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Abstract: The exponential growth in the production of electric vehicles requires an increasing supply
of low-cost, high-performance lithium-ion batteries. The increased production of lithium-ion batteries
raises concerns over the availability of raw materials, especially cobalt for batteries with nickel-rich
cathodes, in which these constraints can impact the high price of cobalt. The reliance on cobalt
in these cathodes is worrisome because it is a high-cost, rare material, with an unstable supply
chain. This review describes the need and feasibility of developing cobalt-free high-nickel cathode
materials for lithium-ion batteries. The new type of cathode material, LiNi1−x−yMnxAlyO2 promises
a completely cobalt-free composition with almost the same electrochemical performance as that of
the conventional high-nickel cathode. Therefore, this new type of cathode needs further research for
its commercial applications.

Keywords: lithium-ion battery; nickel-rich cathode; cathode materials

1. Introduction

The current global trend in the lithium-ion battery (LIB) industry is no longer mo-
nopolized by mobile gadgets and portable electronics applications but has undergone a
significant shift toward the automotive industry, primarily due to transportation electrifica-
tion. Lithium-ion batteries’ market share has been growing for hybrid and fully electric
vehicles (EV) over the last decade, showing a relatively rapid rise, which is estimated to
reach 20% [1]. The rapid growth of electric car sales is driven by several factors, including
incentives from the government and an increase in supporting infrastructure, such as the
number of charging stations. In addition, the factor of lowering production costs and ma-
ture technology from the LIB fabrication process also boosted the percentage of EV vehicles.
Meanwhile, the market response to EV-LIB vehicles seems to include four aspects, namely
(1) efforts to reduce battery production costs, which are almost 50% of all EV production
costs, so that EVs can compete with conventional vehicles or internal combustion engines
(ICE), (2) the single-charge distance factor of EVs, (3) safety, and (4) increased power [2].
This has prompted researchers and industries around the world to compete to develop
batteries with a higher energy density but with lower production costs.

Cobalt is the main element of LIB oxide layered cathodes, LiCoO2, since its commer-
cialization in the 1990s by Sony in Japan and has become a successful product for powering
electronic devices. On the other hand, the isostructural compound, LiNiO2 (LNO), which
is composed of low-cost and abundant Ni, has a significant change in properties during
insertion/delithiation [3–5]. The LiNiO2 has several phases during delithiation, and the
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possibility of anion exchange with nickel makes maintaining its structural stability chal-
lenging [6,7]. Most work on LiNiO2 in the past decade has been devoted to understanding
the phase structural change by doping and substitution. Nevertheless, the commercialized
layered-cathode today has its origin in LiCoO2. Replacing Co with Ni is one of the most
reasonable choices. Other elements, such as Al and Mg, have also been shown to be good
candidates for replacing Co [8,9]. Thus, the ongoing research on Co-free or high-Ni cathode
is fundamentally aligned with the study on the modification of LiNiO2.

The two types of cathodes that are often used for the consumption of electric vehicles
today are dominated first by LiNi1−x−yCoxAlyO2, in which x + y < 0.2 is referred to as
NCA, and second by LiNixMnyCozO2, in which x + y + z = 1 is referred to as NMC [10]. It is
expected that the level of commercialization and production of these cathode materials will
continue to rise for LIB over the next few decades. One concern that arises is the scarcity
of the required mining materials that may be caused by large-scale LIB production. It is
estimated that almost 50–80% of the total LIB production costs are spent on the purchase of
materials for the manufacture of electrodes, especially cathode materials [11,12]. Due to
the huge demands and needs of the market, the LIB production cost process continues to
decline substantially, the battery cell size fabrication changes to a larger size format, and
the mature battery production technology does not reduce the supply costs for electrode
raw materials [13].

Concerns arise about the supply chain for the source of cobalt raw materials needed for
LIB production, especially for the high-energy LIB type that uses NCA and NMC cathode
materials. A cobalt supply deficit is forecasted early in 2030 [14]. Cobalt is a rare metal
that has an important role in LIB. In addition, cobalt is also an important component in
the manufacturing process of catalysts, semiconductors, magnetic recording devices, and a
variety of high-strength metal alloys. This causes cobalt to be scarce and requires high costs
in the extraction process because most of the cobalt comes from a byproduct with a low
concentration of nickel and copper mining. Because 50% of world mine production in 2018
originated from copper-cobalt ore in the Democratic Republic of the Congo (DRC), where
geopolitical instability and harsh working conditions could halt cobalt exports, cobalt is
considered the most vulnerable source of feedstock [14].

