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Abstract: Li-ion battery packs are the heart of modern electric vehicles. Due to their perishable
nature, it is crucial to supervise them closely. In addition to on-board supervision over safety and
range, insights into the battery’s degradation are also becoming increasingly important, not only
for the vehicle manufacturers but also for vehicle users. The concept of digital twins has already
emerged on the field of automotive technology, and can also help to digitalize the vehicle’s battery. In
this work, we set up a data pipeline and digital battery twin to track the battery state, including State
of charge (SOC) and State of Health (SOH). To achieve this goal, we reverse-engineer the diagnostics
interface of a 2014 e-Golf to query for UDS messages containing both battery pack and cell-individual
data. An OBD logger records the data with edge-processing capability. Pushing this data into the
cloud twin system using IoT-technology, we can fit battery models to the data and infer for example,
cell individual internal resistance from them. We find that the resistances of the cells differ by a
magnitude of two. Furthermore, we propose an architecture for the battery twin in which the twin
fleet shares resources like models by encapsulating them in Docker containers run on a cloud stack.
By using web technology, we present the analyzed results on a web interface.

Keywords: UDS-diagnosis; battery twin; data logger; SOH

1. Introduction

Currently, the automotive industry is undergoing what may be the greatest change
since its inception. More and more manufacturers nowadays offer electrically powered
vehicles. One reason for this is the increased requirements regarding CO2 emissions. A
regulation by the European Parliament and Council in 2019 reduced the limit for CO2
emissions by a vehicle fleet to 95 g/km [1], and this trend will go on. To comply with
legislation, it is even more important for original equipment manufacturers (OEM) to
produce emission-free or low-emission vehicles, such as battery electric vehicle (BEV) or
hybrid electric vehicle (HEV).

The high-voltage battery is one of the most important components in electric vehi-
cles [2], but also the most expensive one, making up approximately 35% of total costs
of the vehicle. Therefore, a long battery life is desirable, which depends, among other
aspects, on the operating strategy selected [3]. The use of an optimal strategy requires
knowledge of the current battery state, which is determined depending on numerous
different factors. Battery state estimation is therefore an important research subject today.
This is important in order to preserve the battery for as long as possible, but also for vehicle
safety, residual value, second life use of the battery in for example, energy storage and for
early fault detection.

This work deals with the investigation of battery state estimation in electric vehicles.
Various methods can already be found in the literature with certain advantages and

disadvantages depending on the application. The following literature overview of state
estimation aims to find a suitable method for determining the battery state that can be
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applied during the real use of the vehicle. Certain limitations regarding the data quality
coming from the on-board diagnosis (OBD) interface have to be taken into account.

2. Technical Background

This section gives an overview of methods to determine states of battery systems.
A brief explanation is also given of the setup of the e-Golf test vehicle and technical concepts
used in this work as the OBD interface and digital twins.

2.1. Methods of Battery State Estimation

This chapter presents different methods and approaches to determine the state of
lithium-ion batteries. Therefore, the common methods for state of charge (SOC) and state
of health (SOH) are categorized and their procedures described.

2.1.1. State of Charge

Li et al. [4] divide the methods commonly used to determine the SOC into three
basic subcategories. The methods include circuit principle, filter methods and data-driven
methods. The open circuit voltage (OCV) method uses the relationship between the open
circuit voltage and the SOC [4,5]. To determination the current SOC, stationary behavior
must be given, which is why this method is not suitable for real-time applications in
vehicles [4].

The internal resistance method establishes a correlation between the SOC and the
measurement of the internal resistance of the battery [4]. Highly accurate measuring
instruments are needed for the SOC estimation of the lithium-ion battery because the
alternating current (AC) internal resistance changes considerably with temperature and
the method is highly susceptible to failure. Therefore, this method is not suitable for online
estimations of the SOC [4].

The ampere-counting method integrates current over time [6]. A precise knowledge
of the initial SOC and an accurate measurement of the current is important to prevent
errors from accumulating. Online measurements can achieve high accuracy and good
adaptability, but eventually drift over time.

Filtering methods, such as the Kalman filtering method and the particle filtering
method, are used in their application with corresponding battery models [7]. Their accu-
racy depends largely on how well the model maps the system [4]. While Kalman filtering
methods are only suitable for linear systems, extended Kalman filters and particle filtering
methods can also be applied additionally for non-linear and non-Gaussian systems. How-
ever, the disadvantages of the particle filtering methods are the loss of accuracy and the
lack of real-time capability [4]. Piller et al. [8] note that filter methods are suitable in highly
dynamic applications.

Data-driven methods are applied according to the black box principle [4]. External
parameters of the battery and the corresponding battery state are black box input variables
for training a model. The training aims to determine the non-linear relationship between
battery parameters and the state of charge on which a future state of charge (SOC) can
be identified. Artificial Neural Networks (ANN), Relevance Vector Machines (RVM) and
Support Vector Machines (SVM) are part of the data-driven methods.

ANN imitate natural neural networks to generate mathematical models suitable for
the system under investigation. RVM use a Bayesian approach to map high-dimensional
spaces qualified for non-linear systems [9]. They are characterized by long training and
short test phases, whereas SVM have short training and long test phases. The accuracy of
the methods depends mainly on how closely the training data set matches the test data set.

Disadvantageously, the results are generated by purely statistical assumptions with
no consideration of the background of electrochemical processes, which increases the
uncertainties and reduces the adaptability to other cell chemicals. When training and test
data are similar and the variance within the training data is small, data-driven methods
can achieve high accuracy in determining SOC [4].
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2.1.2. State of Health

Brill [10] divides the methods for estimating SOH into direct measurement procedures
and model-based procedures. This categorization is extended to include experimental
methods, for adaptive estimation and measurement of the intracellular pressure [11,12].

Using direct measuring methods, the system is excited with previously defined test
signals. The resulting system response provides information about the battery state. The
discharge test, based on the constant current constant voltage (CCCV) principle, determines
the discharged load starting from a fully charged battery until the final discharge voltage is
reached. This parameter is independent of the temperature and open-circuit voltage, but
not of its aging and by that, the resulting capacity is used for estimating the state of Health
(SOH) of the battery. Other approaches that are similar to the described one include the
1-C method by Brill [10] and the charge test by Farmann et al. [13].

