chitosan (cationic polyelec-
trolyte) by ionic interactions/crosslinking to form CMC–CS [47], leading to intra- and
intercharge compensation (Figure 1a). However, with the introduction of CA, in addition
to the ionic interaction, there is a reaction of esterification [48] because of the –OH and
–COOH groups added to the system, resulting in the formation of hydrogels (Figure 1b).
The primary –OH group of the carboxylic acid present in CA is known to be more reactive
than the –OH group formed in the CMC-CS uncrosslinked membrane, assuring the esterifi-
cation reaction with the CA. The crosslinking reaction seeks to increase the number of –OH
and –COOH, functional groups desired in a polymer host for ionic conduction systems.

Batteries 2022, 8, x FOR PEER REVIEW 5 of 20 
 

where Kb is the Boltzmann’s constant, T is the absolute temperature, and σ0 is a pre-expo-
nential factor [46]. 

The linear sweep voltammetry (LSV) staircase of the hydrogels was registered be-
tween 0.0 and +4.0 V using a Zn/hydrogel/Pt cell. Pt was used as the working electrode, 
and a Zn disc served both as the counter electrode and the reference electrode. The meas-
urements were performed at a speed of 1 mV/s. Cyclic voltammetry (CV) was performed 
to evaluate the electrochemical behavior of the hydrogels. The CV studies were carried 
out using a Zn/hydrogel/Zn symmetric two-electrode cell with Zn electrodes of 0.5 cm2 
and a scanning speed of 50 mV∙s−1 in a symmetric potential window from −1.5 to +1.5 V. 

2.4. Battery Tests 
The battery tests were conducted in an AMETEK® VersaSTAT 3 potentiostat/gal-

vanostat (Princeton Applied Research, Berwyn, IL, USA). The anode consisted of a piece 
of polished high-purity Zn foil (15 × 10 mm length and width, 0.2 mm in depth, purity 
99.9%, Yunexpress Inc., Shenzhen, China). SIGRACET® 39 B slides (15 × 10 mm length and 
width, 0.4 mm in depth) impregnated with commercial catalytic ink and Pt/C (20% wt.) 
were used as a cathode. The catalyst mass loading was 1 mg cm−2. For the battery assem-
bly, the hydrogels were placed between the two electrodes. The discharge current density 
was −3 mA cm−2, and the cut-off voltage was 0.2 V. The specific capacitance was deter-
mined through the zinc weight loss after discharging the Zn–air battery at 1.98 mA cm−2. 

3. Results 
3.1. Formation Reaction of the Hydrogels 

The CMC in an anionic polyelectrolyte form reacts with chitosan (cationic polyelec-
trolyte) by ionic interactions/crosslinking to form CMC–CS [47], leading to intra- and in-
tercharge compensation (Figure 1a). However, with the introduction of CA, in addition to 
the ionic interaction, there is a reaction of esterification [48] because of the –OH and –
COOH groups added to the system, resulting in the formation of hydrogels (Figure 1b). 
The primary –OH group of the carboxylic acid present in CA is known to be more reactive 
than the –OH group formed in the CMC-CS uncrosslinked membrane, assuring the ester-
ification reaction with the CA. The crosslinking reaction seeks to increase the number of –
OH and –COOH, functional groups desired in a polymer host for ionic conduction sys-
tems. 

 
Figure 1. Proposed reaction for the formation of the (a) CMC–CS and (b) CMC-CS-CA hydrogels. Figure 1. Proposed reaction for the formation of the (a) CMC–CS and (b) CMC-CS-CA hydrogels.

3.2. Swelling Behavior

The SR of the soaked membranes was calculated, using Equation (1), by the KOH
uptake in the hydrogels (Figure 2). It was observed that the noncrosslinked membrane
exhibited the highest KOH uptake and volume change (288.68 ± 26.49 wt.%, 37.5 vol.%). In
the case of the crosslinked hydrogels, a decrease in the SR was observed as the proportion
of CA increased. This behavior agrees with that reported by Fekete et al. [49], who noticed
a lower degree of swelling when a higher crosslink density was achieved. However, it is
noteworthy that the CA50 membrane, which swelled the least, absorbed approximately
1.5 times its weight with a very low volume change (Figure 2) pointing to a higher swelling
capacity in contrast to other polymeric blends [50,51]. In the synthesized hydrogels, the
KOH plays the role of an electrolyte ionic species donor to increase the ionic conductivity
of the system. In addition, it has been reported that KOH is able to enter the polymer
backbone causing conformational changes [52]. Additionally, the thickness of the hydrogels
ranged between 0.28 and 0.36 cm (Table S1).
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3.3. Structural Characterization
3.3.1. ATR-FTIR Analysis

