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Abstract: To improve the energy-efficiency of transport systems, it is necessary to investigate electric
trains with on-board hybrid energy storage devices (HESDs), which are applied to assist the traction
and recover the regenerative energy. In this paper, a time-based mixed-integer linear programming
(MILP) model is proposed to obtain the energy-saving operation for electric trains with different
constraints of on-board HESDs, such as their capacity, initial state of charge (SOC), and level of
degradation. The proposed integrated power flow model based on the train longitudinal dynamics,
power split of on-board HESDs, and line impedance is discretized and linearized, aiming to minimize
the net energy consumption (NEC). The results reveal that on-board HESDs with a higher capacity
does not necessarily lead to a higher energy-saving rate; a lower or excessive initial SOC could
undermine the energy-saving potential; considering the long-term train operation, the degradation
of the Li-ion battery will influence the energy-saving operation for electric trains, as well as result
in an energy-saving rate that ranges from 41.57% to 31.90%. The practical data from Guangzhou
Metro Line 7 were applied in the simulations, which enhanced the practicality and effectiveness of
the proposed method.

Keywords: energy-saving operation; on-board hybrid energy storage devices (HESDs); time-based
mixed integer linear programming (MILP); rail transportation; net energy consumption (NEC)

1. Introduction

With the ever-increasing prices of energy and fossil fuels such as gasoline, electrified
rail traffic is becoming one of the most common public transportation options for urban
residents [1]. In China, Beijing, Shanghai, and Guangzhou, metro loads accounted for from
1.5% to 2.5% of the city’s total load, which had become the largest single electricity load in
the cities [2]. To cope with the increasing energy consumption problem of the urban rail
transit system, the energy-saving operation for electric trains has become a hot topic. At
present, on-board hybrid energy storage devices (HESDs) were utilized in some modern
railway systems, which can supply traction energy and recover regenerative energy to
improve the systems’ energy efficiency [3,4].

As an emerging technology, on-board HESDs are usually composed of different types
of energy storage devices, namely, batteries (BATs), supercapacitors (SCs), and flywheels,
where the hybridization solutions to BATs and SCs are widely applied in electric vehicles
and rail transportation [5,6]. BATs are well known for their high-energy density and large
energy-storage abilities, which are often used to absorb regenerative braking energy [7].
However, BATs are generally bulky and can withstand a limited lifespan in the driving
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range of electric trains. Li-ion BATs-driven light rail has been applied in the West Japan
railway [8] and Ni-MH BATs-driven was installed in France tramway [9]. Alternatively,
SCs can achieve a high number of cycle lifetime, such as 80,000 to 100,000 cycles, as
well as providing instantaneous high power during traction operation, but face many
practical problems associated with their low energy density and relatively higher economic
cost [10]. The simplistic and novel hydrothermal approaches were reported to enhance the
electrochemical activity of SCs, and all these results indicate a superb cycling performance
after 4000 cycles [11–13]. In some urban rail transit systems, e.g., the Hong Kong and
Warsaw metro systems, the SCs systems were applied, which can store an amount of energy
ranging from 2.8 MJ to 45 MJ [14]. In addition, flywheels feature a higher stored energy
density and a greater life span, while complicated mechanical containment systems and
irregular vibration hamper energy efficiency [15]. The application scenario of flywheel
energy storage was also mainly concentrated in heavy haul locomotives [16]. Based on the
abovementioned discussion, adding on-board HESDs to form hybrid powertrain trains
could improve the responsiveness of the power source to abrupt load changes during
train traction operations and meet the peak power demand. However, the application of
on-board HESDs consisting of Li-ion BATs and SCs based on the complementary features
of the energy sources remains to be further explored.

The train operation consists of four typical movement modes [17]: (1) motoring mode,
(2) cruising mode, (3) coasting mode, and (4) braking mode. During motoring and cruising
operation, the train overcomes the drag resistance or the force due to its gradient and
consumes the traction energy from the traction substations (TSSs) and on-board HESDs. In
the coasting mode, the train is only affected by the drag resistance or the force due to the
gradient. Braking efforts are then applied to reduce the train speed and the regenerative
braking energy could be recycled by on-board HESDs in the braking operation. The energy-
saving operation for electric trains could result in the minimum energy consumption as
well as the optimal train speed profile within a given allowable error under the power split
of on-board HESDs and train dynamics constraints [18].

In recent years, some studies considering both the on-board energy storage devices
and the energy-saving operation for electric trains have become increasingly popular.
Zhang et al. [19] introduced the Mixed Integer Linear Programming (MILP) model to
optimize the speed profile and the capacity configuration for on-board HESDs, which
focused on minimum economic costs considering the long-term train operation. In [20], the
authors showed that the capacity of SCs and speed trajectory for Fuel-cell hybrid trains
could be co-optimized to achieve minimum net hydrogen consumption. The distance-based
model was proposed to obtain the speed trajectory and capacity solution with energy flow
constraints [21]. By considering the capacity constraints of on-board HESDs, a rule-based
energy management strategy was tested in CRRC Qingdao Sifang Co. Ltd, which aimed
to improve train operation and optimize hydrogen consumption [22]. Moreover, many
researchers derived some highly nonlinear State of Charge (SOC) models for energy storage
devices and revealed the working mechanism between them and train operation through
numerous experimental studies. In [23], a novel dynamic programming method was
proposed to reveal the optimal operation control of trains with on-board Li-ion BATs. It
concluded that the optimal train speed profile would depend on the SOC for Li-ion BATs,
considering the track condition and speed limitations. A peak demand cutting strategy was
applied to study the optimal energy-saving solution for the electric trains in the Thailand
Silom Line, where the initial SOC of the on-board energy storage system had a huge effect
on train operation [24]. Xia et al. [25] proposed an SOC-based energy management strategy,
where the SCs could reduce the power dissipation of the train and voltage stress of the
traction power grid. In [26], a coordinated optimal decision-making method based on train
operation and on-board BATs was established, subject to the dynamic performance of the
train and SOC. In most previous and proceeding papers, the train operation and power
split of on-board HESDs were not jointly optimized, and the initial SOC and capacity were



Batteries 2022, 8, 167 3 of 29

only set as fixed parameters, which reduced the applicability of the model to electrified
rail systems.

In addition to the important electrical parameters (SOC and capacity) of on-board
HESDs, the degradation behavior of the BATs is also of considerable importance in the
energy-saving operation of electric trains. Considering long-term train operation, the
impact of the BATs’ degradation on the energy-saving operations of electric trains could
not be ignored due to its significant impact on the system’s energy-saving performance.
There are two common approaches to exploring the BATs’ degradation: one is to build
an electrochemical model, and the other is to develop a traditional empirical model [27].
Although the former could accurately predict actual degradation behavior within the BATs,
it relied heavily on theory and was difficult to apply under practical conditions [28]. The
latter required a large amount of data to fit the model parameters, but could not accurately
represent the train operation and load profiles, since it was only valid under specific experi-
mental conditions [29]. Zhang et al. [30] carried out a series of overcharge tests for ternary
power BATs and evaluated the degradation characteristics of electrochemical models from
microscopic perspectives. Li et al. [31] developed a novel deep learning algorithm to quan-
tify the battery degradation phenomenon and explored the aging characteristics, where the
estimation error was no greater than 3%. In [32], the authors analyzed the effect of complex
vibration conditions on the degradation effect of Li-ion BATs during train operation. In [33],
the authors selected different stress factors to explore the health feature of Li-ion BATs from
a physics-based perspective. A hybrid estimation method based on incremental capacity
and back-propagation neural network was proposed to accurately estimate of the state of
health (SOH) of the Li-ion BATs [34]. The common features of the abovementioned works
are that the majority were restricted to the applications of electric vehicles and the impact
of BATs’ degradation behavior on the energy-saving operation for electric trains was not
fully considered.

