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Abstract: Lithium-ion battery state of health (SOH) accurate prediction is of great significance to
ensure the safe reliable operation of electric vehicles and energy storage systems. However, safety
issues arising from the inaccurate estimation and prediction of battery SOH have caused widespread
concern in academic and industrial communities. In this paper, a method is proposed to build an
accurate SOH prediction model for battery packs based on multi-output Gaussian process regression
(MOGPR) by employing the initial cycle data of the battery pack and the entire life cycling data of
battery cells. Firstly, a battery aging experimental platform is constructed to collect battery aging
data, and health indicators (HIs) that characterize battery aging are extracted. Then, the correlation
between the HIs and the battery capacity is evaluated by the Pearson correlation analysis method,
and the HIs that own a strong correlation to the battery capacity are screened. Finally, two MOGPR
models are constructed to predict the HIs and SOH of the battery pack. Based on the first MOGPR
model and the early HIs of the battery pack, the future cycle HIs can be predicted. In addition, the
predicted HIs and the second MOGPR model are used to predict the SOH of the battery pack. The
experimental results verify that the approach has a competitive performance; the mean and maximum
values of the mean absolute error (MAE) and root mean square error (RMSE) are 1.07% and 1.42%,
and 1.77% and 2.45%, respectively.

Keywords: lithium-ion battery; health indicators; state of health; multi-output Gaussian process
regression; health prediction

1. Introduction
1.1. Literature Review

For numerous advantages, lithium-ion batteries have been widely used in electric
vehicles, consumer electronics devices, and energy storage systems [1,2]. Like many
electrochemical systems, the repeated charging and discharging during the application
of batteries inevitably cause gradual aging, resulting in an increase in internal resistance
and a decrease in capacity. In the later stage of battery aging, it can more easily cause
failure or fire, and the method to enhance the performance and safety of lithium-ion battery
systems is a critical research hotspot [3]. Prognostic and Health Management has been one
of the indispensable functions of the battery management system. Generally, the aging
degree of the battery is characterized by State of health (SOH). SOH is defined as the
ratio of the maximum available capacity to the rated capacity. According to the different
application fields of lithium-ion batteries, the battery is usually considered to approach
its end of life when its capacity reaches 80% of the normal value or its internal resistance
increases to twice the initial value [4]. Existing studies have shown that lithium-ion battery
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SOH prediction methods can be classified into electrochemical-based methods (EM) [5–7],
equivalent circuit-based methods (ECM) [8,9], and data-driven methods (DDM) [10,11].

The relevant mathematical techniques can simplify the EM, which is established
through the mathematical modeling of the internal mechanism of the battery and can be
used to predict battery SOH. Nonetheless, the aging models based on different side reactions
inside the battery are usually coupled with some partial differential equations [12], leading
to some deficiencies such as high computational costs and hindering their applicability.
Unlike EM, ECM is the most commonly used model that combines voltage sources, resistors,
capacitors, and other components. The computational cost of this model is small, and its
parameters are easy to identify. As a complex, nonlinear time-varying system, it is difficult
to establish a model for the battery to characterize dynamic properties accurately. The data-
driven approach does not consider the battery operating mechanism and aging mechanism
compared with the model-based approach. It does not require a specific physical model,
meaning it is more flexible. In addition, data-driven approaches typically treat the battery as
a “black box” that maps external measurements such as voltage, current, and temperature
to capacity based on machine learning algorithms.

With the continuous progress of computer technology and artificial intelligence tech-
nology, data-driven methods in battery health research receive more attention than physical
methods due to their flexibility and model-free characteristics [13]. The following are data-
driven methods for battery health prognostics: an artificial neural network (ANN) [14],
a support vector machine (SVM) [6,15], a relevance vector machine (RVM) [16], and a
Gaussian process regression (GPR) [17,18]; the advantages and disadvantages of the four
approaches are listed in Table 1 [10].

Table 1. Comparison of the advantages and disadvantages of the four data-driven approaches.