In addition, China is currently the major producer, supplier, and consumer of cobalt in
the world. Figure 1 shows a tremendous increase in China’s import of ore and hydrometal-
lurgy intermediate from the DRC since 2000 and 2005 [15]. China also expands its foreign
ownership share for global mine production of cobalt from 11% to 33% of intermediate
production capacity, including in the DRC. China is also predicted to have a deficit of cobalt
supply by 2030 [16]. Cobalt production in China will be focused on meeting the needs of
their domestic producers. The global dependence on cobalt can lead to high competition
and conflicts. This will encourage the world to compete to produce cobalt-free cathodes for
lithium-ion batteries [17].

Driven by the problem of cobalt supply, much research has been focused on reducing
the amount of cobalt or completely removing Co from the composition to have a Co-free
cathode. Current results, which are almost comparable with some commercial cathodes, are
promising. This review describes the recent development of high-Ni and Co-free electrodes,
which includes a discussion of the role of cobalt, strategies to reduce cobalt composition
by doping, modification of the particle size, and synthesis engineering. The present work
focuses on the significant development of the topics. The objective is to outline and fill
the gap in the current development of Ni-rich cathode research. There are some existing
reviews on these topics already, and this review is aimed to complement them [6,10].
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Figure 1. Percentage of cobalt content imported from the Democratic Republic of the Congo. HMI is referred to as
hydrometallurgy intermediate [15].

2. The Role of Cobalt in LIBs

High-nickel cathodes are typically layered-mixed transition metal oxide structures
and are frequently used to meet high-energy EV requirements. Among several NMC com-
positions, LiNi1/3Mn1/3Co1/3O2 (NMC111) has the highest electrochemical performance
and safety [18]. The role of the Mn4+ ion in this composition is passive and only helps to
maintain thermal stability, while the Co3+ ion helps increase the electronic conductivity
and prevents interactions between Ni2+ and Li+ [19–22]. The addition of Co for the partial
substitution of Ni in the NMC cathode is beneficial for obtaining facile electron transfers
because of the overlap of O 2p orbitals with Co3+/4+ redox pairs for enhancing the electronic
conductivity and leading to enhanced battery capacity [23–25]. Cation mixing Li+/Ni2+

in the Li layer will result in the formation of inactive Li2Ni8O10, which inhibits the Li
diffusion process, causing low power capability [26]. The I003/I104 peak ratio (Figure 2a)
shows a measure of the degree of cation mixing of Li+/Ni2+, in which a value higher than
1.2 indicates that the well-formed layered structure is more dominant than the small-degree
cubic rock-salt Ni2+O structure as a result of the cation mixing Li+/Ni2+ [27,28]. Partial
Co substitution is very effective in preventing metal layer transitions due to cation mixing
Li+/Ni2+. Multiphase transitions often occur in LNO-based materials, such as in the case of
changes in “M + H2” and “H2 + H3” at voltages exceeding 4.0 V, which cause irreversible
capacity [24]. Intensity peaks of the “M + H2” and “H2 + H3” transition are successfully
reduced when Co is added (Figure 2b), which could be attributed to the partial replacement
of the Ni2+ by Co3+/4+ to reduce the cation mixing Li+/Ni2+. However, there has been no
detailed explanation of this mechanism until now, so it still needs further investigation.
The battery capacity mainly depends on the redox pairs Ni2+/Ni4+ and Co3+/Co4+ when
operating at high voltages. Due to market demands related to the increased energy density
and concerns about the dependence on cobalt, the next development, NMC111 was re-
placed by NMC622 LiNi0.6Mn0.2Co0.2O2 and NMC811 LiNi0.8Mn0.1Co0.1O2 with capacities
of 180 mAh g−1 and 200 mAh g−1, respectively [29]. Consequently, the nickel content
increases, and as a result, there is a decrease in the cycle ability and thermal stability [18].
In addition, the de-lithiation process induces a drastic change in the volume of the crystal
lattice which results in the cracking of the particles of the active material [30]. Moreover,
the increase in the nickel composition of the NMC cathode will cause increased sensitivity
to moisture, more mixing of Li+/Ni2+cations, side reactions from electrolytes due to the
presence of Ni4+, and phase changes from spinel to rock salt structures due to the evolution
of oxygen, especially at high temperatures and high voltages [29–31].
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percentage vs. NiLi, and (f) substituent percentage vs. irreversible capacity [8].