The ATR-FTIR spectral data (Figure 3a) of the CS and CMC polymers showed typical
spectral bands. For the pure CS film, the spectrum showed a band in the region between
3100 and 3500 cm−1, assigned to the –OH/NH stretching vibrations [53]. The band at
2920 cm−1 corresponded to the C–H bond of the methylene group attached to the primary
alcohol. In addition, two peaks observed at 2869 and 2857 cm−1 were related to the
asymmetric and symmetric C–H stretching vibration of the N–acetyl group. The band at
1610 cm−1 was related to the carbonyl assigned to the stretching vibrations of the acetylated
amino groups (amide I) and 1541 cm−1 for the N–H bending vibration of the primary
amine (amide II), as reported previously [54]. The bands of the glycosidic bonds of the
skeletal polysaccharides at 1150 and 1063 cm−1 were again related to the stretching of
the asymmetric C–O bridge, while the peak at 1016 cm−1 was assigned to the vibration
of the C–O–C pyranose ring and the β–glycosidic bond, giving rise to bands similar to
those reported by Corazzari et al. [55]. In the spectrum obtained for the pure CMC film, a
fundamental band at 3209 cm−1, attributable to the –OH stretching vibration, was observed.
On the other hand, there was a band at 1585 cm−1 assigned to the symmetric stretching
vibration of the carbonyl [56]. The bands observed at 1425 and 1375 cm−1 were assigned to
the –CH2 stretching and –OH bending vibration of the CMC [57], while those at 1114 and
1024 cm−1 were characteristic of the C–O stretching of the polysaccharide backbone [58].

In the case of the CMC-CS membrane, along with the fundamental bands that are
characteristic for both polymers, a band at 1578 cm−1 was observed, which was associated
with the symmetric stretching vibrations of the COO– groups for the CMC (1584 cm−1)
and to the N–H bending vibration (1563 cm−1) of the –NH2 groups in chitosan. However,
this band has shifted to 1578 cm−1, suggesting ionic interactions and/or hydrogen bonds
between the CS and the CMC [59]. There is evidence that hydrogen bridge bonds between
the chitosan and the CMC could also be a factor in this shift [39]. The band shift to low/high
wavenumbers either weakened/strengthened, indicating crosslinking and the extent of the
linkage between the biopolymer backbone and the crosslinker [60].

As for the CA30, CA40, and CA50 spectra, there is evidence pointing to the formation
of ester bonds due to the fact of CA insertion, with the peak located at 1717 cm−1, where
the difference in the peak intensity between the three hydrogels was given by the degree of
chemical crosslinking [39]. In the pure polymers and in the membrane without CA, this
peak was absent. In addition, the peak at 1578 cm−1 was also present in the crosslinked
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membranes. This allows us to conclude that both physical interactions and chemical
bonds occurred.
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Figure 3. ATR-FTIR spectra of (a) CS, (b) CMC, (c) CMC–CS, and (d) CMC–CS sw hydrogels at
different CA proportions.

As for the swollen hydrogels (Figure 3b), the first relevant observed change was in
the –OH and –C–H region, with an increase in the broad band due to the insertion of water,
pointing to a higher amount and stronger hydrogen bonds within the polymeric matrix [43].
The band at 1636 cm−1 mapped to the frequency of the water bending mode [61]. The
characteristic C=O peak shifted to 1584 cm−1, probably because of an amorphous state [62]
due to the presence of hydroxyl groups of the KOH. Santos et al. [41] reported that the
oxygen atoms of the KOH and the C=O groups of the polymer were strong electron donors
due to the presence of available lone pairs of electrons, pointing to coordination of the
K+ cations, with these groups forming complexes such as C=O· · ·K+ or C–O· · ·K+. The
fingerprint region indicated the skeletal signals of the glycosidic bonds, where the C–O–
C vibration of the pyramidal ring at 1024 cm−1 was shown to be reduced in intensity,
evidencing the change in the shape and intensity of the C–H and C–O–C peaks [63]. This
reduction can be explained by the interaction between the Lewis OH– base and Lewis acid
of the CA, with the smaller band for the membrane with less CA content, pointing to the
preservation of the polysaccharide chains when more CA was added to the matrix.