Approach Advantages Disadvantages

ANN
support for multidimensional spaces;
high prediction accuracy;
ability to learn independently;

high computational complexity large-scale samples;
poor uncertainty expression;
complex structure;

SVM
support for multidimensional spaces;
strong generalization ability;
better performance in the nonlinear system;

kernel function satisfying the Mercer criterion;
more computing resources are required;
sensitive to missing data;

RVM high sparsity;
not subject to Mercer restrictions;

depends on kernel function selection;
susceptibility to falling into a local optimum;

GPR availability of uncertainty expressions;
applicable to high-dimensional and small sample data;

poor long-term forecasting;
high cost of computing large samples of data;

Compared with ANN, RVM, and SVM, the GPR model has better adaptability to
deal with complex issues such as high-dimensional data, small samples, non-parameters,
uncertainty expression, and nonlinearity. At the same time, the GPR model has received
widespread attention in battery SOH research. Liu et al. [19] successfully prognosticated
the cycle capacity of lithium-ion batteries based on the improved single-output Gaussian
process regression (SOGPR) model. Li et al. [20] used the SOGPR to prognosticate the SOH
of a battery with satisfactory accuracy. However, the SOGPR model cannot fully utilize
the information of other batteries as prior knowledge to accurately predict the SOH of
the target battery. To cope with this shortcoming, Zheng et al. [21] proposed a multiple
SOGPR model to achieve the prediction of battery SOH based on different weights, but
this method requires a large amount of computation. In order to further overcome the
shortcomings of SOGPR, Boyle et al. [22] regarded the Gaussian process as a convolution
between a smoothing kernel and Gaussian white noise.

Multi-output Gaussian process regression (MOGPR) [23,24] utilizes a covariance
matrix for each channel to model their possible dependencies and each channel can use the
information of other channels to enhance performance. Richardson et al. [25] employed the
SOGPR to predict battery SOH directly and predicted the capacity based on the MOGPR and
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the correlation between different battery cells. However, research on the SOH prediction
of battery packs is still rare. In addition, most of the above studies mainly use the NASA
public data set to conduct the battery SOH estimation, but the data set was collected in
2008, and the cycle life of batteries is less than 200 cycles. Due to the rapid development of
battery technology, this dataset is not suitable for the current commercial batteries, which
usually have a larger capacity and a longer cycling life.

1.2. The Thought of This Paper

It is still challenging to achieve an accurate SOH prediction of battery packs only
using early aging data of the pack. To this end, this paper proposes a method to build
an accurate SOH prediction model for battery packs based on the MOGPR by employing
the entire life cycling data of battery cells and the initial cycle data of the battery pack.
Firstly, a battery aging experimental platform is constructed to collect battery aging data,
and health indicators (HIs) that characterize battery aging are extracted. Then, we use
correlation coefficients to evaluate the correlation between the HIs and the capacity, and
the HIs that have a strong correlation to the battery capacity are screened. Finally, two
MOGPR prediction models are constructed, namely, an MOGPR HIs prediction model
and an MOGPR SOH prediction model. The MOGPR HIs prediction model is trained by
employing the first 20% cycle HIs of the battery pack and the entire life cycle HIs of the
battery cell. Based on this model, the future cycle HIs of the battery pack can be obtained.
The MOGPR SOH prediction model is established by using the early HIs and SOH data
of the battery pack as a training sample. Based on this model and the predicted HIs, the
future SOH of the battery pack can be predicted.

The method consists of three main parts: data acquisition, model construction, and
health prognostics, as shown in Figure 1. First, the battery aging experiment platform is
built to collect the battery aging data such as voltage, current, capacity, and temperature.
Secondly, the HIs are extracted from the charge/discharge aging experimental data and
filtered by using the correlation analysis method. Additionally, they are combined with the
MOGPR to construct the battery SOH prediction model. Finally, the SOH-predicted results
of the battery cells and packs are evaluated by three metrics.
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Figure 1. The composition and implementation principle of the battery SOH prediction method.