As seen in the composition of the NMC, cobalt, which substitutes nickel, has an effec-
tive role in stabilizing Ni2+ ions in the structure of the layered-transition metal, thereby
reducing the level of mixing between Li+/Ni2+cations [33]. However, there is one recent
study that questioned whether the role of cobalt is really irreplaceable by other metals to
have the same effect [8]. Recent research conducted by Li et al. has confused the previ-
ous theory regarding the effect of cobalt in nickel-rich layered-transition metal cathodes
by systematically studying various compositions of cobalt replacement cations in the
LiNi1−xMxO2 composition (M = Al, Co, Mg, or Mn; x = 0.05 or 0.1). As previously stated,
the role of Co is to reduce the mixing level of Li+/Ni2+ cations, but the XRD results of this
study (Figure 2c,d) show that for Mn-free materials, Co does not significantly contribute
to the reduction of the mixing of Li+/Ni2+ cations. This is evidenced in the increase in
the percentage of Ni atoms as the percentage of Mn atoms increases (Figure 2e), which
is expected because more Mn4+ will be compensated by more Ni2+ ions. The Al and Mg
series without Co shows low mixing of Li+/Ni2+cation. Figure 2f shows that as the dopant
content rises, the irreversible capacity rises with it.

Furthermore, this study reported that LiNi0.95Mg0.05O2 yielded a lower initial dis-
charge capacity of 205 mAh g−1 at a current density of 10 mA g−1, when compared
to LiNi0.95Mn0.05O2 of 219 mAh g−1 and LiNi0.95Al0.05O2 of 223 mAh g−1 as shown in
Figure 3a. This is attributed to the presence of Mg, which causes the position of the Li atom
to share space with the upper and lower layers, i.e., two Li atoms become inactive due to
the presence of one Mg atom, weakening the attraction between the layers, which causes
phase changes. This certainly affects the reversible capacity of the cathode. This research
also reported no real increase in the structural stability during the cycle of LiNi0.95Co0.05O2
when compared to all tested samples. The initial discharge capacity and cycle stability of
LiNi0.95Al0.05O2 are similar to that of NCA, with capacity retention of 95% of the initial
capacity after 50 cycles and a current density of 10 mA g−1. Meanwhile, LiNi0.95Mg0.05O2
has better capacity retention of 97% after 50 cycles but with a lower initial specific discharge.
This suggests that cobalt does not contribute to capacity retention in the long term.
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In addition, this study shows that cobalt substitution (LiNi0.95Co0.05O2) does not improve
the thermal stability compared to LiNi0.95Mg0.05O2, LiNi0.95Al0.05O2, and LiNi0.95Mn0.05O2
with a self-heating rate >20 ◦C min−1 at 160 ◦C. On the other hand, Al and Mg show a
significant contribution with self-heating rate <1 ◦C min−1 for the range of 120–240 ◦C
(Figure 3b). Here, it can be seen that the contribution of Co is not significant in reducing
the self-heating rate of the LNO-based cathode. Even in some other results, the addition
of Co shows an increase in the internal heat when fully charged [34–36]. Therefore, this
research report questions the role of cobalt in the Ni-rich layered-transition metal oxide
material by comparing its electrochemical performance with other metal dopants.

The discussion of promising high-Ni NMC-layered material has been outlined, mainly
reducing the cost, increasing the capacity, and reducing the risk on the supply of cobalt.
However, the cathode lifetime is limited because of its structural degradation on the sub-
surface of high-Ni NMC. The degradations change the interfaces and properties. It is
widely known that higher cut-off potential and elevated temperature are responsible for
the degradation of the high-Ni NMC [37–40]. It has been reported that in in situ XRD
experiments with a slow enough rate of C/50, the lattice parameter of LiNi0.8Mn0.1Co0.1O2
(NMC811) appears to have a non-monotonic dependence on the Li content, and the lattice
changes thus become highly anisotropic [41]. A comparative study conducted by Kondakov
et al. [38] indicates that the volume changes in NMC811 are more significant than those of
LiNi1/3Mn1/3Co1/3O2 (NMC111) at a potential between 4.0 and 4.3 V. The temperature of
the battery comprised with high-Ni NMC should be closely monitored because it is directly
related to the safety of the battery operation. At a high SOC, the spontaneous reduction of
Ni4+ to Ni2+ during heating accompanied by the release of oxygen causes the destruction
of the original structure [18,42,43]. Nevertheless, the current research shows that intrinsic
degradation leads to subsurface structural changes and some deposited products presented
in Figure 4a. The structural degradation of the layered structure becoming a rock-salt
structure on the surface leads to a limited diffusion for Li+. Other degradation mechanisms
include metals dissolution, oxygen release, and surface reaction with electrolyte, leading
to a release of CO/CO2 [44]. In many cases, the dissolution of the transition metals (TMs)
from the bulk diffuses into the anode and thickens the SEI on the anode, as shown in
Figure 4b. In addition to the degradation that originated from the cathode, the degradation
can also occur from the trace of water. Water traces react with the electrolyte, LiPF6, and
form HF. This leads to the acid attack of TMs by the HF [45].
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3. Strategy to Reduce Cobalt in LIBs
3.1. Doping with Other Transition Metals