3.3.2. XRD Analysis

The XRD pattern from pure CMC is reported to exhibit a diffraction peak at
2θ = 19.59◦ [64], while for CS it presents characteristic peaks at 10.18◦ and 20.16◦. These
values indicate a semicrystalline nature for the polymers [65]. In our study, the peak at
10.18◦ disappeared from the diffractograms, and the most relevant peak obtained was at
2θ = 21◦, exhibiting a broad shape (Figure 4). This peak points to the amorphous nature of
the membranes when compared with the pure polymers [39,59]. Then, when analyzing
the swollen membranes, the degree of crystallinity (Xc) decreased due to the addition
of the KOH solution. The formed complex between the polysaccharide chains and the
potassium cations could explain this behavior. Hence, the decrease in the crystallinity could
be explained by the destruction of the hydrogen bonding in the matrix [66].
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The addition of the CA crosslinker increased the amorphousness of the hydrogels,
obtaining 15.6% of the crystallinity in the case of the CA50 unswollen membrane (Table 2).
Moreover, with the absorption of the KOH, it was observed that Xc decreased. The smallest
degree of crystallinity was obtained for the CA40 sw hydrogel, reaching 4.6%, while the
values for the CA30 sw and CA50 sw membranes were 5.2% and 4.7%, respectively. The
degree of crystallinity is important, as it is related to the hydrogels’ swelling behavior [67].
Additionally, the ionic conductivity suffered an improvement, as the crystallinity decreased
since the ions have low mobility in the crystalline phases [68,69]. With the increased amor-
phousness, more voids were present, which is relevant to obtain higher ionic conductivity
values [70].

Table 2. Crystallinity degree (Xc) calculated from the XRD patterns.

Membranes Xc (%)

CMC–CS 17.9
CA30 15.5
CA40 14.4
CA50 15.6

CMC–CS sw 10.7
CA30 sw 5.2
CA40 sw 4.6
CA50 sw 4.7

3.3.3. SEM Micrographs and BET Analysis

For the uncrosslinked membrane CMC-CS, more smoothness and uniformity of the
surface was shown, with few lumps presented on it (Figure 5a,b). This observation sug-
gests good miscibility, homogeneity, and interaction of the polymers that form the mem-
brane, leading to compaction of the microstructure [71]. For the crosslinked membrane
CA50, a chapped surface with pleats, granules, and some orifices (macroporous) was
observed. Wang et al. [72] reported similar surface structures related to the crosslink-
ing degree achieved by polyethyleneimine/poly(vinyl alcohol) composites. Otherwise,
Ritonga et al. [73] reported that the presence of uneven granules dispersed on the surface
of hydrogels composed of chitosan-ethylenediaminetetraacetic acid, which has been iden-
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tified as a crosslinker. The N2 adsorption–desorption isotherms for the hydrogels were
obtained (Figure S1). A mix of type II and type III isotherms was observed, with a low
superficial area ranging from 3.3 m2/g for the CMC-CS membrane to 2.0 m2/g for the
CA50 membrane. The herein obtained results suggest the obtention of nonporous or macro-
porous materials with a low relationship between the adsorbent and adsorbate. Hence,
the swelling behavior when the membranes were hydrated with KOH solutions can be
explained by a phenomenon of absorption rather than adsorption, indeed related to the
crosslinking degree [39].
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3.4. Thermal Characterization

The CMC-CS membrane shows three degradation regions starting at 40, 130, and
330 ◦C (Figure 6). The first loss (17.8 wt.%) was attributed to the internal loss of water
that the polymeric matrix undergoes. The second and third losses were linked to the
degradation of the polymeric backbone. The second weight loss was also related to carbon
formation [74,75]. Comparing our curves for the dry membranes with the curves obtained
by Uyanga et al. [39] for pure polymers, it can be seen that the degradation regions coincide
but in our case with an increase in the thermal stability. From ~450 ◦C onwards, a stable
behavior was observed, with a remaining residue of ~34.6 wt.% for the CMC-CS membrane
and 26.4 wt.% for the CA50 membrane, suggesting an increase in the carbon yield with
the increasing CA content in the hydrogel. The carbon yield is influenced by the chemical
bonds and functional groups in a sample [76].
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In the case of the swelled membranes in KOH solution, the loss of absorbed water
by the hydrophilic groups in the polymer chains began at 47.7, 50.8, 53.6, and 56.6 ◦C for
the CMC-CS sw, CA40 sw, CA50 sw, and CA30 sw, respectively. It was observed from
the DTGA curves (Figure 6 inset) that the minimum peak shifted from 96.8 to 112.8 ◦C as
more CA was added to the crosslinked membrane (CA50). That shift of the minimum peak
is evidence of an increased thermal stability and higher water retention in the polymer
matrix [62]. This can be explained by the higher degree of esterification (discussed in
Section 3.1), since with the presence of more ester bonds in the polymer chain, a more
reinforced structure is obtained, leading to stronger internal bonds that require more heat
to undergo the regions of degradation. The next range of the matrix’s degradation began
at 240 ◦C. The weight loss was 45.9%, 41.5%, 39.64%, and 36.7% for CMC-CS sw, CA30
sw, CA40 sw, and CA50 sw, respectively. These losses originated from the degradation
of the saccharide structure of the molecule [77]. The last region found from 516 to 537 ◦C
shows the modification of the chemical structure produced by the oxygen-containing KOH
molecule. The intensity of this peak was related to the KOH swelling behavior of the
membranes. The higher residue percentage in the swelled hydrogels in comparison to
the dried membranes could suggest the presence of potassium salts formed when KOH is
decomposed [78].