The contributions of this paper are as follows:

(1) Two HIs, namely, cycle number and standard deviation of discharge capacity (stdQ)
are combined to achieve a highly accurate SOH prediction for battery packs.

(2) The proposed MOGPR model can maintain a high-precision SOH prediction of battery
cells and battery packs under different working conditions.

(3) Only 20% early aging data of battery packs are employed to achieve an accurate SOH
trajectory prediction for the battery pack, which saves lots of time and energy in
whole-life aging tests of battery packs.
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The remaining sections of this paper are as follows: Section 2 analyzes the results;
Section 3 is the experimental testing; Section 4 extracts and evaluates the HIs from the
experimental aging data; the methodology is described in Section 5; the conclusions of this
paper are given in the end.

2. Results and Discussion

In this section, the HIs prediction model and the SOH prediction model based on the
MOGPR are validated by using the aging experimental data of battery cells and battery
packs. The battery pack stdQ prediction results based on the MOGPR model are presented
in Section 2.1. In Section 2.2, the SOH prediction results of battery cells under different
models and working conditions are presented, while the SOH prediction results of the
battery pack under different models are illustrated in Section 2.3.

2.1. The HIs Prediction of Battery Pack

Under the working condition of 35 ◦C_0.5C0.5C (35 ◦C: ambient temperature, 0.5C0.5C:
charge–discharge rate), based on the MOGPR model, the future cycle stdQ (stdQ_pre) of the
battery pack can be obtained by learning the entire life data of the battery cell stdQ and the
initial 20% life data of the battery pack stdQ_mean, and the results are presented in Figure 2.
As shown in Figure 2a, the vertical dashed line represents the 20% cycle data of the battery
pack, with the left side representing the observed value and the right side representing
the predicted value. The predicted HIs not only have the same trend as the observed HIs,
but also have a small error, and their MAE and RMSE are 0.36% and 0.496%, respectively.
Figure 2b illustrates the correlation between the stdQ and the capacity in the battery pack,
where the stdQ_mean represents the observed value of the stdQ1–15 of the battery pack. The
results show that the stdQ_pre still has a strong correlation with the capacity, and thus the
above stdQ can be used for the health prediction of the battery pack. Although the stdQ
has a good correlation with capacity, there is still a certain degree of deviation. In order
to improve prediction accuracy, the next section will fuse the two HIs, namely the cycle
number and the stdQ, for the SOH prediction of the battery pack.
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2.2. SOH Prediction of Battery Cells
2.2.1. Prediction Results of Two Different Models

The SOH prediction results of the battery cell based on the SOGPR model and the
MOGPR model are compared in this section. Under the working condition of 35 ◦C_0.5C0.5C,
the SOGPR prediction model is trained by using the first 20% aging data of the 1# cell and
the entire life aging data of the 2# cell, and the results are shown in Figure 3a. The bold
solid line represents the observed value used to train the SOGPR model, the dotted line is
the future SOH of the battery cell, and the solid blue line is the predicted SOH. The light
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blue area displays the 95% confidence interval (CI), which is used to assess the prediction
results. The narrower the 95% CI, the more reliable. It can be seen from the picture that the
SOGPR prediction model cannot achieve accurate SOH prediction of the battery cell.
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Compared with the SOGPR model, the MOGPR model accounts for the disadvantage
of the SOGPR model and can take use of the prior SOH information of the 2# cell to obtain
higher prediction accuracy. Under the working condition of 35 ◦C_0.5C0.5C, the MOGPR
prediction model is trained by employing the entire life cycling data of the 2# cell and the
first 20% aging data of the 1# cell, and the prediction result is shown in Figure 3b. Their
MAE and RMSE are 0.278% and 0.337%, respectively.