The above review shows that the energy-saving operation for electric trains is dis-
cussed, while on-board HESDs are not involved or only a few properties of energy storage
devices as fixed parameters are taken into account. Numerous studies have been conducted
to evaluate the energy-saving potential of on-board energy storage devices, as summa-
rized in Table 1. Although the integration of on-board HESDs in the traction system are
considered to be an important and effective method for energy-saving operations, the
energy-saving performance can be greatly affected by other factors. The mechanism is
complicated and we need a complete integrative model to fully investigate and evaluate
energy-saving performance. Based on the above discussion, this paper focuses on the
problem of energy-saving operations for electric trains with on-board HESDs consisting of
Li-ion BATs and SCs, while the properties of on-board HESDs (capacity, SOC, and degra-
dation mechanisms) are introduced and investigated. The contributions of this article are
outlined as follows.

(1) A novel time-based, mixed-integer, linear programming (MILP) model is developed,
which could simplify and solve the derivative operations and the product operation of
multiple time-varying parameters in complex nonlinear electrified rail transit systems
by employing the proposed piecewise linearization (PWL) method. In some of the
existing literature, the traction power systems are equivalent to infinite power sources
[35] or the line impedance is neglected [26]. In this study, the proposed integration
power flow model based on the train longitudinal dynamics, power split of on-board
HESDs, and line impedance can further improve the accuracy of the system.

(2) This paper focuses on three important engineering characteristics of on-board HESDs
(i.e., capacity, initial SOC, and degradation), further analyzes how these engineering
characteristics affect the energy-saving operation of electric trains from the perspective
of operations research, and reveals the intrinsic mechanism. The optimal energy-
saving operation of electric trains under the different operating conditions of on-board
HESDs can be located, where the corresponding train speed trajectory, power split of
on-board HESDs and the solution of minimum net energy consumption (NEC) are all
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obtained. The optimization results provide clear guidance for real-world engineering
applications.

Table 1. Summary of the relevant studies on the modeling methods.

Publication Objective/ Method Consider SOC and
Capacity

Consider Degradation
Mechanism

Consider TSSs
Model

Zhang et al.
[19] Minimum NEC/ MILP Yes only optimized

capacity Yes No

Meng et al.
[20]

Minimum net hydrogen
consumption/ MILP

Yes only optimized
capacity No No

Sumpavakup
et al. [24]

Maximize total saved energy/
Genetic algorithm Yes only optimized SOC No Yes

Yang et al. [26] Minimum cost / Mixed integer
nonlinear programming Yes only optimized SOC No No

Xiao et al. [36] Minimum energy consumption/
Dynamic programming Yes only optimized SOC No Yes

Wu et al.
[35,37] Minimum NEC/ MILP Yes only optimized

capacity Yes No

Kim et al. [38] Minimum energy consumption/
Dynamic programming Yes only optimized SOC No No

Zhang et al.
(this work) Minimum NEC/ MILP Yes optimized Yes Yes

The remainder of this paper is organized as follows. Section 2 provides a detailed
system setup of eanelectric train with on-board HESDs. In Section 3, the system model is
elaborated, where the train longitudinal dynamics, on-board HESDs, the traction power
system, energy flow modeling, constraints, and objective are shown. Section 4 covers
the optimization results and a detailed discussion of different case studies. Finally, the
conclusion is provided, along with a discussion of future work, in Section 5.

2. The System Setup of the Electric Train with On-Board HESDs

The schematic diagram of an electric train with on-board HESDs is shown in Figure 1. The
system has the following components: Li-ion battery packs (MV06203127NTPCA, manufac-
tured by Microvast Power), supercapacitor modules (BMOD0063-P125-B08, manufactured
by Maxwell), DC-DC converters, and the traction motors associated with the braking
resistors and non-reversible feeding substations. In the circuit topology, the electric train is
supported by Li-ion BATs, SCs, and non-reversible feeding substations, where these energy
sources are connected to the electric train load through DC-DC converters or DC bus.

Many researchers have found that the use of on-board HESDs allows for a more
flexible system, where SCs and Li-ion BATs can improve the power density and energy
density of the integrated system, respectively [19,39,40]. After considering the optimized
scenarios and commonly used commercial components, the proposed integrated system in
this work is mainly composed of: (1) each cell for Li-ion BATs is 10 Ah and 2.3 V. When
the rated charge/discharge rate is 4 C, the rated charging power is −93.3 W and rated
discharging power is 93.3 W [22]; (2) each module for BMOD0063-P125-B08 supercapacitor
is 63 F, which is specifically designed for heavy transport applications such as electric trains,
trolleys, cranes, etc. The electric energy is 0.14 kWh, and the rated power is 130 kW [41];
(3) the rated DC output voltage and power of the traction substation are 1500 V and
3 MW, respectively [36]. The main specifications of each system of the train are shown in
Table 2. It should be noted that detailed models for power electronics and efficiency are not
considered, that is, the power dissipated in DC-DC converters is not included in this study.
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Figure 1. A schematic diagram for an electric train with on-board HESDs in DC traction supply network.

Table 2. Specifications of the on-board HESDs and TSSs for a typical electric train [22,36,41,42].

Component System Parameter Value

Li-ion BATs system Model name Microvast MV06203127NTPCA
Cell capacity 10 Ah
Rated power −93.3 W (charge), 93.3 W (discharge)
Cell voltage 1.86 V (min), 2.73 V (max), 2.3 V (rated)

Electric energy 0.023 kWh
Cell price ¥40

Cell weight 0.3 kg
Internal resistance 0.002 Ω

SCs system Model name Maxwell BMOD0063-P125-B08
Module capacity 63 F

Rated power −130 kW (charge), 130 kW (discharge)
Voltage 140 V (min), 225 V (max), 188 V (normal)

Electric energy 0.14 kWh
Module price ¥45,000

Module weight 61 kg
Equivalent DC series resistance 0.018 Ω

TSSs system Substation DC voltage 1500 V
Equivalent resistance R0 0.03 Ω

Conductor rail resistivity coefficient ρ1 0.014 Ω/km
Running rail resistivity coefficient ρ2 0.02 Ω/km

In addition, the scheme of non-reversible feeding substations means that the regen-
erative braking energy could not be transmitted back to the grid through the DC bus.
Although it is interesting to integrate a reverse power flow into electric transportation sys-
tems to generate more efficient energy reuse solutions, its scalability, cost, and complexity
due to the high coupling hinder further development [42]. In addition, the solution to
reverse power flow has not been diffused because the troubles of multi-level energy source
cooperative control need to be solved.