Various types of cations have been studied as alternatives to cobalt in Ni-rich cathodes
over the past few years using Mg2+, Al3+, Fe3+, and Na+ cations, which have shown
significant progress in electrochemical performance and safety factors [48–50]. In addition,
significant results have been achieved to understand the relationship between the cathode
dopants, thermal stability, and reactivity with electrolytes. In the case of thermal stability,
under ambient conditions, Ni-rich cathodes in their charged states are metastable. Because
of the highly effective oxygen partial pressure, they begin to break down and emit O2
at high temperatures (>200 ◦C). The emitted O2 can then react with the organic solvent,
resulting in a thermal runaway.

It was reported that the thermal stability could be improved in LiNixM1−xO2 by
substituting the dopant Mn, Mg, Al, or Co in which x = 0 or 0.05 (Figure 5) [51]. Al- and Mg-
doped LNO shows the highest stability to the thermal decomposition among other samples.
The decomposition is expected to have two steps; namely, the first step corresponds to the
phase transformation from a layered-material to a spinel structure followed by oxygen
evolution around 200 ◦C, and the second step is related to the formation of the rock-salt
phase with more evolution of oxygen from the structure at elevated temperature [52,53].
Interestingly, Al-doped LNO shows that the second step is delayed due to a stronger bond
of Al3+ with oxygen. This could suppress the cation migration for the phase transformation
with increasing temperature [54]. In addition, the dopant effect can also increase the Li
content at a higher charge voltage of 4.4 V versus Li+/Li, which reduces the evolution of
oxygen and makes the structure more stable. The effect of dopants also shows that the
reduction of side reactions with electrolytes causes a much higher thermal stability (220 ◦C)
compared to that without dopants in LiNi0.95Co0.05O2.
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Another study reported the effect of Mn dopant on the electrochemical performance
of LiNi0.9Mn0.1O2, which is the development of the most studied cobalt-free nickel-rich
cathode material, LiNi0.5Mn0.5O2 [55]. LiNi0.9Mn0.1O2 shows an increase in the capacity
stability with an initial discharge capacity of 227 mAh g−1 at 0.1 C as a function of Mn,
which can maintain its discharge capacity up to 93% after 100 cycles. This is related to
the role of the inactive Mn4+ ion, which can stabilize the structure during the delithiation
process, as evidenced by the change in the redox potential associated with the H2→ H3
phase transition. The broadening of the dQ/dV peaks indicates that there has been a
change in the volumetric lattice, which allows the inhomogeneous strain relaxation in
the crystal lattice. In addition, the fracture strength of the LiNi0.9Mn0.1O2 particles was
25% higher than that to LiNi0.9Mn0.05Co0.05O2 (140 MPa). These two mechanisms demon-
strate the important role of Mn in improving the cycle stability in LiNiO2-based materials.
Although the addition of Mn improves the electrochemical stability, Mn dissolution is a
serious problem in Mn-based cathode materials for LIBs, mainly at high voltages. It is
reported that Li2Mn1−xTixO2F (0 ≤ x ≤ 2/3) material [56], despite the absence of severe
delithiation, demonstrates a significant loss of capacity after continuous cycling at high
voltage due to the dissolution of Mn ions into the electrolyte. The electrochemical perfor-
mance of LiNi0.8Mg0.2O2 was also investigated and obtained specific discharge capacity of
185 mAhg−1 at 0.1 mA cm−2 but was only stable for 25 cycles [57]. The specific discharge
capacity of LiNi0.8Al0.2O2 is observed at about 150 mAh g−1 at 0.17 mA cm−2 and generates
the formation of an insulating material when fully charged [58]. Among Mn-, Mg-, Al-, or
Co-doped LNO materials, Li[Ni0.9Co0.1]O2 delivers the highest specific discharge capacity
of 233 mAh g−1 at 0.1 C. However, it experiences severe capacity fading of 77% [59]. This
is attributed to a developed microcrack on an entire particle when it is charged to 4.3 V,
exposing the internal particle to electrolyte attack.