2.2.2. Prediction Results for Two Different Conditions

In order to analyze the influence of temperature and the charge–discharge rate on the
MOGPR model, the future SOH of battery cell under 35 ◦C_0.5C0.5C is predicted based
on the battery cell aging data of two different operating conditions: 25 ◦C_0.5C0.5C and
35 ◦C_0.3C1C, and the predicted results are shown in Figure 4.
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At first, in order to analyze the influence of temperature on the prediction accuracy
of the SOH of the battery cell, the entire life aging data of the 3# cell under the working
condition of 25 ◦C_0.5C0.5C and the first 20% cycle data of the 1# cell under 35 ◦C_0.5C0.5C
working conditions are employed to train the MOGPR model. The SOH prediction results
are shown in Figure 4a, the MAE and RMSE are 0.31%, and 0.99%, respectively. The result
shows that temperature has little effect on the SOH prediction of the battery cell. The model
can obtain satisfactory SOH prediction accuracy under different working temperatures by
using the aging data in other working temperatures.
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Then, to analyze the influence of the charge–discharge rate on the prediction accuracy
of battery cell SOH, the entire life aging data of the 5# cell under 35 ◦C_0.3C1C operating
conditions and the first 20% cycle data of the 1# cell under 35 ◦C_0.5C0.5C working condi-
tions are utilized to train the MOGPR model. The deviation of the predicted value from the
true value gradually increases with the increasing number of cycles; the SOH prediction
result is shown in Figure 4b. Their MAE and RMSE are 1.71% and 1.89%, respectively.

By verifying the MOGPR model based on two different working conditions, it can
be seen that, compared with temperature, the impact of the charge–discharge rate on the
prediction accuracy of the battery cell SOH is more obvious.

2.3. SOH Prediction of Battery Pack

In this section, firstly, the prediction results of two different HIs are validated separately
based on the SOGPR model. Secondly, based on the MOGPR model, the prediction results
of two different HIs are verified separately. The black dotted line is the actual value
of the SOH. the solid colorful line represents the predicted value of the SOH, and the
corresponding area is the 95% CI.

2.3.1. Prediction Results Based on the SOGPR Model

Under 35 ◦C_0.5C0.5C operating conditions, the first 20% of a battery pack is used to
train the SOGPR model. The prediction result is shown in Figure 5. The battery used in the
experiments in this paper is affected by polarization, and the SOH of the first 100 cycles
of the pack shows a rapid decline. In Figure 5a, the SOGPR model is trained using only
the cycle number as the HI, and the SOH prediction error of the battery pack is large. The
MAE and RMSE are 2.554% and 3.64%, respectively. While in Figure 5b, the cycle number
and stdQ_pre are used as the input HIs. Although the future cycling SOH prediction of
the battery pack can be achieved by training two sets of HIs, the predicted values deviate
significantly from the actual values and are located in the unreliable region, and its MAE
and RMSE are 2.79% and 3.74%, respectively. The results show the SOGPR model cannot
obtain accurate SOH predictions of the battery pack.
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2.3.2. Prediction Results Based on the MOGPR Model

In this section, the MOGPR prediction model is trained by the data of a single HI (cycle
number) and two HIs (cycle number and stdQ_pre), and the SOH prediction results of the
battery pack are analyzed. Under the working condition of 35 ◦C_0.5C0.5C, the whole life
aging data of the 1# cell and the first 20% of the battery pack are used to train the MOGPR
prediction model of the battery pack. In Figure 6a, only the cycle number is used as the
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HI to train the model. The results show that the capacity drops rapidly in the early cycle.
In the first 400 cycles, it still has high prediction accuracy and can effectively capture the
overall trend of battery decline, with an MAE and RMSE of 1.87% and 2.69%, respectively.
Compared with SOGPR, the prediction accuracy of SOH has been significantly improved.
Although the deviation of the predicted future SOH of the battery pack from the actual
value is small, its 95% CI is still much larger than the normal threshold. The results show
that, based on the MOGPR SOH prediction model, satisfactory reliability prediction results
cannot be obtained by training using only the cycle number.
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The SOH prediction results of the battery pack based on two HIs (cycle number and
stdQ_pre) are shown in Figure 6b. It can be observed that the model can not only capture
the general trend of battery aging but also has better results, with an MAE and RMSE of
0.91% and 1.18%, respectively. Based on the fusion feature to account for the deficiency of a
single feature, the prediction accuracy has been significantly improved.