Another method of determining the aging of a battery is based on the quiescent
voltage characteristic [14]. The comparison of the voltage curves of new and aged cells
allows a conclusion on the SOH.

To determine of the SOH using the internal resistance, it is not only the change in
pure ohmic resistance that is important, but also the spreading of the resistances of the
individual cells in the entire battery system [11]. As a result, the internal resistance is
influenced significantly by the breakthrough overvoltage, double layer capacity as well
as diffusion. The comparison of internal resistances therefore requires a defined time in
which the internal resistance is measured [10]. In the automotive industry, periods of ten
seconds are preferred for the measurement [15]. Exact knowledge of temperature during
the internal resistance measurement is necessary, since this is an essential influencing
parameter [12].

Impedance spectroscopy can be used to parameterize electrical equivalent circuit
diagrams [16]. Therefore, the system is stimulated with sinusoidal signals before the phase
and amplitude of the system’s response are measured at different frequencies. With suitable
evaluation, aging effects of the battery can be detected, such as the growth of the solid
electrolyte interphase (SEI), which in turn affects the SOH [10]. If this method is to be used
on-board, expensive hardware must be acquired [17]. Besides, determining the impedance
using signals supplied by the vehicle is often inefficient because the sampling rate is too
low [10].

Lastly, Brill mentions methods that can be used to determine aging by chemical
analysis. If no reference electrodes were installed during production, the cell has to be
destroyed to examine the electrodes and electrolyte. Brill mentions, however, that cells
with integrated reference electrodes can exhibit falsified properties.

Model-based methods evaluating the battery during vehicle operation can be funda-
mentally divided into detecting and load-based procedures [10]. Depending on certain
parameters, detecting procedures describe the change of measured variables. This leads to
an optimization of the model parameters, which can be used to determine the aging of the
battery. Detecting procedures are able to discover spontaneous errors. Model adjustments
are possible due to feedback, but the possibilities for prognosis are limited. Therefore, they
are well suited for determining the current battery state, but they are not recommended for
long-term prognoses.

In the case of load-based models, the focus is on observing the effects of measurable
or reconstructable loads [10]. The occurring effects allow to draw conclusions about the
condition of the battery. The determination of the influencing factors is complex using
this approach because the damage impacts are only partially known. If the main damage
characteristics and load profiles are given, it is possible to make good predictions about the
remaining battery life.

Roscher mentions the possibility of determining aging by the internal cell pressure [11].
This effect uses chemical decomposition processes to show that progress with increasing
aging of the cell inside. The reactions produce gases that increase the pressure of closed
cells without a pressure relief valve. With the help of sensors on the outside of the cell,
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the smallest deformations caused by the increased pressure can be detected. Taking into
account other effects that can also cause distortion, such as thermal expansion, aging over
long periods can be determined.

2.1.3. Assess Methods for This Work

To achieve state estimation in this work, we choose to estimate capacities of the cells
during charging phases. A reverse discharge test can be done if the car is sufficiently
depleted and starts charging with low power, for example, using 3.7 kW. We use the
open circuit voltage (OCV) method to determine the SOC during charging and within an
equivalent circuit model (ECM).

We estimate internal resistances during driving using an ECM. Table 1 summarizes
the suitability of the aforementioned methods with respect to available data in this work.
The decision was mainly based on requirements such as low data complexity and practical
relevance.

Table 1. Suitability of the methods for determining the state of health via the on board diagnosis (OBD) interface during
real operation.

Method Used Comment

State of charge

Circuit principle methods Yes Using OCV in reverse discharge test
Filter methods Yes No parametrized model. Fit-model-corrected OCV-method used

Data-driven methods No Not enough data for learning

State of health

Discharge test Yes Ampere counting used for capacity estimation
Measurement of quiescent voltage characteristic No No measurement of quiescent charac. possible

Internal resistance method Yes Estimate Ri using ECM fit
Impedance spectroscopy No No online suitability

Chemical analysis No Can’t destroy cells
Model-based methods No Neither model of stress factors nor data available

Measurement of intracellular pressure No No online suitability

2.2. OBD-II Interface

The OBD-II standard defines a unified interface initially designed for evaluating
exhaust gas-relevant systems but also used for vehicle diagnostics [18]. Communication
on bus systems is organized in layers as the open systems interconnection (OSI) model
proposes, where lower layers are close to hardware and abstract certain functions in favor
of the higher application-specific layers. In the application layer of car diagnostics, the old
KWP2000 protocol (Key Word Protocol) is replaced by unified diagnostic services (UDS) for
general vehicle diagnostics and programming [18]. Most parts are backward-compatible to
the old protocol. In the vehicle, the gateway takes a central role in vehicle communication.
It is connected to all control units and serves as a contact point for all bus systems [19]. To
communicate with the vehicle control units, a diagnostic tool known as an OBD-II tester is
required [19,20].

2.3. Digital Twin System

Originating from aerospace engineering [21], digital twins emerge in all fields of appli-
cation. A digital twin mirrors its physical counterpart and runs multi-physics simulations.
Therefore, data need to be synchronized between the physical and the virtual world [22].
Because digital twins might live during the entire live cycle of products, they have to be
run in cloud environments.

Aim of a digital twin is to generate knowledge that is not directly observable and
measurable in the real-world system. One example of this is the SOH of a battery pack,
as stated in [23]. Models have to be evaluated in order to estimate this hidden state. In
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other use cases, digital twins play a role in virtual assessments of the system, for example,
testing or the virtual launch of a production line.

Common to all digital twins is the internet of things (IoT)-connection of the real world
with a virtual world. Digital twins update themselves and allow incoming data to be
processed automatically. This foundation builds the digital shadow, a data-based copy of
the real-world system. On this basis, simulations and models can be built and evaluated.
A management system automates the process of controlling the models and simulations.
On the output side, services take the results from these models and distribute them to the
end user, for example, via a web-based front end.

2.4. Battery System of the VW e-Golf

The 2014 e-Golf consists of a total of 264 lithium-ion cells, which are connected in a
3p88s pattern [24]. A series connection of cells causes an increase in the total voltage of
the battery, whereas parallel connections increase the capacity [25]. This cell setup results
in a nominal battery voltage of 320 V, a rated pack energy of 24 kWh and a capacity of
75 Ah [26]. In the following, the three parallel cells are considered a single cell, due to the
lack of individual sensors.

