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Abstract: Calcium-ion batteries represent a promising alternative to the current lithium-ion batteries.
Nevertheless, calcium-ion intercalating materials in nonaqueous electrolytes are scarce, probably
due to the difficulties in finding suitable host materials. Considering that research into calcium-ion
batteries is in its infancy, discovering and characterizing new host materials would be critical to
further development. Here, we demonstrate FeV3O9·1.2H2O as a high-performance calcium-ion
battery cathode material that delivers a reversible discharge capacity of 303 mAh g−1 with a good
cycling stability and an average discharge voltage of ~2.6 V (vs. Ca/Ca2+). The material was
synthesized via a facile co-precipitation method. Its reversible capacity is the highest among calcium-
ion battery materials, and it is the first example of a material with a capacity much larger than that of
conventional lithium-ion battery cathode materials. Bulk intercalation of calcium into the host lattice
contributed predominantly to the total capacity at a lower rate, but became comparable to that due to
surface adsorption at a higher rate. This stimulating discovery will lead to the development of new
strategies for obtaining high energy density calcium-ion batteries.

Keywords: calcium-ion battery; cathode material; kazakhstanite; post-lithium-ion battery; layered
iron vanadate

1. Introduction

Lithium-ion batteries (LIBs) have been an essential energy storage device for mobile
applications in the last three decades and have received particular attention for their use in
recently commercialized electric vehicles, primarily because of their outstanding energy
densities and power [1]. Nevertheless, safety issues, high cost, and the maldistribution of
lithium resources are driving researchers toward developing new materials, such as mag-
nesium, calcium, zinc, or aluminum, that can be used as the carrier ion [2]. Among these,
calcium-ion batteries (CIBs) have emerged as a highly promising post-LIB technology [3–5],
particularly due to the recent innovative developments in their anodes [6–8].

Calcium ions can transfer two electrons per ion, and thus, in principle, the capacity
of a host material can double due to the divalency of calcium, provided the host material
can release and accept the transferred electrons. The cost of the final battery product is
expected to be competitive, owing to the abundant calcium reserves. The redox potential of
calcium is slightly higher (by 0.15 V) than that of lithium, enabling a high cell voltage. The
larger ionic radius of calcium (1.0 Å) compared to those of other divalent ions (0.60–0.74 Å)
could be a disadvantage because a narrow diffusion pathway sufficient for smaller ions
will not allow the passage of larger Ca ions. However, the larger ionic radius of calcium
ions (Ca2+) ensures a lower effective intercalant-ion charge density (0.49 e/Å3) than Zn2+

(1.18 e/Å3), Mg2+ (1.28 e/Å3), and Al3+ (4.55 e/Å3), which can be rather advantageous for
the diffusion in the host materials and in the electrolytes [9].
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Despite the latest innovative research progress in anodes and electrolytes, the fabrica-
tion of full-cell CIBs is not yet possible, primarily because of their low Coulombic efficien-
cies and undesirable side reactions. In addition, no promising cathode materials have been
developed yet, probably because of a lack of understanding regarding the unique calcium
intercalation chemistry, despite the extensive research, including theoretical/computational
studies [3]. The calcium-insertion materials in nonaqueous electrolytes reported so far
include Prussian-blue analogues [10–14], CaCo2O4 [15], NaFePO4F [16], NH4V4O10 [17],
α-MoO3 [18], CaxMoO3 [19], TiS2 [20], α-V2O5 [21], CaMnO3 [22], Mg0.25V2O5·H2O [23],
VOPO4·2H2O [24], NaV2(PO4)3 [25,26], and Ca0.13MoO3·(H2O)0.41 [27]. Most of these
materials exhibit low Coulombic efficiency, capacity, or cyclability in dried nonaqueous
electrolytes. Mg0.25V2O5·H2O, VOPO4·2H2O, and Ca0.13MoO3·(H2O)0.41 are known to
possess the highest reversible capacities (100–190 mAh g−1) to date, and hence, appear
to be the best intercalation-based host materials. Thus, to obtain successful CIBs, so as to
move past the LIBs, development of high-performance cathode materials is crucial.

Herein, we report that layered iron vanadate FeV3O9·1.2H2O is a potential cathode
material for nonaqueous CIBs. Calcium ions could be reversibly intercalated into the mate-
rial with a high Coulombic efficiency at room temperature. The material has the highest
capacity (303 mAh g−1) reported thus far, and has an excellent cyclability at room temper-
ature. It is also the first example where the capacity exceeds those (150–250 mAh g−1) of
conventional LIB cathode materials.