3. Experiment

As an electrochemical system, the battery inevitably leads to the gradual degradation
of its performance during constant use and long-term storage. To study its aging character-
istics, an aging experiment platform is set up to conduct different charging and discharging
tests. The battery aging test platform mainly includes a battery tester, a thermal chamber, a
computer, a data logger, etc., as shown in Figure 7. First, set the experimental steps and
parameters through the computer. Then, use the battery tester to run the battery cells and
pack in the thermal chamber according to the preset steps. Finally, save the experimental
data to the computer through the data logger.
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The battery used in this aging test is a prismatic battery cell with a LiFePO4 cathode
and a graphite anode. A batch of batteries with a rated capacity of 110Ah is applied
to the aging experiment. The battery pack is composed of fifteen battery cells in series.
Both battery cells and battery packs are subjected to aging tests at 35 ◦C_0.5C0.5C. In
order to analyze the influence of temperature and the current rate on aging characteristics,
aging experiments are carried out on battery cells under two operating conditions, namely
25 ◦C_0.5C0.5C and 35 ◦C_0.3C1C, respectively. The aging test conditions of battery cells
and battery packs are shown in Table 2.

Table 2. Battery aging test conditions.

Conditions Cell Pack

Temperature (◦C) 35 25 35 35
Charge rate (C) 0.5 0.5 0.3 0.5

Discharge rate (C) 0.5 0.5 1 0.5

In this work, a test battery cell (35 ◦C_0.5C0.5C_cell, 1#) (35 ◦C: ambient temperature,
0.5C0.5C: charge–discharge rate, cell 1#: battery number) is an example for the description.
The battery tester conducts the aging experiment under preset working conditions, where
the ambient temperature is set to 35 ◦C. Consistently use the 0.5 C rate to complete charging
until 3.65 V, and the current becomes 0.05 C. In the discharge process, the discharge rate is
set to 0.5 C to discharge until 2.5 V, and then the discharge step is terminated. The voltage
and current curves in a charge–discharge cycle are shown in Figure 8a, then the above
process is repeated until the capacity reaches a preset value of the initial capacity of the
battery. Compared with the battery cells, the cycling life of the battery pack is usually
much shorter, as shown in Figure 8b. Specifically, since the battery pack is affected by the
inconsistency of the battery cells and multiple factors, the aging rate of the battery pack is
increased, and its cycle life is shortened.
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4. Health Indicators Extraction and Evaluation
4.1. Health Indicators Extraction

As a battery is repeatedly charged and discharged, its active material will gradually
decrease. The gradual thickening of the solid electrolyte interphase (SEI) eventually leads
to its capacity fading and a power drop. Experiments show differences in the charge
and discharge capacity under different cycles, so capacity would usually be used as an
indicator to evaluate battery aging. The discharge capacity of the lithium-ion battery in this
experiment is completed between the lower and upper cut-off voltage. This work chooses
to extract the voltage segment in this voltage interval, then obtains the corresponding
discharge capacity sequence (Q) through the ampere-hour integration. In order to further
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improve the reliability and operability of this indicator, the standard deviation of the Q
is adopted, which is named as stdQ [26]. The specific implementation principle of stdQ is
as follows:

Assuming that the voltage discharge curve is divided into the same N sub-intervals,
the voltage interval ∆V can be calculated by Equation (1):

∆V =
Vmax −Vmin

N
(1)

Based on the voltage interval ∆V, the i-th voltage interval sequence Vs,i can be obtained
by Equation (2):

Vs,i = [Vmax, Vmax − ∆V, · · · , Vmin] (2)

The accumulated charge sequence Q corresponding to the voltage sequence can be
obtained according to the ampere-hour integration method, as shown in Equation (3):

Qi(V) = [Q1, Q2, · · · , QN ] (3)

The dQ sequence of Equation (4) can be obtained as the difference between the se-
quence of Equation (3) and the element Q1 which corresponds to the first voltage interval.
Then, the variance of the dQ sequence can be obtained to obtain the health indicator of the
i-th cycle and named as stdQ.

dQi(V) =
[

Qi
1 −Qi

1, Qi
2 −Qi

1, · · · , Qi
N −Qi

1

]
(4)

Through the analysis of the experimental data, it can be seen that as the number of
battery cycles increases, the battery capacity decreases continuously, so the cycle number
can also be used as an HI to capture the aging status of the battery.