The individual cell modules are installed in the underbody of the vehicle and are
protected by their housing from mechanical forces and electromagnetic radiation [27].
A passive air-cooled thermo management is implemented. The battery management
system (BMS) monitors cell voltages, module temperatures and the current flowing through
the battery [3]. Moreover, it exhibits monitoring and safety features and is responsible for
the data exchange with the gateway, and is therefore accessible by the OBD-Socket.

3. Goal and Innovation of This Work

The goal of this work is separated into three layers:

• Digital battery twin: Working towards a digital battery twin, the use case of automo-
tive battery pack online parameter estimation is of crucial importance. Therefore, we
want to build on the digital twin paradigm in this work and define an architecture that
shapes a modular, cloud-based digital twin. To date, no detailed reference architecture
for a digital battery twin in this use case can be found in literature, however, online
estimation methods have already been developed, for example, in Karger et al. [28] or
Baumann et al. [23].

• State estimation using OBD data: Using battery state estimation as a use case, we
want to achieve a cell-individual assessment of the battery system. Being able to apply
this method to electric vehicles in use, we want to rely on diagnostic data, which come
with certain limitations concerning sample rate and availability. Only limited edge
processing can be done in the vehicle, such as decoding the diagnostic data. The novel
approach presented here utilizes only standard UDS-diagnostic queries to gather data
from the whole battery system. Coping with the limited data quality, the most suitable
state estimation methods are chosen to be implemented and tested.

• Holistic implementation: Using real driving cycles, we implement and test the chosen
methods integrated into the twin system. We develop a pipeline from the car to the
cloud, and finally to the user display.

4. Method

The method is made up of three parts. First, we need reverse engineering, to get
access to the vehicle’s data via the diagnostic interface. Next, the data is acquired under the
limitations of the data rate, using either a test kit or an OBD data logger. Figure 1 shows
the respective setups. In the third step, we use a cloud-based digital twin to analyze the
recorded data. In the following chapters, we outline the three steps in detail.
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Microcontroller

VCDS Tool

Vector Box Laptop

ID list

OBD Data 
Logger

Data Acquisition (Test Kit)

Reverse Engineering

Data Acquisition (OBD Data Logger)

recorded 
Data

Figure 1. Setup for data acquisition (green: test kit, black OBD logger) and reverse engineering
wiring (blue).

4.1. Diagnostic Interface: Reverse Engineering

For the reverse engineering of the diagnostics requests, we use the workshop tool
VCDS by Ross-Tech. It is designed to work with vehicles of the VW group [29]. Modern
vehicle diagnostics use unified diagnostic services (UDS) in the application layer and ISO
15765-2 transport protocol for automotive bus systems (ISOTP) in the transport layer. The
transport layer is an intermediate layer in bus communication. For some functions to be
accessible, special operating sessions are required, for which a corresponding diagnostic-
session-control request is sent [19].

VCDS includes an internal list of IDs for querying specific sensor data from the vehicle.
This list, however, is not visible to the user. To overcome this, we sniff the controller area
network (CAN) traffic while querying the vehicle data using VCDS. By comparing them
one by one, we relate the CAN messages to the VCDS query. In this manner, it is possible to
identify the IDs and recalculate the conversation function from the raw byte values to the
physical sensor value. Before the BMS is queried using Read Data By Identifier requests, the
CAN traffic shows a Diagnostic Session Control request, enabling an Extended Diagnostic
Session. The identifiers and conversion values extracted in this way are stored in an ID list
and can be used in a custom application to gather the diagnostic data later on.

4.2. Diagnostic Interface: Data Acquisition

To allow the battery states to be analyzed, we need to log the two vehicle states driving
and charging. From the driving states, we can obtain dynamic battery data, which allows us
to estimate the internal resistance. The charging phases allow the cells’ and pack’s capacity
to be estimated. In the following sections, we describe the data acquisition pipeline that
works for both vehicle states.

4.2.1. Test Kit

To record the data in the developing phase using the test kit, the laptop is connected
to the vehicle’s OBD interface via the Vector box VN1610 as Figure 1 shows. A python
program based on python-can, udsoncan and can-isotp continuously queries the relevant
vehicle data using the ID list from the previous reverse engineering. Using the knowledge
and the IDs from the reverse engineering step, the program constructs valid requests and
stores the read-out data in files. It is converted into physical units by means of custom
decode patterns.

4.2.2. Rotation System

Due to the limited recording rate for two requests in parallel, not all battery cells can
be measured simultaneously at a high frequency. Therefore, cell rotation management
is implemented. With this, the system jumps to the next cell once the first cell has been
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measured. Each cell runs through the schedule shown in Figure 2. First, a header is
recorded including one-shot measurements of the current SOC, the pack temperature and
voltage, and the cell ID. After that, the time series recording of the chosen cell voltage takes
place, together with the current going through the pack. Finally, we record the SOC, pack
voltage and temperature once more. The action to jump to the next cell can be triggered
after a predefined time, or as soon as sufficient data are available to determine the desired
battery characteristic. Depending on the application, it may be advantageous to keep cells
in the query in the same order, or to randomly rearrange the query order at the beginning
of a period.

Complete measure cycle

1. Pre-Dataset
Temperature
SOC
Current system voltage
Cell ID

3. Post-Dataset
Temperature
SOC
Current system voltage

2. Cycle Measurement
Time series celli voltage
Time series pack current

Figure 2. The measurement cycle for one cell is made up of three phases. One-shot measurements
enclose the time series of one specific cell voltage and current measurement.

The amount of time spent measuring one cell needs to be evaluated. Different road
settings and driving styles might induce different optimal lengths of measurement windows.
Time windows may be static or dynamic. For dynamic windows, feedback to the data logger
needs to be implemented in order to report whether a sufficient amount of data is gathered to
fit the internal resistance. The time to measure the pre and post data set is ca. 0.2 s.

4.2.3. Data Logger

To automate the data collection for a larger-scale fleet, it is useful to utilize a vehicle-
data logging device. In this case, this is a small, low cost, embedded system, designed
to capture vehicle data including global navigation satellite system (GNSS) position, ac-
celeration forces, rotation rates and diagnostic data over the OBD-II interface. When the
same UDS queries are used as with the test kit, the same data can be gathered, at the same
frequency. The rotation system is applicable as well. One advantage of a small data-logging
device is the ability to buffer data and submit it to the cloud as soon as a connection
is accessible.