The intermolecular interaction of the components could be evidenced in the DSC
curves of the dried hydrogels (Figure S2a). For the CMC-CS hydrogel, it was evidenced an
endothermic peak at 110 ◦C, attributable to heat absorption by water evaporation from the
hydrogels [40]. Moreover, another endothermic peak was depicted at 204 ◦C, referable to
the thermal degradation of the polymers [79]. However, for the CMC-CS-CA hydrogels,
this peak shifted to lower values (194 ◦C), further confirming crosslinking. Beyond 235 ◦C,
the last peak turned into an exothermic peak for all hydrogels. This phenomenon has been
reported to be associated with CS structure debonding and the decomposition of its amine
unit [80]. In terms of the soaked hydrogels, the increase in the intensity of the DSC curves
(Figure S2b) points to firmer internal bonds related to the addition of CA, requiring more
heat to evaporate the moisture and break the membrane bonds and, finally, leading to the
thermal degradation of the structures [39].
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3.5. Electrochemical Characterization
3.5.1. Influence of the CA Content on the Ionic Conductivity

The ionic conductivity (σ) was studied as a function of the temperature for all of the
swollen hydrogels (Figure 7). For Arrhenius to be suitable, the plots of ln(σ) versus 1000/T
should follow a linear fitting in the chosen temperature range. This linearity points to a
thermally assisted conduction [81]. In this type of conduction, the energy barrier Ea needs
to be surmounted for the ion to move from one site to another [82]. The highest value of Ea
was obtained for the CMC-CS sw hydrogel, with 0.21 eV. Smaller values of 0.14 and 0.18 eV
were obtained for the crosslinked hydrogels CA40 sw and CA30 sw, respectively (Table 3).
Moreover, the Arrhenius behavior in the CMC-CS sw hydrogel was lost at 50 ◦C, whereas
for the CMC-CS-CA sw membranes, they achieved linearity until 60 ◦C, suggesting an
enhanced stability of the conduction process for the synthesized hydrogels.
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Figure 7. Ionic conductivity of the CMC-CS sw electrolytes at different temperatures. Inset: Activation
energy (Ea) of the CMC-CS sw electrolytes.

Table 3. Swelling ratio and some electrochemical values obtained for the CMC-CS and CMC-CS-CA
sw electrolytes. Ionic conductivity values were obtained at T = 30 ◦C.

Electrolyte KOH Absorption
(%) Ea (eV) σ (S·cm−1)

CMC-CS sw 288.35 ± 26.64 0.21 0.11
CA30 sw 180.40 ± 17.01 0.18 0.16
CA40 sw 160.83 ± 7.10 0.14 0.18
CA50 sw 151.69 ± 1.09 0.16 0.19

The results show the swelled KOH to be inversely proportional to the increase in ionic
conductivity, obtaining a maximum of 189 mS cm−1 for the CA50 sw hydrogel (Figure 8).
This apparent contradictory behavior can be explained by the capability of the membrane to
retain the swelled KOH when it is pressed between the electrodes and its further integrity.
These values follow the trend of the decrease in the crystallinity caused by the KOH
solution, which was already discussed in Section 3.3.2. This effect was enhanced when the
temperature increased, generating a more structural relaxation of the polymer chains and
expanding the free volume, causing an increase in the conductivity as evidenced in Figure 7,
obtaining a conductivity of 273 mS cm−1 for the CA50 sw hydrogel at 60 ◦C. Therefore, the
results agree with reports of the decrease in the crystallinity to be inversely proportional
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with the increase in the ionic conductivity [83,84]. The obtained values for σ show a
substantial increase from previous studies in the field, where ionic conductivities of less
than 10−3 S·cm−1 were reported [85–89], pointing to the applicability of these membranes
in electrochemical applications. Achieving a high ionic conductivity allows for more ions to
pass through at a given time, improving the capacity at higher discharge rates [90], which
is also important for obtaining a high energy density [91].
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Figure 8. Comparison between the ionic conductive values and KOH absorption behavior of the
CMC-CS sw hydrogels at different CA proportions.