4.2. Health Indicators Evaluation

The selection of HIs is critical for the prediction of battery SOH based on machine
learning, which can not only effectively eliminate a large number of unimportant and
redundant features but also help to reduce the computational cost and obtain reliable
prediction results. The Pearson correlation analysis method is suitable for the quantitative
analysis of the linear relationship between the extracted HIs and the battery capacity. The
Pearson correlation coefficient can be expressed by Equation (5) [27]:

ρ =
∑ (xi − xi)(y− y)√

∑ (xi − xi)
2∑ (y− y)2

(5)

where xi represents the HIs, and y represents the capacity observations. xi and y represent
their mean values, respectively. ρ represents the correlation coefficient between the HIs and
the capacity.

Based on the above analysis, the features of fifteen battery cells in the battery pack
are extracted. The correlation between the HIs and the battery capacity is calculated by
using Pearson correlation analysis. Figure 9 shows the correlation between the sixteen HIs
(stdQ1–15, stdQ_mean) and capacity, respectively, in the battery pack, where the stdQ_mean
represents the average value of the stdQ for the fifteen battery cells. The Pearson correlation
analysis shows that the correlation coefficients are greater than 0.99, indicating that there is
a strong correlation between the stdQ and the capacity. Therefore, the stdQ_mean can be
used as an HI to represent all changes in the stdQ1–15 of the battery pack.
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5. Methodology

The Gaussian process regression model, as a machine learning method based on
Bayesian framework, has the advantages of non-parametric and uncertainty expression.
According to the number of model outputs, the model can be divided into single-output
Gaussian process regression (SOGPR) models and multiple-output Gaussian process re-
gression (MOGPR) models. Since the traditional machine learning methods cannot fit
well for heterogeneous data, we use the MOGPR model to predict battery pack health.
A comparison of the implementation principles of the two different Gaussian process
regression models can be found in the literature [28], and an intuitive illustration is shown
in Figure 10. For the multiple-input multiple-output prediction problem, the traditional
method often uses multiple SOGPR models to build models separately, where the input is
{Xi,yi}, and the output is {fi}. However, this method ignores the correlation during multiple
outputs; in contrast, the MOGPR model accounts for the deficiencies of the SOGPR model.
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5.1. Single-Output Gaussian Process Regression Model

A typical single-output Gaussian process is a collection of any finite number of random
variables with a joint Gaussian distribution, whose properties are completely determined
by their means and covariance functions. The Gaussian process definition is shown in
Equation (6):

f (x) ∼ GP(m(x), k(x, x′)) (6)



Batteries 2022, 8, 134 11 of 13

where x and x’ represent two different input samples, m(x) is the mean function, and its
value usually takes zero (the assumption does not affect the generalization and learning
performance of the Gaussian process), and k(x, x’) is the covariance function of the Gaussian
process, which characterizes the correlation between random variables.

According to Bayesian theory, the posterior distribution of the predicted value y* can
be obtained, as shown in Equation (7):

p(y∗|x, y, x∗) = N
(

µ∗, σ2
∗

)
(7)

where x and y are the input and output of the training set, respectively. x∗ and y∗ are the
input and prediction output of the testing set, respectively.µ∗ is the prediction mean, and
σ2
∗ is the prediction covariance.

5.2. Multi-Output Gaussian Process Regression Model

The MOGPR model is obtained by extending the SOGPR model. Compared with the
SOGPR model, the MOGPR model accounts for the deficiency of the SOGPR model in that
each output needs to be modeled separately and cannot capture the potential correlation
between multiple outputs. The MOGPR establishes a covariance matrix for each output,
so as to learn the correlation between each output. It assumes that the multiple outputs
are related to some extent, and employs the mutual information to obtain more accurate
prediction results than the SOGPR model [28].