4.2.4. Transfer to Cloud

For processing purposes, the data are uploaded to a cloud, where the battery twin
lives. Figure 3 shows the process of transferring and processing the data in the cloud. As
described in Figure 2, the data packets are sent via 4G cell network and message queuing
telemetry transport (MQTT) to an IoT broker. From there, the digital twin manages the
incoming data, hence saving it to the database and triggering the estimation of the internal
resistance, capacities and other battery states. If dynamic cell measurement is chosen, the
digital twin notifies the data logger in the car through a MQTT channel to proceed to the
next cell, when possible.
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Cell ID

Pre

Cloud environment

Data replay

Cycle

Post

or IoT 
gateway

4G
MQTT Digital battery twin

Front end

SOH: 100 %
Ri: 2 m?

cell ID

Cell
state

Notify if cell ID collected sufficient data

Figure 3. Toolchain to acquire and process the OBD data in a cloud-based digital twin and display
on a web front end.

To allow for more flexibility during cloud development, we implement a data set
replayer, uploading the data in real time through MQTT from a workstation. From the
point of view of the cloud-based digital twin, the origin of the data does not make any
difference.

For visualization, an angular-based web front end gives a cell-individual overview
over the SOH.

4.3. Analysis

For the state estimation of the vehicles battery, we want to quantify the SOC, the cell’s
capacity and the internal resistance of the individual cells. In the following, the algorithms
for determining the capacity and the internal resistance are described. From this, we derive
the SOH for both resistance and capacity.

4.3.1. Estimating Capacity

We use the reverse discharge test to determine the capacity. For this purpose, the
battery should be as deeply discharged as possible, because Farmann et al. [13] recommend
a change in SOC of at least 60% along with a moderate increase in temperature in order
to obtain precise results. Integrating the current over time, we receive the total capacity
charged during the event. Together with the change in SOC, Equation (1) shows the metric
for calculating the total capacity of the battery, where η represents the Coulomb efficiency.
For lithium-ion batteries, η can be assumed to be 1.

C =

t2∫
t1

η i(t)
3600 dt

SOC(t2)− SOC(t1)
. (1)

Since the SOC levels of the cells are not equal to those of the entire battery, and it is not
possible to read out SOC values for the cells, we use a SOC estimator with an underlying
OCV characteristic curve, which estimates the SOC at t1 and t2 of the cells. Overvoltages are
subtracted from the voltage value by the amount of R0 · current. The OCV characteristic
originates from another cell that is similar in electric properties and battery chemistry.
With the current flow during the defined time window and the corresponding SOC states,
the capacities of the cells are calculated using Equation (1).

Using the up-to-date capacity of the battery and cells and the nominal capacity, the
capacity-based state of health (Capacity) (SOHc) can be determined as Shen et al. [30]
proposes in Equation (3).

4.3.2. Estimating Resistance

To determine the state of health (Resistance) (SOHr), we use a three-step method. First,
we estimate the up-to-date internal resistance at specific environmental conditions. Second,
from a set of internal resistances at varying environmental conditions, we generate one
model for the Ri per cell. Third, we evaluate this model and use the result to determine the
SOHr using Equation (4).
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Equation (4) shows that we need to know the up-to-date internal resistance Ri, the
internal resistance at begin of life (BOL) RBOL and a reference resistance for the end of life
(EOL) REOL. We take the initial value of internal resistance for a new battery system from
studies performed by the Idaho National Laboratory (INL) [26,31]. There, five 2014 e-Golf
were tested in various driving cycles and the degradation of the battery pack was observed
for roughly the first 20,000 km.

To scale the reference resistance at the cell level, we consider a contact resistance due
to mechanical steel-to-steel connection of the prismatic cells of 0.3 mΩ, as indicated by [32].

The REOL is defined as a 60% increase in resistance. The current resistance Ri is deter-
mined by a model-based method. An ECM containing two RC elements is used to model the
battery’s dynamics. The model parameters are fitted using the scipy [33] least-squares algo-
rithm on the trust region reflective method (trf) to handle bounds. Figure 4 shows the ECM
circuit and all parameters that are fitted by the least-squares method. The pack current and
the terminal voltage Vk serve as input to the fitting algorithm. Empirically specified bounds
are set for all variables. After the optimization process, the initial environmental conditions
such as temperature, current and SOC are saved together with identified model parameters.

VOC(SOC)

Rohm

Rct Rdi f f

VkCdi f fCct

Figure 4. Used ECM containing two RC elements and a SOC-dependant OCV. All parameters in the
schema are estimated using least-squares method. Vk and the current serve as reference for the fit.

Now, the parameterized ECM is evaluated using a defined current impulse of 50 A.
The 10 s voltage answer of the model is recorded and used to determine a resistance.
By using the 10 s voltage answer, also the dynamic resistance parts from the model are
incorporated in the resistance estimate. The inferred internal resistance is plausibility-
checked and saved to a database, together with the environmental parameters from the
original measurement. Results are declared plausible if the root mean squared error (RMSE)
of the fitting process is below 10 mV and the resulting resistance value is in a reasonable
region. We choose the limit of 10 mV in an empirical approach to allow for enough data
points in the downstream processes. The quality of downstream appliances could rise if the
threshold is set lower. However, more raw data are needed to sustain the same amount of
filtered data points. As an additional filter, we take the dynamic of the current into account.
A minimum of 10 A current change during the measurement cycle is needed to keep the
data. The code of the ECM can be found here: https://github.com/TUMFTM/2RC_ECM.

Based on this database, a classification over the environmental parameters is per-
formed to be able to compare only values across cells with matching environmental condi-
tions. A 2D curve fit of an exponential polynomial of fourth rank over the SOC range and
an exponential relationship for the temperature range as shown in Equation (2), classifies
the data, where x denominates to the SOC and y to the temperature.

f = a2 · x4 + a1 · x + a0 + b0 · exp(−(y · b1)) (2)

SOHc =
current capacity C

nominal capacity Cn
· 100 (3)

SOHr =
REOL − Ri

REOL − RBOL
· 100. (4)

For the fit, we use the Levenberg-Marquardt algorithm provided through scipy.optimize.
curve_fit, unbounded using empirically tuned start parameters. From this 2D plane, a

https://github.com/TUMFTM/2RC_ECM
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reference resistance can be drawn at a defined tuple of temperature and SOC. Using this
approach, the individual cells are comparable, both against other cells and against the same
cell at a different point in time. For the confidence interval, we use the covariances returned
from the curve fitting.