3. Optimization and System Modeling

In this section, the formulations of train longitudinal dynamics, DC traction power
system, and on-board HESDs power flow based on the time-MILP approach are elaborated.
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Although the researchers in our group have published some works on distance-based
MILP models [19,35,37], which have been proved to have excellent robustness and fast
optimization characteristics, heavy computational burdens are obtained when calculating
the nonlinear constraints, especially the derivation of SOC for on-board HESDs and product
operation of multiple time-varying parameters. Alternatively, as shown in Figure 2, the
discretization process of the proposed, time-based MILP model is revealed, where each
time segment ∆t is a known parameter and the distance Si (i = 1, 2, 3 . . . I) are variables.
After discretizing the travel time for the entire journey, the starting and ending speed data
for each distance Si (i = 1, 2, 3 . . . I) can be collected. It should be noted that a shorter time
segment ∆t means that the optimization results are more accurate, but the computational
time of the model will be longer.

Speed

Δt Δt Δt Δt Δt Δt Δt Δt Δt Δt Δt Δt

Time Distance

Speed

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11S12T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Figure 2. The discretization process of the interstation section is based on the proposed time-based
MILP model. The blue and green solid lines are the train speed trajectory. The blue and green circles
are the corresponding speed points in each time segment ∆t and the blue dotted lines are discrete
divisions mapped to distances.

3.1. Train Longitudinal Dynamics

The discretization process of the train operation is to simplify the calculation in the
proposed time-based MILP model. The train journey time Ti for the ith section is composed
of several interval time ∆ti,j with different values. In the time-based MILP model, the
journey time Ti should be discretized and divided into several time segments ∆ti,j, which
can be expressed by (1):

Ni

∑
j=1

∆ti,j = Ti, i = 1, 2, 3 . . . I (1)

where Ni is the total number of the divided time segments for Ti. Therefore, when the train
travels in the journey time Ti, there are always (Ni + 1) speed points in total, i.e., Vi,1, Vi,2,
. . . , Vi,Ni+1, and the average speed Vi,j,ave in each ∆ti,j can be calculated using the speed
points, where j = 1, 2, 3 . . . Ni + 1:

Vi,j,ave =
Vi,j + Vi,j+1

2
. (2)

In each ∆ti,j, the corresponding interval distance ∆di,j can be calculated by the follow-
ing equation:

∆di,j = Vi,j,ave × ∆ti,j =
Vi,j + Vi,j+1

2
× ∆ti,j. (3)



Batteries 2022, 8, 167 7 of 29

In the model, the acceleration or deceleration values ai,j of the train are assumed to be
unified in each time segment ∆ti,j. This can be obtained as shown in (4):

admax ≤ ai,j =

(
Vi,j+1 −Vi,j

)
∆ti,j

≤ aamax (4)

where admax and aamax represent maximum deceleration and maximum acceleration, re-
spectively. When the train is operating on the track, the drag force Fi,j,dr in each ∆ti,j can be
expressed by the Davis Equation, as shown in (5):

Fi,j,dr = A + BVi,j,ave + CV2
i,j,ave (5)

where A, B, and C are the Davis coefficients. During the journey, the upper boundary of
train speed Vmax should be limited due to real-world operation, and can be set as shown
in (6):

Vi,j ≤ Vmax. (6)

3.2. Modeling of On-Board HESDs System

Although many researchers have developed a Li-ion battery model based on electro-
chemical characteristics, which can accurately predict the voltage dynamics, its complex
structure is not conducive to optimal modeling [43]. Concerning the complexity and accu-
racy of the Li-ion battery model, a mature equivalent circuit model with a single state is
employed, which consists of open-circuit voltage Uoc and internal resistance Rbat in series,
as shown in Figure 1 [38]. The dynamic electrical behavior can be captured by (7):{

Ubo(t) = Uoc − Ibat(t)Rbat

Pbat(t) = Uoc Ibat(t)− I2
bat(t)Rbat

(7)

where Ubo(t) and Ibat(t) represent the terminal voltage and current of the Li-ion BATs;
Pbat(t) represents the output power. As a typical case in transportation planning problems,
the capacity of on-board HESDs should be treated as a measure of electric charge. As a
result, the SOC of on-board HESDs should refer to the current proportion of the stored
electric charge inside with respect to the maximum possible charge that they can hold [27].
Typically, the current Ibat(t) is related to SOCbat(t), which satisfies (8):

∆SOCbat(t) = −
Ibat(t)

3600×Qbat
· ∆ti,j (8)

where Qbat is the Li-ion battery capacity in Ah, and Ibat(t) is considered as negative during
the charging operation. The SOCbat(t) and electrical characteristics are limited by the
physical property of the Li-ion BATs, given as follows:

SOCbat,min ≤ SOCbat(t) ≤ SOCbat,max

Ubat,min ≤ Ubo(t) ≤ Ubat,max

Pbat,min ≤ Pbat(t) ≤ Pbat,max

(9)

where SOCbat,max and SOCbat,min are the upper and lower limit of the Li-ion BATs SOC;
Ubat,max and Ubat,min are maximum and minimum voltage of the Li-ion BATs; Pbat,max and
Pbat,min are maximum and minimum power of the Li-ion BATs.
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The equivalent electrical model of the SCs is modelled as the standard RC circuit,
which is composed of a capacitor Co in series with a resistance Rc, as shown in Figure 1 [36].
The model mainly focuses on the electrical behavior of the SCs, which satisfies (10):{

Uco(t) = Uo − Ic(t)Rc

Psc(t) = Uo Ic(t)− I2
c (t)Rc

(10)

where Uco(t), Uo, Ic(t), and Psc(t) represent the terminal voltage of the SCs, the voltage of
the equivalent serial capacitor Co, actual current, and output power of the SCs, respectively.
On the other hand, the definition of the supercapacitor SOCsc(t) is similar to the Li-ion
battery model [22], which is given by:

∆SOCsc(t) = −
Ic(t)

Co(Usc,max −Usc,min)
· ∆ti,j (11)

where Usc,max and Usc,min represent the allowed fully charged voltage and fully discharged
voltage of the SCs, respectively. It is worth mentioning that the SOC recursive identification
of the SCs is similar to the Li-ion BATs in the modeling process. Considering the limit of
the SCs operation conditions, the constraints of the optimization are expressed as:

SOCsc,min ≤ SOCsc(t) ≤ SOCsc,max

Usc,min ≤ Uco(t) ≤ Usc,max

Psc,min ≤ Psc(t) ≤ Psc,max

(12)

where SOCsc,max and SOCsc,max are the maximum and minimum allowable SOC values of
the SCs; Psc,max and Psc,min are maximum and minimum allowable power values of the SCs.
Note that, the operating range of the SOC for on-board HESDs is set from 30% to 90% to
avoid being fully charged or fully discharged.