3.2. Particles and Synthesis Engineering

A large number of studies [51,55,60] has been carried out over the past few years in an
effort to improve the electrochemical performance of the cathode material of high-nickel
composition LiNi1−xMxO2 (M = Mn, Al, and/or Co) so that dependence on cobalt can
be reduced. Nickel-rich cathodes, such as NMC811 and NCA, are one step forward to
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developing LiNiO2 (LNO)-based cathode materials that are completely cobalt-free. This
is because the LNO has a high energy density in line with the target of LIB performance
for EVs in the future. However, thermal instability [54,61] and structural decomposition
significantly decrease the electrochemical performance of LNO-based materials [33,62].
This is the main barrier for the commercial application of this type of cathode material for
modern LIB applications. Mixing Li+/Ni2+ cation during the charge-discharge process is
one of the main obstacles of Ni-rich cathode, inducing the local formation of inactive rock-
salt phases that can worsen the battery performance during the charge-discharge process.

One strategy for overcoming this challenge is to synthesize NMC at the micron
scale of single crystal particles [63–66]. Compared with the polycrystalline NMC, which
consists of agglomerated particles measuring 10 to 15 µm, the single crystal morphology
has the fewest grain boundaries, thereby reducing particle cracking and side effects with
electrolytes (Figure 6a,b) [67]. A single crystal does not have grain boundaries inside
one particle, thus providing a continuous Li+ pathway. In contrast, Li+ needs to pass
through many grain boundaries in the polycrystalline, as seen in Figure 6c,d. It was also
reported that the single-crystal Li(Ni0.5Mn0.3Co0.2)O2 applied as a cathode material for
all-solid-state lithium-ion batteries exhibits 6–14 times higher Li+ diffusion coefficient than
polycrystalline Li(Ni0.5Mn0.3Co0.2)O2 [68]. The single crystal LiNi0.5Co0.2Mn0.3O2 with
uniform size distribution and a polyhedron single-crystal structure using glucose and
urea in one pot is successfully synthesized by a hydrothermal process which shows a
promising initial electrochemical performance [69]. The single-crystal NMC523 shows a
highly ordered hexagonal arrangement in a–b plane and a minimized antisite mixing of
Ni2+/Li+.

Batteries 2021, 7, x FOR PEER REVIEW 8 of 17 
 

developing LiNiO2 (LNO)-based cathode materials that are completely cobalt-free. This is 
because the LNO has a high energy density in line with the target of LIB performance for 
EVs in the future. However, thermal instability [54,61] and structural decomposition sig-
nificantly decrease the electrochemical performance of LNO-based materials [33,62]. This 
is the main barrier for the commercial application of this type of cathode material for mod-
ern LIB applications. Mixing Li+/Ni2+ cation during the charge-discharge process is one of 
the main obstacles of Ni-rich cathode, inducing the local formation of inactive rock-salt 
phases that can worsen the battery performance during the charge-discharge process. 

One strategy for overcoming this challenge is to synthesize NMC at the micron scale 
of single crystal particles [63–66]. Compared with the polycrystalline NMC, which con-
sists of agglomerated particles measuring 10 to 15 µm, the single crystal morphology has 
the fewest grain boundaries, thereby reducing particle cracking and side effects with elec-
trolytes (Figure 6a,b) [67]. A single crystal does not have grain boundaries inside one par-
ticle, thus providing a continuous Li+ pathway. In contrast, Li+ needs to pass through 
many grain boundaries in the polycrystalline, as seen in Figure 6c,d. It was also reported 
that the single-crystal Li(Ni0.5Mn0.3Co0.2)O2 applied as a cathode material for all-solid-state 
lithium-ion batteries exhibits 6–14 times higher Li+ diffusion coefficient than polycrystal-
line Li(Ni0.5Mn0.3Co0.2)O2 [68]. The single crystal LiNi0.5Co0.2Mn0.3O2 with uniform size dis-
tribution and a polyhedron single-crystal structure using glucose and urea in one pot is 
successfully synthesized by a hydrothermal process which shows a promising initial elec-
trochemical performance [69]. The single-crystal NMC523 shows a highly ordered hexag-
onal arrangement in a–b plane and a minimized antisite mixing of Ni2+/Li+. 

 
Figure 6. SEM images of single-crystalline and polycrystalline structure of NMC (a,b) [67], and il-
lustration of the Li+ transport in single and polycrystalline (c,d) [68]. 

The next strategy is to design and engineer nanoparticle structures for cobalt-free 
cathodes that have been carried out in several research activities in recent years [70–75]. 
The core-shell structure for Ni-rich NMC materials, in which the core contains more Ni 

Figure 6. SEM images of single-crystalline and polycrystalline structure of NMC (a,b) [67], and
illustration of the Li+ transport in single and polycrystalline (c,d) [68].