5. Results

The aim of this paper is to show a battery state estimation based on diagnostic data
from an OBD-interface. To allow data to be collected more quickly, we selected two cells
(7744 and 7750) that seem to behave differently on basis of a first assessment to compare
them in more detail. The cell number results from the UDS ID. Furthermore, the data are
transferred and processed in a cloud-based digital battery twin, which is why we present
the architecture of the digital twin here.

5.1. Data Collected

For the purpose of this work, a test trail was used, with the goal of approximating
the usage behavior of an average driver living in Germany, known as Kreibich’s trail [34].
A total of 2707 measurements are taken within 20 h of driving at a battery temperature
between 1 °C and 38 °C over the last year. This results in a recording rate of approximately
135 measurements per hour. In a subsequent charging cycle, 9079 measurements of the
individual cells were taken within approximately seven hours. For the charging measure-
ment, the cycle time is 5 s. For the driving measurements, the cycle time varies between
20 s and 30 s.

After filtering processes, only a part of the recorded measurement cycles are usable.
For the internal resistance algorithm, 30 s cycles produce a share of 92% usable data.
Measurements using a 20 s cycle obtain 87.9% usable cycles. This seems plausible, because
during the longer cycle time, it is more likely that sufficient current variability will be
recorded. For the total mixed data set of both cycle times, we reach a share of 88% usable
cycles (2394 out of 2707).

Combining the ratio and cycle time and normalize it to an hour of recording, we can
get 158.4 cells/h using the 20 s cycle time and 110.4 cells/h using the 30 s cycle time.

For a vehicle that is driven for one hour on a daily basis, it would take 0.8 days to
record each cell once.

The file size for one 30 s uncompressed, text file-based cycle is 7.8 kB on average.
Given the total number of measurement cycles and the total driving time, we get 1.1 MB of
data per hour driving.

The collected data can be found in the Supplementary Material.

5.2. Reverse Engineering and Data Logging

The connection to the car via the vector adapter is established using a bitrate of
500,000 B/s. The ISOTP address of the controller we want to query is 0x7ED (Battery
Management System). UDS session has to be set into an extended diagnosis session.
Table 2 shows a subset of the identified UDS IDs. For the voltage ID of cell 2, increment the
UDS ID of the first cell by one and so on.

Table 2. UDS IDs for the used labels and factors to convert raw measurements ot physically meaningful values. These IDs
can be queried from the battery management controller.

Signal UDS ID Calculation Description

HV current 0x1E3D value·0.25 Current through the battery pack
HV voltage 0x1E3B value·0.25 Voltage of the battery pack

HV temperature 0x2A0B value· 1
64 Temperature of the battery pack

SOC 0x028C value· 1
2.5 SOC of the battery pack

Voltage cell 1 0x1E40 value·0.25 This is the base address for the cell voltages. Increment for following cells.
Any tuple can be recorded at an approx. 5 Hz to 9 Hz rate.



Batteries 2021, 7, 15 11 of 22

The performance of the UDS interface over OBD-II is dependent on the amount of
parallel queries. For the approach presented here, at least two queries need to be executed
in parallel. The first query is a voltage, either of the whole pack or of one cell, and the
second is the current going through the pack. It is crucial to have both sensor values
recorded as synchronously as possible. We find that we can go up to 9 Hz querying any
tuple. Going faster, the interface refuses to answer and the connection may be interrupted.

5.3. On the Capacity

To estimate the capacity of the single cells, we measure the charging cycle from a SOC
of 12.8% to 96%, indicated by the vehicle’s SOC data. Additionally, the SOC is estimated via
the OCV property. This approach leads to a start SOC of 17.1% and an end SOC of 96.5%.
The temperature of the pack increases from 23.6 °C to 24.2 °C during the charging process.
The conditions that Farmann et al. [13] deem necessary, a 60% change in SOC combined
with only a small change in pack temperature, are met. In our case, the change in SOC of
the battery pack during charging is more than 70% with a rise in battery temperature of
0.8 °C. For slow charging at 3.7 kW, the battery pack does not heat up.

Figure 5 shows the charging process of all cells. To achieve this measure, the cell
recording cycle was set to one, which means one record is taken per cell and then the
recorder hops to the next cell. Following this approach, one cell can be measured every
250 s. It is clear that the cells deviate, especially in the lower SOC region.
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Figure 5. Charging measurement of all cells in the vehicle. Due to cell rotation, we record each cell once every 250 s. We can
see that in the lower SOC region deviations are highest.

To investigate the cells further, Figure 6 shows the start and end voltages of the
charging process of the individual cells on the left side. We can see that some cells tend
to discharge more deeply than others, hence having a higher DOD. The more a cell is
discharged, the less remaining capacity is available. On the right, a histogram shows the
distribution of the start voltages. The distribution is skewed to the lower DOD region,
resulting in a tendency towards a greater number of good cells than poor ones.
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Figure 6. (Left side): All e-Golf cells with their start and end voltage of the charging process, sorted by the start voltage.
(Right side): Histogram of the start voltages. The distribution is skewed to the right, indicating a surplus of cells with lower
depth of discharge (DOD).
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Using the method by Park et al. [35], one can calculate the capacity by integrating the
current and relate the charged capacity to the increase of the SOC. For the battery pack,
we can derive a total remaining capacity of 70.3 Ah. Comparing this to the initial 75 Ah,
we estimate an SOHc of 93.7%. This method is also applicable to the individual cells. To
estimate the SOC of the cells, their OCV characteristics need to be known. For this work,
we use a lithium nickel manganese cobald oxid (NMC) OCV characteristic of similar-sized
cells because we do not have access to the actual characteristics of the built-in cells.