The MOGPR assumes that the set containing D functions, {f d(x)}D
d=1, where any

function can be expressed as the convolution of the smooth kernel function {Gd(x)}D
d=1,

with the implicit function µ(x), as shown in Equation (8):

fd(x) =
∫
x

Gd(x− z)µ(z)dz (8)

Similar to the SOGPR, the MOGPR multi-output random variable f(x) is assumed to
obey a Gaussian distribution, as shown in Equation (9):

f (x) ∼ GP(m(x), KMOGP) (9)

where m(x) is the mean function, predicted by the mean of the test aging data series, and
the multi-output covariance KMOGP is defined as Equation (10):

KMOGP(x, x′) = k fd , fd′
(x, x′) =

 k11(x, x′)
...

kD1(x, x′)

· · ·
. . .
· · ·

k1D(x, x′)
...

kDD(x, x′)

 (10)

The multiple output regression problem can be defined in Equation (11):

yd(x) = fd(x) + εd (11)

where f (x) is the multi-output function, εd is a Gaussian noise εd~N(0, σ2
n), and yd is the

multi-output observation.
Based on Bayesian theory, the posterior distribution of MOGP predicted values yd* can

be expressed in Equation (12):

p(yd∗|x, y, x∗) = N
(

µd∗, σ2
d∗

)
(12)

where x and y are the input and output of the training set, x∗ and yd∗ are the input and pre-
dicted output of the test set, µd∗ is the predicted mean, and σ2

d∗ is the predicted covariance.
In this work, for battery SOH prediction, the HIs and capacity data of battery cells

and packs are used as the input of the MOGPR model, and the corresponding SOHs are
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taken as the output, respectively. Firstly, the battery cell entire-life aging data and the pack
early cycle data are selected and loaded into the model for training. Then, the MOGPR
prediction model is used to complete the prediction of the battery pack SOH. We use three
metrics to evaluate the accuracy of the prediction results, namely, MAE, RMSE, and 95%
CI, as shown in Equation (13):

MAE = 1
N

N
∑

i=1
|yi − y∗i |

RMSE =

√
1
N

N
∑

i=1
(yi − y∗i )

2

95%CI = y∗i ± 1.96× σ(y∗i )

(13)

where yi and y∗i represent the actual and predicted values of the battery SOH, respectively,
and σ(y∗i ) is the variance of the predicted capacity. The 95% CI represents the confidence
interval of the predicted value of the battery SOH.

6. Conclusions

In this paper, a battery pack SOH prediction method based on the MOGPR model is
proposed with satisfactory accuracy. Firstly, two HIs are proposed from the battery cells
and the battery pack by analyzing the battery aging characteristics. Then, the Pearson
correlation analysis method is used to quantify the correlation between the HIs and the
capacity. At last, the SOH prediction result based on the MOGPR is verified by employing
the entire life cycling data of the battery cell and the initial cycle data of the battery pack.
Based on the stdQ of the battery cell, the prediction of the future stdQ of the battery pack is
realized through the MOGPR model. Then, the cycle number and stdQ_pre are combined to
form the HIs set, and the MOGPR model is employed again to achieve the prediction of the
future SOH of the battery pack. The results show that its MAE and RMSE are 0.91% and
1.18%, respectively. The results of this paper show that the prediction effect based on two
features is better than that of a single feature, and the performance of the MOGPR model
is better than that of the SOGPR model. By comparison, the MOGPR model based on the
two features has better reliability and accuracy. Only the basic RBF kernel function is used
in this model, and the performance of other kernel functions has not been compared. In
addition, this paper only used the LFP battery to verify the MOGPR model, and whether
this method is applicable to other material batteries needs further research. In the future, we
will try to use different kernel functions in our scenario and combine MOGPR with ANN.
Furthermore, our proposed model will be validated on different materials of batteries.
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