The next strategy is to design and engineer nanoparticle structures for cobalt-free
cathodes that have been carried out in several research activities in recent years [70–75].
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The core-shell structure for Ni-rich NMC materials, in which the core contains more Ni
while the shell is richer in Mn, was previously investigated. This strategy can reduce
volume expansion and protect the core from electrolyte reactions [76–78]. It is reported
that the LiNiO2 core with the LiNi0.83Mg0.17O2 shell is capable of providing an initial
discharge capacity of 194 mAh g−1 and 230 mAh g−1 for the LiNi0.83Al0.17O2 shell and
Li-Ni0.83Mn0.17O2 shell at 0.2 C. In addition, cathodes with the LNO-LiNi0.83Mg0.17O2 and
LNO-Li-Ni0.83Mn0.17O2 core-shell structures were able to maintain 94 and 92% of their
initial capacity, respectively, after 55 cycles, while the LNO-LiNi0.83Al0.17O2 electrodes
maintained 93% of the initial capacity after 55 cycles at 0.2 C. Although the capacity
obtained is quite high, the metal dopant diffuses from the shell to the core structure during
the sintering process, indicating that the core-shell structure was not fully successful.
However, the report shows promising results and offers a chance for process improvement
by utilizing a more optimal synthesis pathway.

It was also reported that Wang et al. succeeded in synthesizing Li-rich Li1.2Mn0.6Ni0.2O2
with a morphology of a porous nanoflake-shaped structure through the sol-gel method
with the aid of resorcinol-formaldehyde [79]. The porous nanoflake structure has a specific
surface area of 6.9 m2 g−1, which is higher than that of the spherical structure which has
a surface area of only 1.5 m2 g−1 [80]. The high surface area facilitates the diffusion of
lithium, resulting in increased rate performance, with discharge capacities of 273 mAh g−1

at 0.1 C and 196 mAh g−1 at 2 C from 2.0–4.8 V versus Li+/Li. This structure form usually
causes a decrease in electrochemical stability because the high surface area promotes an
increase in the SEI formation process and a high Li consumption rate. However, the re-
ported results showed that the capacity obtained was relatively stable with a retention of
93% after 150 cycles at 2 C, which indicated that the material stability was not significantly
affected due to morphological modification.

Further development for the cycle enhancement of cobalt-free cathode materials is
done by synthesizing the Li-rich layered oxide material with type O2 oxides which can
suppress H2→ H3 phase transitions [81]. The synthesis method used is unique to prepare
this material, namely by the ionic exchange process of Na+ with Li+ in the form of the
compound P2 Na0.83 [Li0.19Mn0.73Ni0.08]O2 in a liquid salt solution, resulting in material
rich in Li O2-Li1.19−yMn0.73Ni0.08O2. This material achieved an initial discharge capacity of
240 mAh g−1 at 0.05 C. The material also showed excellent capacity retention compared to
O3-type materials, which was able to maintain more than 90% of the initial capacity after
50 cycles. These results suggest that the modification of the crystal structure through this
synthesis procedure can be one of the keys to developing the next generation of cobalt-free
cathode materials.

Modifications to the particle surface and coating techniques have also been investi-
gated as solutions to improve the stability and performance of cobalt-free cathodes [82–89].
In general, the coating functions as a barrier and protection between the electrolytes and
active ingredients, reducing the influence of acidity from electrolytes and substantially
limiting the dissolving metal ions from the cathode during the cycle process [90–92]. It
was reported that thioacetamide (TA)-supported ZrO2 coating on the surface of the Ni-
rich layered oxide LiNi0.82Mn0.09Co0.09O2 (NMC82) has an enhanced rate capability of
116.8 mAh g−1 at 3.0 C [93]. The dual Al-Zr incorporated Ni-rich cathode was a self-formed
interfacial protective layer that effectively reduces the formation of cation mixing and the
generation of microcracks [94]. One of the most significant results of a recent study was
presented by Deng et al., who designed the SEI layer to be rich in the F-B element in
LiNiO2 by adding a small amount of difluoro (oxalato) borate (LiDFOB) in the electrolyte,
as shown in Figure 7 [95]. The obtained result is a strong and compact SEI layer that is
able to reduce the release of Ni and prevent unwanted phase transformations, namely the
NiO rock-salt phase by protecting the surface of the active material from reacting with
by-products resulting from electrolyte oxidation at high voltage. This material shows a high
initial discharge capacity of 216 mAh g−1 with capacity stability of 94% after 100 cycles.
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In comparison, LNO without the additive LiDFOB was only able to maintain 18% of the
initial capacity after 100 cycles.
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ability and Coulombic efficiency over 400 cycles at 0.5 C. [95].