Figure 7 shows the capacities of all cells. On average, we get 72.8 Ah at a standard
deviation of 1.96 Ah. We show the distribution of the capacities on the right side of the plot.
It follows the distribution of the start voltages and their distribution in Figure 6. This result
seems plausible because cells with a lower start voltage are attributed to a lower capacity.
For cell 7744, we get a capacity of 72.3 Ah (SOHc of 96.4%) and for cell 7750 we get 70 Ah
(SOHc of 93.3%).
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indicates a good model fit with the original
data. Positive currents correspond to a
discharge of the battery.

of the data points originates from the fact that during a test run in middle European climate, the363

temperature of the battery rises and the SOC drops throughout the test run. Therefore, one test run364

results in a skewed line from low temperatures and high SOCs to lower temperatures and lower SOCs.365

Figure 9 shows one exemplary result of the least-squares fitting process. The sample of this366

measurement cycle is 30 s in time with a peak of 60 A current delivered by the battery. Positive currents367

correspond with a discharge of the battery. The RMSE of the modeled voltage versus the measured368

voltage is 1.23 mV which is in the range of other publications [36]. Therefore, a good fitting result can369

be noted.370

Figure 12 shows the inferred internal resistance Ri,10s of two exemplary cells. On average, the371

resistance is 2.2 mΩ with a standard deviation of 0.4 mΩ. The dependence of the resistance on the372

temperature is clearly visible, meaning that lower temperatures induce higher resistances. Cell 7744373

represented by the lower box plots has a median resistance of 2.5 mΩ in the temperature range of 5 ◦C374

to 10 ◦C. However, cell 7750 shows a significantly higher resistance of 3.7 mΩ in the same temperature375

window. These two cells were picked and measured more frequently than the others in order to get376

more data quickly. For the estimation of the resistance, cell 7744 has a total of 357 data points and cell377

Figure 7. All cells and their capacities derived from one charging record.

5.4. On the Internal Resistance

In Figure 8, the estimated resistances for all cells from all test drives are plotted
over the temperature and the SOC. Every point represents one cell to the given state in
temperature and SOC. The colorbar indicates that the resistances reach from 1.6 mΩ to
4.8 mΩ. The line-like structure of the data points originates from the fact that during a
test run in middle European climate, the temperature of the battery rises and the SOC
drops throughout the test run. Therefore, one test run results in a skewed line from low
temperatures and high SOCs to lower temperatures and lower SOCs.
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Figure 9 shows one exemplary result of the least-squares fitting process. The sample
of this measurement cycle is 30 s in time with a peak of 60 A current delivered by the
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battery. Positive currents correspond with a discharge of the battery. The RMSE of the
modeled voltage versus the measured voltage is 1.23 mV which is in the range of other
publications [36]. Therefore, a good fitting result can be noted.

Figure 10 shows the inferred internal resistance Ri,10s of two exemplary cells. On aver-
age, the resistance is 2.2 mΩ with a standard deviation of 0.4 mΩ. The dependence of the
resistance on the temperature is clearly visible, meaning that lower temperatures induce
higher resistances. Cell 7744 represented by the lower box plots has a median resistance of
2.5 mΩ in the temperature range of 5 °C to 10 °C. However, cell 7750 shows a significantly
higher resistance of 3.7 mΩ in the same temperature window. These two cells were picked
and measured more frequently than the others in order to get more data quickly. For
the estimation of the resistance, cell 7744 has a total of 357 data points and cell 7750 has
364. The other cells in the pack are measured about 20 to 40 times. The upper part of
Figure 11 shows the raw average resistance for all cells. To overcome missing data points
in the temperature-SOC grid and with respect to calculate a comparable SOHr from the
resistances, the samples for each cell are fitted again over the temperature and SOC range
of their instant of recording. Figure 12 shows fits for cell 7744 and 7750, scoring a RMSE of
0.19 mΩ and 0.23 mΩ respectively. The Ri,re f at the reference point of cell 7744 is 2.1 mΩ

with a confidence bandwidth of 2.0 mΩ to 2.2 mΩ. Cell 7750 exhibits a Ri,re f of 3.3 mΩ

with a confidence band of 3.1 mΩ to 3.4 mΩ. The orange, x-shaped data points in the upper
part of Figure 11 refer to the evaluation of this curve fit at the reference point of 18 °C and
an SOC of 60 %. This reference point was chosen because most data points were recorded in
this area, which gives the highest validity. Figure 13 shows the distribution of data points
of cell 7744. We can see that most data are available around the chosen reference point.
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Figure 10. Internal resistance for cell 7744 and 7750 over the temperature. As expected, lower
temperatures yield to higher impedance.
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Figure 10. Top: Internal resistance of all cells. The raw values are the average values of all samples
passed through the ECM. The model data are the results of the ECM fitted over SOC and temperature,
and evaluated at 18 ◦C and a SOC of 60 %. Bottom: SOHr of the cells. The SOHr cannot be compared to
the SOHc. Reference for SOHr: SOHr = 0 at 60 % increase of Rbol . On the right side, we show the kernel
density estimation (KDE) of the internal resistance and the resulting SOHr.
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7750 over the temperature. As expected, lower
temperatures yield to higher impedance.

Figure 11. (Top): Internal resistance of all cells. The raw values are the average values of all samples
passed through the ECM. The model data are the results of the ECM fitted over SOC and temperature,
and evaluated at 18 °C and a SOC of 60%. (Bottom): SOHr of the cells. The SOHr cannot be compared
to the SOHc. Reference for SOHr: SOHr = 0 at 60% increase of Rbol . On the right side, we show the
kernel density estimation (KDE) of the internal resistance and the resulting SOHr.
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Figure 13. Curve fit of all samples of cell 7744 and 7750 over temperature and SOC. The SOC-axis
is modeled by a polynomial and the temperature axis is modeled by an exponential relationship as
Equation (2) shows. The reference point Ri is marked in yellow.