3.3. Modeling of Traction Power System

Concerning the network of the DC-electrified railway system, the equivalent circuit
diagram of the traction power system is shown in Figure 3, where it mainly contains the
TSSs, train, conductor rail, and running rail. To analyze the dynamic characters of the
circuit, the contact line has been modelled as a series of variable resistance and their values
depend on the distance between the train and the feeding TSSs within each line span [42].

R3=ρ2(S(t)+L1) R4=ρ2(D-S(t)+L2)

R0

D1

+

－ UTSS1

R0

D2

+

－ UTSS2

R1=ρ1(S(t)+L1) R2=ρ1(D-S(t)+L2)

Conductor rail

Running rail

+

－

Train
Utr

Itr

T
ra

ct
io

n
 s

u
b

st
at

io
n

 1

T
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ct
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n
 s

u
b

st
at

io
n

 2

ITss1 ITss2

Figure 3. Equivalent circuit of DC traction power system.

In particular, the feeding TSSs have been modelled as a DC voltage source UTss1 and
UTss2, which are connected in series with lumped resistances R0 and diodes, such that the
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internal losses and the non-reversibility of the feeding TSSs are correctly considered. From
Figure 3, the equivalent resistance can be calculated as:

R1(t) = ρ1(S(t) + L1)

R2(t) = ρ1(D− S(t) + L2)

R3(t) = ρ2(S(t) + L1)

R4(t) = ρ2(D− S(t) + L2)

(13)

where D is the total distance from starting station to the terminal station; L1 and L2, respec-
tively, represent the distance between adjacent non-reversible feeding TSSs and stations.
According to the Kirchhoff Current Law, the output power of non-reversible feeding TSSs
Psub(t) and the power received by the train Ptr(t) are, respectively, expressed as:

Psub (t) = Usub

(
Usub −Utr(t)

R0 + R1(t) + R3(t)
+

Usub −Utr(t)
R0 + R2(t) + R4(t)

)
Ptr(t) = Utr(t)

(
Usub −Utr(t)

R0 + R1(t) + R3(t)
+

Usub −Utr(t)
R0 + R2(t) + R4(t)

) (14)

where Usub is substation DC voltage; Utr(t) is the voltage of the train from the catenary. In
addition, the losses from the catenary Eloss can be calculated as:

Eloss =
Ni

∑
j=1

(Psub(t)− Ptr(t))× ∆ti,j, i = 1, 2, 3 . . . I. (15)

3.4. Energy Flow Modeling

The energy flow is transmitted between the energy supply side (non-reversible feeding
TSSs or on-board HESDs) and the energy consumption side (train motor). In each ∆ti,j,
when the train conducts traction or braking operations, it could either consume the energy
from the feeding TSSs and on-board HESDs or regenerate the energy and then transfer it
back to on-board HESDs. For each ∆ti,j, suppose Ei,j,t is the traction energy and Ei,j,b is the
braking energy. It is worth noting that when the train motor consumes the energy from
the feeding TSSs and on-board HESDs during traction, the discharge power of Li-ion BATs
Pbatd and SCs Pscd is greater than 0. Thus, according to the law of conservation of energy,
traction energy Ei,j,t satisfies:

Ei,j,t = Ptr(t)× ∆i,j × ηm + Pbatd(t)× ∆ti,j × ηbat + Pscd(t)× ∆ti,j × ηsc (16)

where ηm, ηbat, and ηsc are the average transmission efficiency of the motor, Li-ion BATs,
and SCs, respectively. The braking energy Ei,j,b is assumed to be equal to the sum of
hydraulic braking energy Ei,j,hyd and electric braking energy that could be recycled by
on-board HESDs in each ∆ti,j. It is important to note that electric braking energy can only
be fully charged by on-board HESDs or dissipated by the braking resistors in this study.
The Ei,j,b can be calculated:

Ei,j,b =
Pbatc(t)× ∆ti,j

ηbat
+

Pscc(t)× ∆ti,j

ηsc
+ Ei,j,hyd (17)

where Pbatc and Pscc are the charge power of the Li-ion BATs and SCs, respectively. Note
that when the train conducts regenerative braking, Ei,j,b, Pbatc, Pscc, and Ei,j,hyd are both
assumed to be negative quantities.

According to the law of conservation of energy, when the train conducts traction
operation, Ei,j,t ≥ 0, the energy from the non-reversible feeding TSSs and on-board HESDs
is consumed by the train motor and transformed into kinetic energy, potential, and heat
energy. Similarly, when the train implements braking operation, Ei,j,b ≤ 0, the kinetic
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energy is transformed into heat, potential energy, and electric energy that is fed back to
on-board HESDs. Here, Ei,j,m is the traction energy or the regenerative energy, and it
holds that:

Ei,j,m −
1
2
(Mt + MHESDs)

(
V2

i,j −V2
i,j−1

)
− Fi,j,dr · ∆di,j − (Mt + MHESDs)g∆hi,j ≥ 0 (18)

where the mass of the train, the mass of the on-board HESDs, and height difference of the
interval time are denoted as Mt, MHESDs, ∆hi,j, respectively.

In addition to the energy conservation constraint, the train motors should conform
to physical characteristic constraints. During traction or braking mode, the power of train
motors should not exceed the maximum traction power Pt,max or the maximum braking
power Pb,max.

Ptr(t)× ∆ti,j · ηm + Pbatd(t)× ∆ti,j · ηbat + Pscd(t)× ∆ti,j · ηsc ≤ Pt,max∆ti,j. (19)

Pbatc(t)× ∆ti,j

ηbat
+

Pscc(t)× ∆ti,j

ηsc
≤ Pb, max ∆ti,j. (20)

Furthermore, the work of the train motor must be restricted by the maximum traction
force Ft,max and the maximum braking force Fb,max. Thus, we have:

Ptr(t)× ∆ti,j · ηm + Pbatd(t)× ∆ti,j · ηbat + Pscd(t)× ∆ti,j · ηsc ≤ Ft, max ∆di,j. (21)

Pbatc(t)× ∆ti,j

ηbat
+

Pscc(t)× ∆ti,j

ηsc
≤ Fb,max∆di,j. (22)

Binary variables λi are introduced to guarantee that the traction and braking operations
will not occur simultaneously in real world, and are realized as follows:

Ei,j,m = λiEi,j,t + (1− λi)Ei,j,b (23)

where λi is equal to 0 or 1. This means that when λi = 1, there is only discharge energy
from on-board HESDs and the non-reversible feeding TSSs instead of the charge energy
from on-board HESDs, and vice versa.

Moreover, the above variables are given by:

0 ≤ Ptr(t)∆ti,j · ηm ≤ λi M1

0 ≤ Pbatd(t)∆ti,j · ηbat ≤ λi M1

0 ≤ Pscd(t)∆ti,j · ηsc ≤ λi M1

0 ≤
Pbatc(t)× ∆ti,j

ηbat
≤ (1− λi)M2

0 ≤
Pscc(t)× ∆ti,j

ηsc
≤ (1− λi)M2

0 ≤ Ei,j,hyd ≤ (1− λi)M2

(24)

where M1 and M2 are two sufficiently large constants. Note that the main focus of this
work is the optimization of electric train speed trajectory and power split of on-board
HESDs and, hence, is concerned with power flows among powertrain components, i.e., the
non-reversible feeding TSSs, the Li-ion BATs, the SCs, and the motor; therefore, detailed
models of power electronics are not considered.