Iron vanadates are naturally abundant compounds and include fervanite (Fe4V4O16·
5H2O) [28], navajoite (FeV9O24·12H2O) [29], kazakhstanite (FeV3O9·2.6H2O or Fe5V15O39
(OH)9·9H2O) [30]. Among these, kazakhstanite has a layered structure with a large inter-
layer spacing (d002 = 10.6 Å). It was first reported in 1989 as a new mineral, and its synthesis
was reported later in 2002 [30,31]. Although it has been studied for lithium and zinc ion
storage, a detailed material characterization is lacking and the intercalation mechanism is
still elusive [32,33]. In this study, we attempted to synthesize kazakhstanite, but obtained a
compound with the formula FeV3O9·1.2H2O (FVO) under our synthetic conditions, which
is similar to kazakhstanite in structure except for the crystal water content.

2. Experimental
2.1. Synthesis and Materials Characterization

Layered iron vanadate FeV3O9·1.2H2O was prepared via a facile co-precipitation
method [33]. Three millimoles of NH4VO3 (99%, Alfa Aesar, Haverhill, MA, USA) was
dissolved into 100 mL of distilled water with stirring for one hour at 90 ◦C. Then, 10 mL
of 0.1 M Fe(NO3)3·9H2O (98%, Sigma-Aldrich, St. Louis, MO, USA) solution was slowly
added to the NH4VO3 solution and kept for one day at 90 ◦C. The initial solution was
transparent yellow, and the insoluble colloidal products were opaque brown. The brown
precipitates were collected by filtration with aspiration and carefully washed with distilled
water three times before being dried at 80 ◦C in air overnight. The analyses of morphol-
ogy and elemental composition were performed using field-emission scanning electron
microscopy (FE-SEM, Hitachi SU-8020), field-emission transmission electron microscopy
(FE-TEM, Hitachi HF-3300) with an energy dispersive X-ray spectroscopy (EDX) attach-
ment, and inductively coupled plasma optical emission spectroscopy (ICP-OES, Varian
700-ES). The amount of crystal water in the samples was determined by thermogravimetric
(TG) analysis (Rigaku TG 8120). The trace amount of water in the electrolyte was analyzed
by the Karl Fischer titrator (831 KF coulometer, Metrohm, Herisau, Switzerland).

2.2. Electrochemical Characterization

Customized homemade cells were used for the electrochemical measurements (Figure S1).
The cathode (working electrode) was composed of FeV3O9·1.2H2O, conducting carbon (Su-
per P, Timcal Graphite & Carbon), and poly(vinylidene fluoride) binder (W#1300, Kureha
Co.) in an 8:1:1 weight ratio. A slurry was prepared by dispersing the mixture in N-methyl-
2-pyrrolidone (NMP) using a planetary centrifugal mixer, and coated on 20 µm stainless
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steel foil (SUS-316L, Wellcos Co., Korea). The NMP solvent was removed by drying the
coated electrode at 60 ◦C in a vacuum oven overnight before the electrode was pressed
by an electrode rolling press (Wellcos Co., Seoul, Korea). The loading of FeV3O9·1.2(H2O)
was ~2.3 mg on each electrode with an area of 1.53 cm2. As the counter and reference
electrodes, the activated carbon pellet (~0.8 g) was used. As the organic electrolyte, 0.5 M
calcium perchlorate (Reagent grade, Alfa Aesar) in acetonitrile (99.8%, Samchun Chemicals,
Pyeongtaek, Korea) was used. The calcium perchlorate was dried at 220 ◦C for 3 days [34].
Molecular sieves were used to remove water in the electrolyte before use. The water content
in the electrolytes was 27 ppm according to water analysis, while it was 38 ppm after the
first cycle. As a separator, glass fiber (GF/A, Whatman) was used.

AC is stable in nonaqueous electrolytes, enabling us to use it as a reference elec-
trode [35,36]. The relatively high loading of AC (~0.8 g) compared to the cathode loading
(~2.3 mg) led the AC potential to be almost constant during the cycles. On discharge, cal-
cium ions are intercalated into the cathode, while the anions in the electrolyte are adsorbed
on the surface of the AC counter electrode. On charge, the reverse reaction occurs. The
AC-pellet voltage was estimated as 3.08 V vs. Ca/Ca2+ by comparing two CV curves:
one using the Ag/Ag+ reference electrode and the other using the AC reference electrode.
Finally, the ferrocene/ferrocenium redox couple voltage was used to calibrate the Ag/Ag+

electrode voltage.

2.3. Structural Analysis

The powder X-ray diffraction (XRD) measurements were performed at 25 ◦C using
an PANalytical Empyrean X-ray diffractometer in an angular range of 5◦ ≤ 2θ ≤ 150◦

(a step of 0.013000◦ and the measurement time of 10 h), equipped with Cu Kα1 X-ray tube
(λ = 1.5406 Å), a germanium (111) monochromator, and a PIXcel3D 2 × 2 detector.