3.5.2. Linear Sweep and Cyclic Voltammetry (CV)

It can be evidenced from the linear sweep voltammetry (LSV) studies how the elec-
trolytes were stable in a long electrochemical potential window (Figure 9a), with the best
window obtained for the CA50 membrane, which reached up to approximately +2.1 V,
while the other electrolytes resulted in being also highly stable in comparison with a liquid
electrolyte, for which the electrochemical window (1.23 V) is restricted due to the water
electrolysis. The cyclic voltammetry (CV) studies were performed in an electrochemical
stability window in the range of−1.5 to 1.5 V to study Zn2+ conduction and reversible equi-
librium between the zinc metal and the zinc ions present inside the CMC-CS sw hydrogels,
as presented in Figure 9b. When analyzing the peaks’ shape, a quasi-reversible behavior
for the redox processes was evidenced; the cathodic peak corresponded to the reduction
process of Zn2+ to Zn0, while the anodic peak was attributed to zinc oxidation to Zn2+

cations [43]. The oxidation/reduction reactions were evidenced for all of the membranes
according to the peaks in the CV plot as evidence of the establishment of the reversibility
of the Zn/Zn2+ couple. Two peaks split into both anodic (a1 and a2) and cathodic (c1 and
c2) branches were observed. The first peak in the anodic branch (a1) was highly reported
for alkaline electrolytes [90], being as follows:

Zn + 4 OH−
 Zn(OH)4
2− + 2 e−

Whereas for the second peak, a2, Cai et al. [92] associated it to the formation of
Zn(OH)3

− complexes due to the depletion of OH− anions near the electrode surface,
creating a prepassive layer at a more positive potential than a1. For the cathode peaks, the
reverse reactions were happening. The inverse peak b′ in the cathodic branch was reported
to occur due to the oxidation of Zn after some dissolution of the passive film deposited
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on the surface of the Zn electrode that was released during the cathodic sweep. The same
occurred for peak b” in the anodic sweep [41].
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Figure 9. (a) Linear sweep voltammetry studies for the CMC–CS sw hydrogels at different CA
proportions; (b) cyclic voltammograms of the swollen hydrogels at ambient temperature. Inset:
40 consecutive cycles of the CA40 sw membrane.

A maximum peak of intensity at 225 mA·cm−2 for the CMC-CS sw hydrogel was
obtained, while for the CA50 sw membrane it achieved 360 mA·cm−2. The large separation
in peak potentials is reported to be due to the absence of reference electrode used, typical
for the evaluation of gel PEs [93,94]. For all the membranes, stability is evidenced when
performing 40 consecutive cycles, pointing to a good electrochemical behavior and the
reversibility of the system. The presented results indicate an improvement of the fast-ionic
motion across the electrolyte matrix, since the intensity values are reported to depend on
the number of electrons transferred between the redox species and the electrode, which
depends on the ions’ movement [43,95]. The ionic conductive behavior of these type of PEs
has been reported to be due to the heteroatoms from CMC and CS donating electron pairs
from s orbitals to Lewis’s acids, forming a complex–transport system [41]. Thus, it points
to the applicability of the hydrogels in electrochemical devices.