In short, the modeling approach is to discretize the total journey time, and then deal
with nonlinear constraints by employing the PWL method (detailed in Appendix A). By



Batteries 2022, 8, 167 11 of 29

adopting the commercial available MILP solving algorithm, an optimal solution can be
located within the feasible region of the model.

The objective of the proposed model is to minimize the total energy consumption
during the journey, where the NEC value of the journey can be expressed as follows:

I

∑
i=1

Ei =
I

∑
i=1

Ni

∑
j=1

(Psub(t) + Pbatd(t) + Pscd(t) + Pbatc(t) + Pscc(t))× ∆ti,j. (25)

By conducting the proposed time-based MILP model, we conducted the following
optimization shown in (26):

Min :
I

∑
i=1

Ei

Subject to: (1)− (24), (A1)− (A12)

(26)

The proposed time-based MILP algorithm exploits the solution space to find a minimal
NEC solution. As such, the model can efficiently determine the optimal train operation
and power split of on-board HESDs, after considering the train longitudinal dynamics,
on-board HESDs equivalent circuit model, and line impedance model.

4. Case Studies and Result Discussion

In this section, three scenarios corresponding to Sections 4.1–4.3 in the case studies are
listed as follows:

• In Section 4.1, we aimed to reveal the impact of the different capacity of on-board
HESDs on the train operation, where case 1 is assumed to be unequipped with on-
board HESDs as a comparison. Here, for the sake of compactness, cases 2–3 are
selected, where the parameters can be easily modified in the model. The optimal
energy-saving operation for electric trains and power split for on-board HESDs are
only displayed when the capacity is changed under capital cost constraints.

• Based on the optimization results in Section 4.1, we aimed to reveal the impact of
the different initial SOC on the train operation and further explore the energy-saving
potential of on-board HESDs. Similarly, three typical initial SOC values are selected in
cases 4–6, which correspond to the minimum allowable value, the middle value, and
the maximum allowable value, respectively.

• Based on the optimization results in Sections 4.1 and 4.2, on-board HESDs with optimal
capacity and initial SOC were selected to reveal the impact of degradation on train
operation. Cases 7 and 8 correspond to fresh and end-of-life cells, respectively, which
fully demonstrate the significant differences in optimal train operation and power
split strategies under different states of health.

The different cases for on-board HESDs configuration scenarios were discussed using
a real route based on the data from the Guangzhou Metro Line 7. The route covers
3028 m, two feeding electricity TSSs, and three stations, where the route structure is
shown in Figure 4. The main parameters were tabulated in Table 3. The mass of the
train for AW2 in Guangzhou metro line 7 is 279.1 tons without on-board HESDs, and the
maximum operational speed cannot exceed 80 km/h. The maximum acceleration aa,max
and deceleration ad,max are both set at 1 m/s2.



Batteries 2022, 8, 167 12 of 29

Departure Station

Arrival Station Electricity substation

Station

Railway line

Guangzhou 

South

Shibi

Xiecun

Figure 4. The part of route structure in Guangzhou metro line 7 from Google map.

Table 3. Key parameters in Guangzhou metro line 7 for a typical railway vehicle with on-board
HESDs [17,19,44,45].

Symbol Description Value/Equation

Mt, (tonnes) The total mass of the train 279.1 (AW2)
Vmax, (km/h) Maximum operational speed 80
aa,max, (m/s2) Maximum acceleration 1.0
ad,max, (m/s2) Maximum deceleration 1.0

ηm Motor efficiency 90%
ηbat Li-ion BATs efficiency 90%
ηsc SCs efficiency 90%

Ft,max, (kN) Maximum Tractive effort 289
Fb,max, (kN) Maximum Braking effort 352
Pt,max, (kW) Maximum traction power 3716
Pb,max, (kW) Maximum braking power 3911

Fi,j,dr, (N/tonnes) Resistance 27 + 0.0042v2

∆ti,j, (s) interval time 2
T, (s) Total journey time 220

D, (m) Total travel distance 3028
SOCbat,max Maximum BATs SOC 90%
SOCbat,min Minimum BATs SOC 30%
SOCsc,max Maximum SCs SOC 90%
SOCsc,min Minimum SCs SOC 30%

The average energy efficiency of on-board HESDs ηbat and ηsc is set to be 0.9 consid-
ering negligible transmission loss [19]. In [44,45], the efficiency of the advanced DC and
induction motors are about 90–94% and 93–95%, respectively, and then approximately
set as 90%. By exploring the model, ∆ti,j = 2s is shown to provide a better compromise
between computational burden and accuracy. As mentioned in [17], the maximum traction
power and braking power are obtained in the field test, as well as maximum tractive effort
and braking effort. All of these parameter values in Table 3 can be modified according
to the field data collected from different types of traction power systems and on-board
HESDs. This paper presents a simulation where the used parameters are provided by the
Guangzhou metro line 7 for journeys from Guangzhou South Station to Xiecun Station.
Table 4 shows the scheduled information of railway vehicles.
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Table 4. Scheduled information of railway vehicle [17].

Stations Distance between Stations
(m) Journey Time (s)

1 Guangzhou South → Shibi 1120 90
2 Shibi → Xiecun 1908 130

Total 3028 220

4.1. Impact of Different On-Board HESDs Capacity on Train Operation Under Capital
Cost Constraints

In this subsection, the influence of different on-board HESDs capacities on power split
and train operation under capital cost constraints is investigated. As a comparison, the
capacity of on-board HESDs in Case 1 is assumed to be 0 MJ, to indicate that the train
is not equipped with on-board HESDs. Concerning cases 2 and 3, the specific capacity
configuration of on-board HESDs and optimization results are shown in Table 5. The initial
SOC for the on-board HESDs is 50% for cases 2 and 3, which can be modified in the model.

Table 5. The specific parameter and optimization results for cases 1–3.