A recent investigation has reported a new type of material for cobalt-free high-nickel
cathodes, namely LiNi1−x−yMnxAlyO2 (NMA), which has been synthesized successfully
with overall superior electrochemical performance compared to NMC and NCA for lithium
batteries [96]. In this report, LiNi0.883Mn0.056Al0.061O2 (NMA-89) has a comparable spe-
cific discharge capacity of 216 mAh g−1 with LiNi0.890Mn0.055Co0.055O2 (NMC-89) and
LiNi0.883Co0.053Al0.064O2 (NCA-89) (226 mAh g−1 and 220 mAh g−1) as shown in Figure 8a.
NMA-89 also shows a higher operating voltage, about 40 mV, than NMC-89 (Figure 8b).
Figure 8c shows that the rate capability of NMA-89 is very similar to that of NMC-89
and NCA-89. The capacity retention of NMA-89 after 100 cycles at a C/3 rate (90%) is
comparable to NMC-89 (91%) and even with NCA-89 (88%) as seen in inset Figure 8a.

Batteries 2021, 7, x FOR PEER REVIEW 10 of 17 
 

 
Figure 7. In situ formation of F and B-rich SEI layer on cobalt-free LiNiO2 and long-term cycling 
ability and Coulombic efficiency over 400 cycles at 0.5 C. [95]. 

A recent investigation has reported a new type of material for cobalt-free high-nickel 
cathodes, namely LiNi1−x−yMnxAlyO2 (NMA), which has been synthesized successfully 
with overall superior electrochemical performance compared to NMC and NCA for lith-
ium batteries [96]. In this report, LiNi0.883Mn0.056Al0.061O2 (NMA-89) has a comparable spe-
cific discharge capacity of 216 mAh g−1 with LiNi0.890Mn0.055Co0.055O2 (NMC-89) and 
LiNi0.883Co0.053Al0.064O2 (NCA-89) (226 mAh g−1 and 220 mAh g−1) as shown in Figure 8a. 
NMA-89 also shows a higher operating voltage, about 40 mV, than NMC-89 (Figure 8b). 
Figure 8c shows that the rate capability of NMA-89 is very similar to that of NMC-89 and 
NCA-89. The capacity retention of NMA-89 after 100 cycles at a C/3 rate (90%) is compa-
rable to NMC-89 (91%) and even with NCA-89 (88%) as seen in inset Figure 8a. 

 
Figure 8. Electrochemical performance of NMA89 compared with NMC89, NCA89 and NCMAM89. (a) Galvanostatic 
charge-discharge profile curves at 0.1 C, (b) dQ/dN curves, and (c) rate capability performance. Image is adapted with 
permission from authors [96]. Reproduced from Advanced Materials, the name of the publisher: John Wiley and Sons. 

NMA with various compositions, namely, LiNi0.80Mn0.13Al0.07O2, LiNi0.85Mn0.09Al0.06O2, 
LiNi0.88Mn0.07Al0.05O2, LiNi0.90Mn0.06Al0.04O2, and LiNi0.92Mn0.05Al0.03O2 can be engineered to 
meet various electrochemical performance targets. In terms of the scalability of the syn-

Figure 8. Electrochemical performance of NMA89 compared with NMC89, NCA89 and NCMAM89. (a) Galvanostatic
charge-discharge profile curves at 0.1 C, (b) dQ/dN curves, and (c) rate capability performance. Image is adapted with
permission from authors [96]. Reproduced from Advanced Materials, the name of the publisher: John Wiley and Sons.
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NMA with various compositions, namely, LiNi0.80Mn0.13Al0.07O2, LiNi0.85Mn0.09Al0.06O2,
LiNi0.88Mn0.07Al0.05O2, LiNi0.90Mn0.06Al0.04O2, and LiNi0.92Mn0.05Al0.03O2 can be engi-
neered to meet various electrochemical performance targets. In terms of the scalability of
the synthesis, the coprecipitation of Al is more complex than Ni, Co, and Mn. Stabilization
techniques using the doping method approach and surface passivation of particles were
also carried out in NMAs. However, there is still much that needs to be studied regarding
the electrochemical characterization, such as understanding the benefits and disadvantages
of Mn-Al substitution in Ni-rich layered oxides in the absence of Co, in industrial-scale cell
configurations, and in various operating conditions. Furthermore, the moisture sensitivity
of NMA with high Ni content should also be anticipated as in NMC and NCA, and of
course, more analysis of the phenomena during the cycle must be considered.