7750 has 364. The other cells in the pack are measured about 20 to 40 times. The upper part of Figure 10378

shows the raw average resistance for all cells. To overcome missing data points in the temperature-SOC379

grid and with respect to calculate a comparable SOHr from the resistances, the samples for each cell are380

fitted again over the temperature and SOC range of their instant of recording. Figure 13 shows fits381

for cell 7744 and 7750, scoring a RMSE of 0.19 mΩ and 0.23 mΩ respectively. The Ri,re f at the reference382

point of cell 7744 is 2.1 mΩ with a confidence bandwidth of 2.0 mΩ to 2.2 mΩ. Cell 7750 exhibits a383

Ri,re f of 3.3 mΩ with a confidence band of 3.1 mΩ to 3.4 mΩ. The orange, x-shaped data points in the384

upper part of Figure 10 refer to the evaluation of this curve fit at the reference point of 18 ◦C and an385

SOC of 60 %. This reference point was chosen because most data points were recorded in this area,386

which gives the highest validity. Figure 11 shows the distribution of data points of cell 7744. We can387

see that most data are available around the chosen reference point.388

The SOHr based on the internal resistance can now be calculated. The lower part of Figure 10389

shows the SOHr for all cells. Negative values or values close to zero SOHr occur because we set the Reol390

at 60 % increase of Rbol . Other sources allow for a 200 % increase [37], which would increase all SOHr.391

The average SOHr calculated from the cells is 64.3 %. This result cannot be compared to the SOHc value,392

since there is no relationship between the chosen boundary resistances Reol , Rbol and the capacity. The393

right side of Figure 10 shows the KDE of both the resistance and the SOHr. Because SOHr results from394

the resistances, the densities follow the same shape. The average SOHr is 60.7 % at a standard deviation395

of 29.8 %.396

5.5. Architecture of the Digital Twin Used397

Working towards a digital battery twin, all the methods listed above were integrated into a398

modular cloud-based digital twin. This twin is modular in that one distinctive twin exists for each cell.399

All cell twins are assigned to an overall pack twin. In our approach, individual twins are specified by a400

database file of a certain type. Resources like models and aggregations react to the type of twin and401

are therefore shared among all twins.402
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Figure 13. Distribution of all data points in the temperature-SOC plane.

The SOHr based on the internal resistance can now be calculated. The lower part of
Figure 11 shows the SOHr for all cells. Negative values or values close to zero SOHr occur
because we set the Reol at 60% increase of Rbol . Other sources allow for a 200% increase [37],
which would increase all SOHr. The average SOHr calculated from the cells is 64.3%. This
result cannot be compared to the SOHc value, since there is no relationship between the
chosen boundary resistances Reol , Rbol and the capacity. The right side of Figure 11 shows
the KDE of both the resistance and the SOHr. Because SOHr results from the resistances,
the densities follow the same shape. The average SOHr is 60.7% at a standard deviation
of 29.8%.

5.5. Architecture of the Digital Twin Used

Working towards a digital battery twin, all the methods listed above were integrated
into a modular cloud-based digital twin. This twin is modular in that one distinctive twin
exists for each cell. All cell twins are assigned to an overall pack twin. In our approach,
individual twins are specified by a database file of a certain type. Resources like models
and aggregations react to the type of twin and are therefore shared among all twins.
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Figure 14 shows the architecture of this system. To allow for scalability and connec-
tivity, we are using the Amazon Web Services (AWS) cloud platform and a combination
of infrastructure as a service (IAAS) and software as a service (SAAS). Using the AWS
IoT Gateway as an SAAS to receive the incoming MQTT data, the raw messages are in-
terpreted and saved to a MongoDB instance for further processing. We use an NoSQL
database here because every digital twin is represented by a json-data structure. By using a
file-based NoSQL database like MongoDB, these files can be stored directly in the database.
Furthermore, this type of database is flexible in terms of changes to the database schema,
compared to relational databases. During the life of a digital twin, unforeseeable changes
might be necessary, hence this is a way to handle them.

A digital twin manager running in a docker environment (virtualization technique to
create virtual machines) is in charge of directing the data sets into the respective digital
twins and triggering the models and simulations by HTTP requests. All master data (static
for the digital twins, for example, cell type) and all transaction data (e.g., measurements) are
saved to the MongoDB with respect to their physical counterparts. Also model-generated
state data (e.g., estimated Ri) is stored here.

The ECM and the charge analyzer are placed into docker containers interfaced by
REST-application programming interfaces (APIs) and access the database directly.

An additional docker container calculates states from the values generated by the
models. In this case, the state container takes the internal resistance and the capacity
for each cell and calculates SOHr and SOHc and places these characteristics back in the
twins database.

Through an access API, values of interest can be drawn from the twin system and
continue to be used in further applications. The upper part of Figure 14 shows a usage in
which the characteristics of one battery pack are presented in at a front end that communi-
cates with the digital twin via the REST-API. The front end was developed in angular 8. In
the upper part of the front end, general characteristics such as the topology of the battery
pack or the cell chemistry are shown. A map helps to locate the pack, hence showing
the last position of the vehicle. For the general state, the SOHc and SOHr are listed as
well as capacity and the current temperature. The lower half of the front end shows the
cell-individual SOHc and SOHr. By grouping all the cells into modules, and coloring
them according to their SOH, the status can be evaluated and interpreted by humans at
first glance.

This presentation may be the starting point for developing predictive maintenance
applications or an interface for the workshop personal and the vehicle user, for example.
Of course, it is not only possible to output the data at a front end but it can also be used in
any other application that interfaces with the digital twin’s API.
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Figure 14. Architecture of the digital twin system. For this work, the system was hosted in the AWS cloud. Individual twins
share the same resources as models, aggregators and APIs. In the upper part, the front end shows the results to the user. In
total, 88 cell-blocks consisting of three parallelly connected cells can be observed.

6. Discussion
6.1. State Estimation Using Diagnostic Data

The state estimation of the battery in this work relies on the fact that cars make it
possible to read the aforementioned data. For our test case, the VW e-Golf allows this ap-
proach in a way that makes the required data available and allows the diagnostics interface
to be queried during driving. It has to be said, that with other brands, this approach might
encounter obstacles and suffer from a lack of data. Also, the increasing tendency of OEMs
to prohibit access to the car’s interfaces weakens this approach. However, in the future,
there will be official ways to connect to these data and applications such as this might be
developed in cooperation with OEMs.
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If we rely solely on the data available from this distinctive diagnostic interface, no cell-
individual temperature reading is available. All available temperatures behave similarly
and seem to represent the general pack temperature. Since the internal resistance is highly
dependent on the temperature, it is possible that those differences are induced by unequal
distribution of heat in the battery pack. Nevertheless, the differences in Ri between cell
7744 and 7750 are maintained over the whole tested temperature range, including when
the car is started cold, when all cells exhibit the same temperature. Also, the measurement
of the current is affected by the diagnostic interface. It is discretized into steps of 0.25 A,
which can yield significant errors when the signal is integrated. Calculations of the capacity
and internal resistance are struck by this deficiency. Further problems originate from the
diagnostic data with regard to timing. When a selected signal is queried, the answering
controller has to receive, process and return the value to the sender. This process takes
time and, unfortunately, there is no time stamp available from the moment when the
measurement was recorded. Timing issues can be a problem for timing-critical methods
like the fitting of the ECM.