Case 1 2 3

Li-ion BATs maximum power (kW) 0 209.9 419.8
Li-ion BATs electric energy (kWh) 0 51.75 103.5

No. of Li-ion BATs 0 225 (in series) × 10 (in parallel) 225 (in series) × 20 (in parallel)
Pack capacity (Ah) 0 100 200

Capital cost (¥) 0 90,000 180,000
SCs maximum power (kW) 0 260 520
SCs electric energy (kWh) 0 0.28 0.56

No. of SCs 0 2 (in series) 2 (in series) × 2 (in parallel)
Module capacity (F) 0 31.5 63

Capital cost (¥) 0 90,000 180,000
NEC (MJ) 74.63 60.54 52.07

As shown in Figures 5 and 6, the optimal operation of the train and power split show
substantial differences when the capacity and power of on-board HESDs are different in
cases 1–3. From Figure 5, when the railway vehicle operates without on-board HESDs in
case 1, this means that the trains cannot recover and reuse regenerative braking energy
through electrical braking. It should be noted that the train operation conforms to the law
of conservation of energy, and when the output power is less than 0, this means that the on-
board HESDs are in the charging state. In Figure 6, it can be observed that the propulsion
energy of the train mainly comes from the non-reversible feeding TSSs and discharge
energy from on-board HESDs during traction operation. Subsequently, the potential energy
of the train caused by height differences can be converted into kinetic energy, on-board
HESDs energy, and heat energy. During the train’s braking operations, the kinetic energy
can be converted into electrical energy, which can be recovered by the on-board HESDs.
In addition, it is evident that the charge/discharge rate of SCs is significantly faster than
that of Li-ion BATs due to their respective characteristics. The SCs are discharged to a
minimum SOC value, i.e., 30% during traction operation, and charged to a maximum SOC
value, i.e., 90% during braking operation, while the SOC of the Li-ion BATs slowly changes
throughout the journey.
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Figure 5. The optimal speed trajectories and altitude profile for cases 1–3.
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Figure 6. The motor power, TSSs power, discharge/charge power of on-board HESDs and SOC
curves for cases 2–3. (a) case 2. (b) case 3.
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As shown in Figures 6 and 7, the energy consumption and peak power of the feeding
TSSs in case 3 are lower than that in case 2, and the on-board HESDs in case 3 can recover
and reuse more braking energy, which results in a minimal NEC solution in case 3.
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Figure 7. The energy flow of all the components in cases 1–3.

The relationship between the NEC and different maximum power of on-board HESDs
under varying capital cost constraints is illustrated in Figure 8. Figure 8 shows that, with
the increase in the maximum power and capacity of on-board HESDs, the solutions of
NEC first drop quickly and then slightly increase. When the maximum power of the Li-ion
BATs and the SCs is 1049.6 kW and 1560 kW, respectively, the proposed model obtains the
optimization solution and the minimum NEC, which is 44.01 MJ.
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straints.

Figure 9 illustrates the detailed trend shownig how the total power and mass of
on-board HESDs influence the NEC solutions. It clearly indicates that even though the
maximum power of on-board HESDs continually increases, the NEC cannot be continuously
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reduced, and even raises slightly due to the increase in the total mass of on-board HESDs,
and the NEC solutions slightly increased from 44.01 MJ to 46.98 MJ. This further reveals
that, with the given railway line and journey time, the optimal on-board HESDs’ power
split scheme can achieve the unique minimum NEC solution, which allows for railway
planners and operators to avoid an unnecessary waste of on-board HESDs capacity and
reduce operation costs.
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Figure 9. Relationship between NEC and total mass of on-board HESDs with different sizes.

4.2. Impact of Different Initial SOC of On-Board HESDs on Train Operation

This subsection aims to further explore the impact of the different initial SOC for
on-board HESDs, which is another important engineering characteristic of on-board HESDs
and impacts train optimal operation. In cases 4–6, the maximum power of the Li-ion BATs
and the SCs were uniformly set at 1049.6 kW and 1560 kW, respectively. The initial SOC
for the on-board HESDs was set to 30%, 60%, and 90% in cases 4–6, respectively. The
parameters and optimal results for cases 4–6 are tabulated in Tables 6.

Table 6. The parameters and optimization results for cases 4–6.

Case 4 5 6

Li-ion BATs maximum power (kW) 1049.6 1049.6 1049.6
Li-ion BATs electric energy (kWh) 258.75 258.75 258.75

Capital cost (¥) 450,000 450,000 450,000
Initial SOC for Li-ion BATs (%) 30 60 90

SCs maximum power (kW) 1560 1560 1560
SCs electric energy (kWh) 1.68 1.68 1.68

Capital cost (¥) 540,000 540,000 540,000
Initial SOC for SCs (%) 30 60 90

NEC (MJ) 45.09 43.89 45.41

When the initial SOC of on-board HESDs is different, it indicates that on-board HESDs
power split schemes for different cases need to meet the constraints of the proposed model
and achieve the energy-saving operation for electric trains. In Figures 10 and 11, the speed
trajectory for case 4 does not demonstrate a notable change compared with case 5, while the
power profiles of on-board HESDs and the feeding TSSs have significant differences. As
shown in Figure 11a, when the journey time ranges from 0 s to 24 s, the propulsion energy
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of the train only comes from the feeding TSSs, and on-board HESDs cannot be allowed
to discharge to support traction operations due to their minimum allowable SOC value.
Therefore, a higher NEC value is observed in case 4 and the maximal peak power is found
from the feeding TSSs consumed by the train. However, it can be observed that on-board
HESDs with a higher initial SOC are not always preferred in terms of NEC values. From
Figure 11c, it is easily noted when the train operates from 6 s to 14 s and 104 s to 112 s, the
traction energy of the train mainly derives from the on-board HESDs.
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Figure 10. The optimal speed trajectories and altitude profile for cases 4–6.
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Figure 11. The motor power, TSSs power, discharge/charge power of on-board HESDs and SOC
curves for cases 4–6. (a) case 4. (b) case 5. (c) case 6.

This results from on-board HESDs with excessive initial SOC because, for energy-
saving operations, they need to be discharged first to obtain sufficient rechargeable capacity
for subsequent braking operations. As shown in Figure 12, although the traction energy
consumption from the feeding TSSs in case 4 was significantly higher than that in case 6,
the frequent discharging process undermines the energy-saving potential.

Based on the above optimization results, Figure 13 further depicts the relationship
between the different initial SOC of on-board HESDs and the NEC, which helps railway
vehicle operators to dynamically adjust the charging/discharging strategy of on-board
HESDs and take full advantage of on-board HESDs for energy-efficient operation. In
Figure 13, the initial SOC range of on-board HESDs is from 30% to 90% with an increment
step of 10%, and when the initial SOC of Li-ion BATs and SCs is set as 50% and 70%, the
proposed model obtains the minimum NEC, i.e., 43.61 MJ. In addition, a lower or excessive
initial SOC cannot obtain the optimal NEC solution for the given railway line and journey
time conditions. It can be concluded that the optimization results for different initial SOCs
show substantial differences, and we need to obtain a trade-off between the initial SOC of
Li-ion BATs and SCs to improve the energy-saving potential of on-board HESDs.
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Figure 12. The energy flow of all the components in cases 4–6.
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Figure 13. The NEC for different initial SOC of on-board HESDs.

4.3. Impact of the Degradation of Li-Ion BATs on Train Operation

The cases above all operate under the assumption that the optimization problem is
solved over a horizon (train travel distance) that is a negligible fraction of the total distance
to reach the on-board HESDs’ end of life. In other words, the influence of the on-board
HESDs’ degradation process on the train operation can be neglected. However, in real
operation, on-board HESDs would suffer from degradation considering the long-term train
operation. Concerning SCs, they can achieve a longer cycle lifetime, e.g., from 80,000 to
100,000 cycles, as previously mentioned [10]. Therefore, from the perspective of long-term
energy-saving operation, it also seems logical to focus only on exploring the impact of the
degradation behavior of Li-ion BATs with a limited lifespan on train operation.