Table 1 shows a summary of Ni-rich Co-less cathode materials that have been de-
veloped and synthesized by many researchers through coating and surface modification,
nanostructured morphology, and effective doping. Generally, all Ni-rich Co-less cathode
materials exhibit cycling stability and high energy density. The interphase stability between
the electrode and electrolyte is enhanced through the surface and structural modification.
Gradually decreasing the Ni concentration from the inner core to the outer layer is beneficial
for improving capacity fading.

Table 1. Summary of the Ni-rich Co-less cathode materials and their electrochemical performance.

Materials System Modification/Treatment Voltage (V) Capacity (mAh g−1) Capacity Retention Heat Generation (J g−1) Refs.

Li[Ni0.885Co0.100Al0.015]O2 Multi-doped (Ga, B) 2.7–4.3 222.2 91.7% at 0.5 C after 100 cycles - [97]

Li[Ni0.865Co0.120Al0.015]O2

Ni-rich core and
Co-rich particle

surface
2.7–4.3 222 90.0% at 0.5 C after 100 cycles 1409 [98]

Li[Ni0.89Co0.05Mn0.05Al0.01]O2 - 2.7–4.3 228 87.1% at 0.5 C after 100 cycles 1384 [99]
Li[Ni0.85Co0.05Mn0.10]O2 - 2.7–4.3 222 93.5% at 0.5 C after 100 cycles - [100]

Li[Ni0.84Co0.06Mn0.09Al0.01]O2

Two-step
concentration

gradients
2.7–4.3 221 96.4% at 0.5 C after 100 cycles - [101]

Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2
Spherical core−shell

structure 3.0–4.3 180 100% at 0.5 C after 100 cycles - [102]

Li[Ni0.886Co0.049Mn0.050Al0.015]O2
Hybrid cathode with
core−shell structure 2.7–4.3 215 96.1% at 0.5 C after 100 cycles - [103]

Li[Ni0.90Co0.05Mn0.05]O2 Hybrid cathode 2.7–4.3 225 87.7% at 0.5 C after 100 cycles 1561 [99]
Li[Ni0.9Co0.05Mn0.05]O2 Hybrid cathode 2.7–4.3 228.7 92.2% at 0.5 C after 100 cycles - [104]

LiNiO2 2.7–4.3 247.5 73.7% at 0.5 C after 100 cycles 1827 [105]
LiNi0.99W0.01O2 Tungsten-doped 2.7–4.3 242.7 90.3% at 0.5 C after 100 cycles 1309 [106]

LiNi0.985W0.015O2 Tungsten-doped 2.7–4.3 236.1 93.5% at 0.5 C after 100 cycles 1235 [106]
LiNi0.9Mn0.1O2 2.7–4.3 212.3 93% at 0.5 C after 150 cycles 794.6 [107]

4. Conclusions and Perspectives

Until now, LiCoO2 has been the main option for LIBs since the introduction by
Goodenough et al. in 1980, followed by the commercialization of LIBs by SONY. Although
LiCoO2 offers benefits in terms of high theoretical specific capacity, high discharge voltage,
low self-discharge, and superior cyclability, the high processing cost of raw cobalt and
severe capacity fading at high current loads remain a challenge. With the expansion of
the automotive industry focusing on the development of EVs, the concern to reduce the
cobalt utilization in the cathode is taken into consideration by researchers. The demand for
high-density energy from LIBs has led to several studies on Ni-rich layered-transition metal
oxides of LiNiO2-based materials. Various strategies have been reported to enhance the
electrochemical properties of Ni-rich LiNiO2-based cathodes as an alternative to LiCoO2,
including cation doping, structural design, surface modification, and coating. Potential
problems that arise in cobalt-free Ni-rich cathodes based on LiNiO2 are related to cycle
stability, which is closely related to the volume expansion factor, the fragility of particles
due to high Li+ content, mixing of Ni2+/Li+ cations, increased electrolyte oxidation, and
thermal stability. By preventing phase transformation and particle breakdown, partial
substitution of Co atoms with Mn, Al, and Mg atoms improves thermal stability and cycle
stability. In fact, Mn doping on LiNiO2 does not affect the initial discharge capacity but
results in an increased degree of mixing of Ni2+/Li+ cations. Conversely, Al and Mg doping
can help suppress the mixing of Ni2+/Li+ cations but at the sacrifice of the initial discharge
capacity. For this reason, the best strategy to achieve optimal performance is to combine the
cation doping method with morphological control and a coating method that increases the
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conductivity between particles while providing a barrier against electrolyte side reactions
in the form of a protective layer and controlling the oxide crystal structure to reduce phase
transformation. Research in this direction is expected to be able to provide solutions for
the short term so that the commercialization of cobalt-free high-Ni cathodes will soon
be realized.
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