3.6. Zn/Hydrogel/Air Battery

The primary ZAB was constructed using a previously reported configuration [96],
without the use of the reservoir, being replaced by the hydrogel electrolytes proposed
in this work (Figure 10e). The open circuit potential for all of the membranes reached
values of 1.46 V. The discharge and power densities displayed in Figure 10a showed clear
differences between the use of the CMC-CS sw membrane and the crosslinked membranes,
with double the power density for the CA50 sw membrane (85 mW cm−2) compared to
the noncrosslinked membrane (40 mW cm−2). These results show an enhancement in the
power density of the system when compared with the use of KOH 6 M as an electrolyte,
where a power density of 28 mW cm−2 was reported by Díaz-Patiño et al. [97]. The CMC-
CS sw hydrogel required the greatest electrical work at the demanding current densities
in the stability tests at different current densities (Figure 10b), reflected in the higher
overpotentials. In comparison, the CA50 sw membrane required lower overpotentials to
provide the fixed current densities. In addition, the ZAB using the CMC-CS sw electrolyte
was unable to sustain operation at current densities of 10 mA·cm−2. Table 4 shows the
battery performance obtained in this work compared to other reports that used polymers
in their electrolyte system.
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Figure 10. (a) Discharge and power density curves for the battery operated with the Zn foil as an
anode and Pt/C as a cathode and the synthetized hydrogels; (b) discharge tests at selected current
densities; (c) potential electrochemical impedance spectroscopy studies; (d) discharge performance at
3 mA cm−2; (e) photograph of the assembled device.

Table 4. Battery performance of some Zinc–air batteries with polymer electrolytes.

Electrolyte
Ionic

Conductivity
(S cm−1)

Bulk Resistance
(Ω)

Specific
Capacitance
(mA·h g−1)

Power Density
(mW cm−2) Reference

Chitosan-PDDA-GA KOH 0.02 ∼1.00 - 48.9 [98]
QA-functionalized

nanocellulose-GO-KOH 0.04 - - 44.1 [99]

PVA-PEG-SiO2 KOH 0.06 ∼1.30 720.6 62.6 [100]
PVA-NH4Cl-ZnCl 0.07 2.16 - ∼8 [101]

CS-PVA KOH 0.11 1.06 221.6 - [102]
CMC-CS-CA KOH 0.19 1.85 1026 85 This work

In terms of the bulk resistances (Rb) of the ZABs (Figure 10c), values of 3.65 Ω for
the CMC-CS sw membrane and 1.85 Ω for the CA50 sw membrane were obtained. This
decreasing pattern of Rb was due to the increasing of the charge carriers and the OH− ions
with an increased SR [103]. The discharge time of the battery using the CA50 sw reached a
7.4 h set time for the discharge process (Figure 10d), while for the CMC-CS sw membrane,
it only took 4 min to finish discharging. The average nominal voltages at the flat plateau
region ranged from 1.23 V for the CA50 sw hydrogel to 1.20 V for the CMC-CS sw hydrogel
before hitting cutoff voltages of 1.19 and 1.18 V, respectively. The voltage values decreased



Batteries 2022, 8, 265 15 of 19

slightly in the plateau region, possibly due to the concentration polarization caused by
salt depletion or accumulation within the cell [104]. The maximum specific capacitance
obtained was 1026 mA·h g−1 for the battery assembled with the CA50 sw electrolyte.

4. Conclusions

The esterification/crosslinking reaction for the CMC-CS-CA hydrogels was achieved
through the synthesis proposed in this work, confirmed by ATR-FTIR. The swelling behav-
ior of the noncrosslinked hydrogel had a higher swelling ratio than its counterparts with
citric acid. However, this higher capacity came along with low structural integrity when
used in battery assemblies. With the addition of CA, a superior structural stability of the
membranes was obtained. The structural characterization carried out suggested a higher
thermal stability and a decrease in the degree of crystallinity of the crosslinked membranes.
The absorption and nonadsorption mechanism was confirmed through the study of N2
adsorption/desorption processes.

The values of the ionic conductivity and current improved with the proposed hy-
drogels compared to the noncrosslinked electrolyte, confirmed by the electrochemical
characterization by electrochemical impedance spectroscopy and cyclic voltammetry. Ar-
rhenius behavior was confirmed in the range of 0 to 60 ◦C for the crosslinked membranes,
and a maximum value of 0.19 S·cm−1 was found at 30 ◦C. In addition, the cyclic voltam-
metry studies confirmed a quasi-reversible behavior, with maximum intensity peaks of
360 mA cm−2, as evidence of the high ionic transfer achieved by the CA50 sw hydrogel.
The synthesized hydrogels were finally tested in a zinc–air battery, with high performance
in terms of power densities, bulk resistances, and discharge times. The obtained results
show that these hydrogels are suitable candidates for use in energy storage devices.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/batteries8120265/s1, Figure S1: Nitrogen adsorption/desorption
isotherms for the synthesized hydrogels; Figure S2: DSC curves for (a) dried hydrogels and (b) swollen
hydrogels. Table S1. Average electrolytes’ thickness used for ionic conductivity calculations.
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