Because there are only sensors fit to the parallel circuit of three cells, the true cell level
cannot be in focus but only the intermediate parallely connected level.

For the calculation of a meaningful Ri-based SOHr, an initial Ri,initial has to be known.
For the test case given, we do not have this kind of Ri,initial for every cell, since we only
started observing the car in the middle of its life. This makes it hard to calculate a meaning-
ful SOHr for the individual cells. Still, one could estimate a relative change in SOHr from
this point on. Using the average values of the battery packs from the INL tests and scaling
them to cell level, we neglect the cell-individual Ri,initial . In the future, when digital twins
of battery systems are widely established, one could use end-of-line tests of manufacturing
lines to estimate a meaningful initial state of the battery system and its cells. Also, a
complete state estimation from the first moment on could close this gap.

The method of estimating the internal resistance results in a high variance. Therefore,
large sample amounts must be collected in order to achieve precise results. For this work,
only two cells (7744 and 7750) were recorded at a high frequency, hence being recorded
30 times or more in the reference area. For them, the results seem plausible. Comparing the
SOHr and SOHc for both, cell 7750 appears worse than cell 7744 in both metrics. Other cells
show non-coherent behavior; one explanation for this may be the lack of data, especially
when it comes to different environmental conditions or load profiles. When only one third
the number of data points is used, the confidence interval width rises from 0.2 mΩ to
0.3 mΩ for cell 7744 and from 0.3 mΩ to 0.5 mΩ for cell 7750.

Because the estimation of the internal resistance is still lacking data for most cells,
we use a constant internal resistance to subtract overvoltages in the capacity estimation.
Thereby we neglect the influences of the internal resistance at this point, but also eliminate
a source of variance which we cannot control yet due to missing data.

The lack of the exact OCV characteristic of the e-Golf cell leads to problems calculating
the capacity of the cells. By using the original one, further sources of uncertainty could be
ruled out.

Another source of uncertainty comes from the cell contacting. Our method neglects
the inhomogenities in cell contact resistance as we have no way to quantify it. Still, a higher
contact resistance would lead to higher temperatures, accelerated aging and, in turn, higher
internal resistance.

Since we cannot measure the estimated states directly, the data generated cannot be
validated. However, the identified capacities are in accordance with literature. We deter-
mine the remaining capacity at approximately 35,000 km to be 70.3 Ah. From five e-Golfs,
the INL finds an average remaining capacity of 67.75 Ah after approx. 20,000 km [31,38–40].
The lower capacity even after less mileage can be explained by the measurement method.
The INL tracks the battery during chassis dynamometer measurements. The measurement
ends if the car battery is depleted. Safety margins, however, are not included. With our
method using the battery’s voltage and current, we are not limited to the vehicle’s imple-
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mented safety threshold, therefore the unbounded remaining capacity remains. In addition,
climate and driving profiles might differ.

Because we have no link between the cell ID and the physical position in the battery
pack, we cannot virtually aggregate cells in modules. The assumption that the cells in one
module share a specific temperature and are therefore similar in characteristics cannot
be tested. For future work, a physical reverse engineering and disassembling of the pack
would be desirable.

6.2. Digital Twin Architecture

The approach to setting up a digital battery twin presented here serves as a proof of
concept that an online cloud-based state estimation from vehicle data and IoT-connection
is possible. Furthermore, it indicates that the required elements are the database, interfaces
and models for estimating resistances and capacities. To maintain a fleet of digital twins,
that is, several cars and all individual cells in the respective battery packs, a digital twin
management system is needed. However, even if the presented architecture has already
been set up with scalability in mind, it can be optimized. By accepting a certain degree of
vendor lock-in, existing cloud vendor services might be used in a production-ready system.
Also, the choice of using python to run the computationally intensive optimization models
is not the most efficient approach. In the research setting, however, this approach yields
flexible development processes and timely results.

If the data logger is dependant on feedback from the cloud, for example, to know
when to move on to the next cell, it is elementary, that the logger is online at all times. We
think that future connectivity with 5G in mind will allow permanent online ability.

Further research must be undertaken towards the long-lasting recording of for exam-
ple, internal resistances and their normalization, for example, due to seasonal variations
and their presentation to the end user.

7. Conclusions

In this work, we show a holistic data pipeline from the raw vehicle data to a cloud-
based digital twin estimating the vehicle’s battery state, and present the information to
stakeholders. To allow for a general approach, we use diagnostic data as an input for our
algorithms. With the help of reverse engineering, we identify protocols and IDs of the
vehicle’s interface. This process needs to be carried out again for a further vehicle but the
downstream processes are then decoupled and take place in the cloud environment. We
find that the data logging has certain limitations, for example, a maximum sample rate
of 9 Hz for two quasi-parallel requests. However, by rotating recording, we still manage
to observe all cell blocks. An OBD data logger developed at the institute is capable of
recording the presented types of data and interfacing to remote servers.

Working towards a digital battery twin, we can conclude that certain knowledge
about the built-in cell characteristics, for example, the OCV relationship, cell contacting
and topology, are of crucial importance. Digital twins will have to provide this information
in the future in order to allow for digital twin-based state estimation. Furthermore, it
is necessary to divide the digital twin, and with it the data sets, into pack, module and
cell level because scaling between these levels always comes with trade offs in terms
of accuracy.

In conclusion, the results of internal resistances and capacities of the case study seem
coherent and comparable to other findings in literature. A further learning from this work
is that lengthy data collection is needed to give statistically sound predictions for the
internal resistance within a certain level of significance. Reducing the data points by a third,
the confidence intervals rise by 50%. The sheer volume of data, however, is manageable.
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