3. Results and Discussion
3.1. Characterization of the Synthesized Materials

The phase of the FVO product was confirmed from the Le Bail fitting of the data
(Figure 1a), which exhibited no visible impurities. Though the detailed crystal structure
has not been determined yet, FVO is considered to have a layered structure including
crystal water between layers [32,33] (a proposed structural model in Figure S2). The refined
lattice parameters shown in the inset were very close to those for kazakhstanite (JCPDS
No. 00-046-1334) [30]. In the Fourier transform infrared (FTIR) transmittance spectrum
(Figure 1b), the bond at 1004 cm−1 corresponded to V=O stretching, while the absorption
bands at 1621, 3191, and 3417 cm−1 indicated the existence of adsorbed water and crystal
water in the host structure. The SEM and high-resolution TEM images further confirmed
a nanosheet morphology (Figure 1c,d and Figure S3). The TEM image of the nano-flake
edge showed layered fringes, indicating a lattice spacing of about 1.0 nm (Figure 1d,
inset). The thickness of the nano-flake is less than 10 nm. The EDX elemental mappings
obtained showed a uniform distribution of Fe, V, and O (Figure 1e). The ICP elemental
analysis confirmed that the Fe:V atomic ratio was 1:3 (Table S1). Combining all the above
analyses together with the crystal water content determined from thermogravimetric (TG)
analysis (Figure S4), the synthesized material (FVO) was formulated as FeV3O9·1.2H2O.
Considering that natural kazakhstanite (FeV3O9·2.6H2O or Fe5V15O39(OH)9·9H2O) [30]
has more crystal water than we obtained in the lab, the amount of crystal water can be
varied depending on the synthetic conditions. The influence of the water content on the
properties should be investigated as a future work.
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3.2. Electrochemical Performance of FeV3O9·1.2H2O

The galvanostatic discharge–charge profiles for FVO are presented in Figure 2a. The ini-
tial discharge and charge capacities were 334 and 297 mAh g−1, respectively, at 20 mA g−1.
The second discharge capacity was 303 mAh g−1, which was close to the first charge
capacity, indicating good reversibility. The average discharge voltage was about 2.6 V
vs. Ca/Ca2+, with the potential of the AC electrode being 3.08 V vs. Ca/Ca2+ (Figure 2d,
Figures S5 and S6). This reversible capacity (303 mAh g−1) is the highest among those re-
ported: Prussian-blue analogues (50–120 mAh g−1) [10–14], NaFePO4F (~80 mAh g−1) [16],
CaxMoO3 (~100 mAh g−1) [19], Mg0.25V2O5·H2O (~110 mAh g−1) [23], VOPO4·2H2O
(~100 mAh g−1) [24], NaV2(PO4)3 (70–80 mAh g−1) [25,26], and Ca0.13MoO3·(H2O)0.41
(~190 mAh g−1) [27].

The discharge–charge profiles of the second cycle at various current densities are
shown in Figure 2b. The discharge capacity decreased significantly with increasing current
density. For instance, the discharge capacity at 200 mA g−1 was 32% of that at 20 mA g−1

(96 mAh g−1 at 200 mA g−1 and 303 mAh g−1 at 20 mA g−1; see Figure S7 for rate
performance with cycles). It was also noted that the charge capacity contribution of
the constant-voltage step also decreased with increasing high current density. These
phenomena indicated the low rate-performance of the material due to the slow calcium
intercalation kinetics. However, an excellent cycling stability (Figure 2c) was observed—the
first discharge capacity (105 mAh g−1 at 200 mA g−1) decreased notably till around the
first ten cycles but soon stabilized and remained so up to around the 300th cycle. It then
gradually decreased up to the 400th cycle (83 mAh g−1 which is 79% of the first cycle).

The absence of any apparent plateau in the galvanostatic profile suggests that the total
capacity might have a significant capacitive contribution. To quantify the contributions
from the bulk-intercalation and surface-capacitive reactions [37,38], cyclic voltammograms
(CVs) were recorded in the voltage range between −1.5 and 1 V (vs. AC) at scan rates
ranging from 0.05 to 0.5 mV s−1 (Figure 2d). From the current–rate relationship for each
reduction and oxidation peak (Figure S8) [37,38], it is evident that the contribution from
intercalation was about 81% at 0.05 mV s−1 (Figure 2e), and the contribution decreased
with increasing scan rates (58% at 0.5 mV s−1). Thus, calcium intercalation was dominant
at a lower rate.
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According to the ICP elemental analysis (Table S2), the amount of calcium in the
discharged FVO electrode was 1.9 Ca per formula unit, which was about 81% of the
value (2.33 Ca) calculated from the discharge capacity (334 mAh g−1). Interestingly, the
numerical value of the contribution (81% of the capacity) was coincident with the amount
of bulk-intercalated calcium (81% at 0.05 mV s−1) described above. Most probably, the
surface-adsorbed calcium atoms were washed out during the ICP sample preparation,
thereby explaining the reduced calcium content. It was also noted that a small portion
(0.2Ca) of the intercalated calcium atoms was trapped in the structure even after being
charged (Table S2).