Figure 14 shows the schematic representation of the electrochemical Li-ion battery
function, which consists of three regions: an anode (negative electrode), a separator, and a
cathode (positive electrode). During the discharging operation, the electrons and ions si-
multaneously flow from the anode to the cathode through an external circuit and electrolyte,
respectively. The process is reversed, and the ion flow is from the cathode to the anode
during the charging operation. The performance of Li-ion BATs irreversibly generates
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deterioration after long-term charging and discharging operations. The determining factors
for Li-ion battery degradation are usually defined as capacity fading and internal resistance
rising [46].

(1) Capacity fading: During the Li-ion BATs operatiom, the chemical reaction between the
anode and the electrolyte and the simultaneous consumption of lithium ions would
lead to capacity fading. Keeping the Li-ion BATs at a high cycling rate would enhance
the degradation degree [47]. The capacity fading of Li-ion BATs would shorten the
electric trains’ achievable range and it is considered to reach the end-of-life when the
available capacity is 80% of the nominal capacity [48].

(2) Internal resistance rising: After long-term cycling of Li-ion BATs, the decrease in
accessible surface area due to continuous solid electrolyte interphase (SEI) growth can
also cause internal resistance to rise. Charge/discharge operation or high temperatures
tend to accelerate the degradation process [47]. The internal resistance raises, thereby
reducing the available output power of the Li-ion BATs, and increased to 160% of its
original value under the reference operating conditions, which is typically considered
to be the end-of-life [49,50].

Cathode

(Li metal oxide)

Anode

(Carbon)

Interface with electric drivetrain

e-

Solid electrolyte interphase (SEI)

Graphene layer

Discharged

Charged

Electrolyte

e- e-

e-

Figure 14. The schematic representation of electrochemical Li-ion battery cell model.

For the analysis stated above, the presence and extent of different Li-ion BATs degre-
dation mechanisms and their multiple interaction relationships make it very complicated
to accurately model and estimate the impact of degradation behaviors on optimal train
operation. The purpose of this subsection is to synthesize the key degradation parameters
of Li-ion BATs (i.e., their capacity and internal resistance) for a sensitivity analysis from
an operations research perspective, as well as to reveal the effect of degradation behavior
on NEC values in the context of transportation planning problems. The analytical method
combines the advantages of the electrochemical modeling approach and traditional em-
pirical approach, and is thus simpler than the former while being applicable to broader
conditions than the latter. Here, we used the optimization results in Figure 13 as an example
to further explore the influence of Li-ion battery degradation behavior on train operation.
The parameters and optimal results for cases 7–8 are tabulated in Table 7.
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Table 7. The parameters and optimization results for cases 7–8.

Case 7 8

Li-ion BATs maximum power (kW) 1049.6 1049.6
Li-ion BATs capacity fading ratio (%) 0 20

Li-ion BATs internal resistance rising ratio (%) 0 60
Initial SOC (%) 50 50

SCs maximum power (kW) 1560 1560
Initial SOC (%) 70 70

NEC (MJ) 43.61 50.82

In case 7, the degradation of the Li-ion BATs was not considered for comparison,
and they were treated as fresh cells. Therefore, the capacity fading ratio and the internal
resistance rising ratio are 0. From Figures 15 and 16, it can be observed that the railway
vehicle tends to utilize longer braking distances as well as the charging process for energy-
saving operation in case 8 when the journey time ranges from 38 s to 90 s.
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Figure 15. The optimal speed trajectories and altitude profile for cases 7–8.

Furthermore, the maximum charge/discharge power of the Li-ion BATs in case 8 is
significantly less than that in case 7, which indicates that, as the internal resistance increases,
the Li-ion BATs should be employed as little as possible to avoid unnecessary internal
energy loss. Therefore, it can be concluded that the train needs to dynamically adjust the
initial optimal speed trajectory with the increase in the degradation degree of the on-board
Li-ion BATs. In other words, the energy-saving potential of degraded Li-ion BATs is more
dependent on the power split strategy, especially when the internal resistance increases
and the electric trains tend to consume more energy from the feeding TSSs rather than
Li-ion BATs. Compared to fresh cells, the degraded Li-ion BATs could no longer implement
the initial power split strategy, which leads to greater internal losses.
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Figure 16. The motor power, TSSs power, discharge/charge power of on-board HESDs and SOC
curves for cases 7–8. (a) case 7. (b) case 8.

Based on the above optimization results, Figure 17 further depicts the relationship
between the NEC solutions and capacity fading ratio and resistance rising ratio, whose
performances are the key factors concerning the railway energy systems planners and
operators after considering the degradation of Li-ion BATs due to the long-term train
operation. From Figure 17, it should be noted that the NEC solutions increase more slowly
when the capacity fading ratio of the Li-ion BATs rises. The NEC solutions for the internal
resistance rising ratio of Li-ion BATs are more sensitive, and lead to higher NEC solutions in
some spaces. The results clearly show that the increase in internal resistance caused by high
temperature or over-charge/discharge operations is more worthy of our attention than the
capacity degradation, which would greatly reduce the available output power of Li-ion
BATs and is the main factor undermining the energy-saving operation for electric trains.
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Figure 17. The NEC under varying capacity fading ratio and internal resistance rising ratio of
Li-ion BATs.

4.4. The Analysis of Energy-Saving Potential

The net energy consumption and energy-saving rate for cases 2–8 are plotted in
Figure 18. Note that the energy-saving rate of the abovementioned cases is calculated
in reference to case 1 without on-board HESDs. Figure 18 shows that by optimizing the
capacity and initial SOC of on-board HESDs, it is indeed possible to achieve energy-saving
operation for electric trains in the given journey.
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Figure 18. The net energy consumption and energy-saving rate for cases 2–8.

When the initial SOC of the on-board HESDs remains unchanged in cases 2 and 3, the
NEC decreases and the energy-saving rate rises by increasing the maximum power and
capacity of the on-board HESDs. However, Figure 8 clearly shows that by continuously
increasing the power and capacity of the on-board HESDs, the NEC solutions slightly
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increase due to the increase in total mass. As a result, the minimum NEC can only be
obtained when the power and capacity of the on-board HESDs change and the initial SOC
remains unchanged. In addition, the lower or excessive initial SOC of the on-board HESDs
could undermine the energy-saving potential of integrated systems in cases 4–6 when the
optimal capacity is obtained. It is worth mentioning that although the energy-saving rate
of railway vehicles could reach up to 41.57% in case 7, after considering the long-term train
operation, the energy-saving rate would drop to 31.90% in case 8 due to the degradation of
Li-ion BATs. The optimization results provide clear guidance on how to select and utilize
on-board HESDs and avoid unnecessary waste in real engineering applications.