3.3. Elemental Analysis of FeV3O9·1.2H2O

It is noteworthy that the water content remained almost constant during a cycle, as
revealed by the TG analysis (Figure 3a); only the discharged sample showed an increased
dehydration temperature, which resulted from the higher structural stability owing to the
bonding between the intercalated calcium and the host layers. The retention of water could
be an advantageous characteristic of this material when we consider a contrasting case of
the potassium intercalation into VOPO4·2H2O, where the crystal water is removed from
the structure upon discharge [39]. FTIR spectra also confirmed the existence of water at
all the states of the samples during a cycle (Figure 3b). The SEM images showed that the
morphology of FVO was well maintained, without any notable changes (Figure 3c).

Figure 4a shows the powder XRD patterns of the FVO electrodes at different states
(pristine and charged/discharged states) during cycles, clearly evidencing the reversibility
of the electrochemical calciation during the cycles. The shift of the (00l) peak to a higher
2θ angle on discharge indicated a decreased interlayer space, owing to the attractive
interaction between the inserted calcium and the host layer. Upon charging, the peaks
re-shifted to a position the same as that of the pristine state, revealing the structural
reversibility. The high-resolution TEM image clearly showed a disordered lattice fringe
upon discharge, which disappeared on charging (Figure 4b).
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This is in good agreement with the broadened peaks and recurring sharp peaks in the
XRD patterns. The TEM EDX elemental mappings of pristine, discharged, and charged
electrodes are shown in Figure 4c. A uniform distribution of calcium was clearly visible
in the discharged FVO particles; this is hardly seen on the charged state, suggesting that
calcium ions were the main transfer ions for the redox reaction. Figure 4d–f display the
X-ray photoelectron spectroscopy (XPS) survey spectra of Ca 2p, V 2p, and Fe 2p spin-
orbitals. Calcium ions appeared during discharging and mostly disappeared upon charging,
indicating a partial reduction of the vanadium ion, which disappeared on charging. The
peak maxima of iron shifted slightly to lower binding energies during discharging and
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re-shifted upon charging. The XPS spectra indicated that both vanadium and iron atoms
were the redox centers for the reversible calciation–decalciation reaction.

4. Conclusions

In summary, FeV3O9·1.2H2O has been demonstrated as a new potential high-performance
cathode host material with high capacity and excellent cyclability for nonaqueous calcium-
ion batteries at room temperature. The material was synthesized via a facile co-precipitation
method and showed high electrochemical performance as an calcium-ion battery cathode
material. It exhibited a reversible discharge capacity of 303 mAh g−1 at 20 mA g−1 with a
good cyclability and an average discharge voltage of ~2.6 V (vs. Ca/Ca2+). It is the highest
reversible capacity among those reported for calcium-ion battery cathode materials. Bulk
intercalation contributed dominantly to the total capacity at lower scan rates; however,
it became comparable to surface adsorption at higher rates. X-ray diffraction, elemental,
electrochemical, and XPS analyses unambiguously evidenced the reversible calcium inser-
tion into the host material. As a further study, the atomic-scale crystal structures of the
synthesized and cycled phases should be determined to deeply understand the calcium
storage mechanism of this material.

In spite of the several potential advantages of using calcium, the development of
a high-performance calcium-ion battery cathode material was known to be practically
challenging to date. Therefore, our findings will provide a stimulus to the on-going
research and will open up unexplored opportunities for discovering superior cathode
materials for calcium-ion batteries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/batteries7030054/s1, Figure S1: Scheme of the homemade cell used for electrochemical char-
acterizations, Figure S2: A proposed crystal structural model for FeV3O9·1.2H2O, Figure S3: TEM
images of the synthesized FeV3O9·1.2H2O particles, Figure S4: Thermogravimetric analysis for pris-
tine FeV3O9·1.2H2O sample under nitrogen flowing atmosphere, Figure S5: CV of FeV3O9·1.2H2O
electrode at 0.2 mV s−1 in 0.5 M Ca(ClO4)2 in AN with Ag/Ag+ reference electrode in a three–
electrode system, Figure S6: Ferrocene/ferrocenium redox couple CV test to estimate the AC voltage
vs. Ca/Ca2+, Figure S7: Cycle performance with various C–rates, Figure S8: (a) Log−log plot of
cathodic/anodic peak current dependence on the scan rate. (b) Plot of peak current (i/v1/2) depen-
dence on the square root of scan rate (mV1/2 s−1/2). Table S1: Elemental ratios estimated from ICP
analysis for FeV3O9·1.2H2O sample, Table S2: Elemental ratios estimated from ICP analysis for the
pristine FeV3O9·1.2H2O, first discharged, and first charged electrodes.
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