5. Conclusions

In this paper, a time-based MILP model was developed, which aims to optimize the
energy-saving operation of electric trains equipped with on-board HESDs in DC railway
systems. The main attractiveness of the proposed integration power flow model resides
in the combination of the optimal energy-saving operation with the emerging on-board
HESDs under different constraints. The minimum NEC solution can be obtained to reveal
the energy-saving potential of on-board HESDs in practical engineering applications, which
are the key factors in railway energy system planners and operators. In addtion, the real-
world train operation data from Guangzhou Metro Line No.7 and mature commercial
components are applied in the proposed model.

Based on the abovementioned case studies, it can be concluded that different capac-
ity of on-board HESDs would change the energy-saving operation for electric trains and
charging/discharging strategy, which leads to notable differences in the train speed trajec-
tory and power split. More specifically, the NEC value is reduced to 44.01 MJ when the
maximum power of the Li-ion BATs and the SCs is 1049.6 kW and 1560 kW, respectively.
However, the NEC value would not be continuously reduced, and could even rise slightly
due to the increase in the total mass of on-board HESDs, which increased slightly from
44.01 MJ to 46.98 MJ. Furthermore, the lower or excessive initial SOC for on-board HESDs
would undermine the energy-saving potential of the integrated system. It can be observed
that the proposed model obtains the minimum NEC, i.e., 43.61 MJ, under different initial
SOC constraints for on-board HESDs. Overall, the research results show that the optimal
energy-saving operation equipped with on-board HESDs requires trade-offs under different
capacities and initial SOC constraints. Considering the degradation of Li-ion BATs due to
the long-term train operation, the increase in internal resistance leads to a lower available
output power and higher NEC compared with capacity fading. The degradation changed
the energy-saving operation for electric trains and the NEC value, where the energy-saving
rate decreased from 41.57% to 31.90%. In short, based on the proposed integration power
flow model, the optimization results show significant correlations between on-board HESDs
and energy-saving operation for electric trains, which further demonstrate the necessity
of research.

In future work, it is our intention to extend the existing research, considering more
complex traffic and energy system setups, such as by involving wayside energy storage
devices, multiple electric trains and or distributed energy sources such as photovoltaics
and wind power.
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Appendix A

Appendix A.1. Piecewise Linear Method

In the proposed time-based MILP model, the PWL method was adopted to deal with
a series of nonlinear variables related to speed. The special ordered set type 2 (SOS2) was
applied in the PWL method to efficiently simplify nonlinear variable relationships, which
can increase the calculation speed and reduce the complexity of the proposed model. SOS2
contains a series of nonnegative variables to represent a nonlinear function, where only
two adjacent variables are greater than 0 and the sum of all variables is equal to 1. The
variables of SOS2 satisfy the constraints as follows:

C

∑
c=1

αc
i,j = 1. (A1)

0 ≤ αc
i,j ≤ 1, c = 1, 2, 3 . . . C (A2)

where αc
i,j are variables of SOS2 and the constant C is the total number of variables for

each ∆ti,j. To linearize the nonlinear constraints in (2), (3), (4), and (18), δi,j is set to a small
constant and denotes the linear part from the minimum speed Vi,j,min to the maximum
speed Vi,j,max, which could be obtained by:

δi,j =

(
Vi,j,max −Vi,j,min

)
C

. (A3)

When δi,j increase, the accuracy of the model will be improved, but the calculation
time of the model will also be significantly longer. As a result, the decision variables Vi,j

and V2
i,j can be approximated as V′i,j and V′2i,j , respectively. The relevant constraints are

shown as follows:
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Vi,j ≈ V′i,j =

C

∑
c=1

(
Vi,j,min + (c− 1)δi,j

)
· αc

i,j

V2
i,j ≈ V′2i,j =

C

∑
c=1

(
Vi,j,min + (c− 1)δi,j

)2 · αc
i,j.

(A4)

Similarly, the approximation of the decision variables related to average speed Vi,j,ave

and V2
i,j,ave in (5) can be expressed by:

Vi,j, ave ≈ V′i,j, ave =
C

∑
c=1

(
Vi,j,min + (c− 1)δi,j

)
· βc

i,j

V2
i,j, ave ≈ V′2i,j, ave =

C

∑
c=1

(
Vi,j,min + (c− 1)δi,j

)2 · βc
i,j

(A5)

where βc
i,j are variables of SOS2. Likewise, for the sake of compactness, the variable Ibat(t)

in (7) and the variable Isc(t) in (10) are linearized by the abovementioned method. From
(14), it can be observed that the nonlinear constraint cannot be directly solved. Therefore,
this can be further derived as:{

Psub(t) = Usub[ITss1(t) + ITss2(t)]
Ptr(t) = Utr(t)[ITss1(t) + ITss2(t)]

(A6)

where ITss1(t) and ITss2(t) are the currents flowing through the feeding TSS 1 and feeding
TSS 2, respectively. By introducing four new variables Z1(t), Z2(t), Z3(t), and Z4(t), the
nonlinear constraint can be converted into a separable form as follows:

Z1(t) =
1
2
[Utr(t) + ITss1(t)]

Z2(t) =
1
2
[Utr(t)− ITss1(t)]

Z3(t) =
1
2
[Utr(t) + ITss2(t)]

Z4(t) =
1
2
[Utr(t)− ITss2(t)].

(A7)

Then, we can derive the nonlinear variable Ptr(t) as follows:

Ptr(t) = Utr(t)ITss1(t) + Utr(t)ITss2(t)

=
(

Z2
1(t)− Z2

2(t)
)
+
(

Z2
3(t)− Z2

4(t)
)

.
(A8)

Similarly, the piecewise linear of new variables Z2
1(t), Z2

2(t), Z2
3(t), and Z2

4(t) can be
obtained by applying the above-mentioned SOS2 variable sets. γk

i,j are another variables of
SOS2, and Θi,j is set to a small constant, which denotes the linear part from the minimum
value Z2

J,min(J = 1, 2, 3, 4) to the maximum value Z2
J,max. They can be formulated by:

K

∑
k=1

γk
i,j = 1. (A9)

0 ≤ γk
i,j ≤ 1, k = 1, 2, 3 . . . K. (A10)
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Θ1,i,j =

(
Z2

1,max − Z2
1,min

)
K

Θ2,i,j =

(
Z2

2,max − Z2
2,min

)
K

Θ3,i,j =

(
Z2

3,max − Z2
3,min

)
K

Θ4,i,j =

(
Z2

4,max − Z2
4,min

)
K

.

(A11)

The approximation of new variables Z2
1(t), Z2

2(t), Z2
3(t), and Z2

4(t) can be calculated by:

Z2
1(t) ≈ Z′21 (t) =

K

∑
k=1

(
Z2

1,min + (k− 1)Θ1,i,j

)
· γk

i,j

Z2
2(t) ≈ Z′22 (t) =

K

∑
k=1

(
Z2

2,min + (k− 1)Θ2,i,j

)
· γk

i,j

Z2
3(t) ≈ Z′23 (t) =

K

∑
k=1

(
Z2

3,min + (k− 1)Θ3,i,j

)
· γk

i,j

Z2
4(t) ≈ Z′24 (t) =

K

∑
k=1

(
Z2

4,min + (k− 1)Θ4,i,j

)
· γk

i,j.

(A12)
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