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Abstract: The end-of-life event of the battery system of an electric vehicle is defined by a fixed end-of-
life threshold value. However, this kind of end-of-life threshold does not capture the application and
battery characteristics and, consequently, it has a low accuracy in describing the real end-of-life event.
This paper proposes a systematic methodology to determine the end-of-life threshold that describes
accurately the end-of-life event. The proposed methodology can be divided into three phases. In
the first phase, the health indicators that represent the aging behavior of the battery are defined. In
the second phase, the application specifications and battery characteristics are evaluated to generate
the end-of-life criteria. Finally, in the third phase, the simulation environment used to calculate the
end-of-life threshold is designed. In this third phase, the electric-thermal behavior of the battery
at different aging conditions is simulated using an electro-thermal equivalent circuit model. The
proposed methodology is applied to a high-energy electric vehicle application and to a high-power
electric vehicle application. The stated hypotheses and the calculated end-of-life threshold of the
high-energy application are empirically validated. The study shows that commonly assumed 80 or
70% EOL thresholds could lead to mayor under or over lifespan estimations.

Keywords: end of life; lithium ion battery; simulation approach; electro-thermal model; electric vehicle

1. Introduction

The end of life (EOL) is related to the concept of failure in global terms, which can be
defined as the fact of something not working, or no longer working as well as it should.
The concept of failure can be assessed by criteria such as performance (performing at
an unsatisfactory level), functionality (incapable of performing a specific function) and
availability (machine breaks down) [1]. Nonetheless, the basic concepts of how an EOL
event should be specified are not clear [2], especially in systems with nonlinear degradation
behaviours such as lithium ion secondary batteries (LIBs).

Nowadays, LIBs are widely used to propel electric vehicles (EV) because of their
outstanding combination of energy density, power density and lifetime. However, even
with the lifetime being better than that of other secondary batteries, it is still usually below
the life expectancy of an overall vehicle. It is important to accurately define and estimate
the EOL event of the LIB, at which a replacement should be considered. Generally, the
LIBs integrated in EVs are considered to have reached their EOL when their dischargeable
capacity drops to a certain value relative to its initial value [3]. It is typically fixed at
80% [4,5] or at 70% [6,7]. There are also some other cases where the EOL is defined by the
relative resistance instead of the relative capacity. In those cases, the EOL is typically set to
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200% of the initial resistance of the battery [8,9]. The relative capacity is commonly linked
to high-energy EV applications and the relative resistance threshold is normally related
to high-power EV applications [9]. The use of any of these kinds of fixed EOL threshold
values simplifies considerably the EOL calculation. Specially, the use of such simplifications
is interesting when analysing the performance level of different electrochemical battery
designs [10] or evaluating the response of prognosis algorithms before using them in an
on-board application [11]. However, lifespan estimations of LIBs integrated in EVs require
more complex battery EOL criteria than those simplified values because the battery EOL
depends on the nature of the application and the design parameters of the battery [12].

LIBs are complex electrochemical systems with nonlinear degradation behaviours,
which depend on various intrinsic features and external conditions, making the EOL
estimation a challenge [13]. Current literature is inconclusive about the fixed EOL values
being too conservative or too progressive. On one hand, numerous studies suggest that the
commonly used fixed EOL threshold values are conservative. Wood et al. [14] demonstrated
that the lifespan of an EV operated in a conservative way is beyond the commonly assumed
80% fixed EOL threshold value. Casal et al. [15] gave empirical evidence for this argument.
They saw that the EOL in some of the test cases were lower than those fixed 70-80%
EOL values. On the other hand, there are studies that suggest that those fixed values are
not conservative. Ziegler et at. [16] saw that the battery should not go below 70% of its
original capacity due to safety issues. In a previous study, Arrinda et al. [17] saw that the
EOL can come at higher relative capacity values than the 80%. The evaluated application
specifications, defined mainly by a minimum EV driving range, were not fulfilled at a
relative capacity of 85.69%. These studies highlight that it is still notoriously difficult to
accurately predict the EOL [18].

The EOL needs to be clear and unambiguous in order to ensure proper and safe
operation of the EV [12]. In this respect, Yingzhi et al. [19] defined the EOL of a LIB as
the point in time when the selected LIB can no longer provide enough power or energy
to accomplish its intended function. However, the applied EOL estimation approach
only addresses an application under specific use conditions. It cannot be generalized.
In contrast, Goebel et al. [20] defined a generalizable conceptual EOL approach where
the EOL is a Boolean output defined by a multi-dimensional EOL threshold. The EOL
threshold is theoretically estimated through repeated application of the inferred state
equation and threshold equation, but it can be addressed by using simpler structures. The
EOL threshold could be determined based on EOL observations or it can be calculated
through the simulation of the states of the system for given input conditions. However, the
conceptual proposals were not put into practice.

Inspired by Goebel et al.’s [20] conceptual EOL approach, this paper develops and
puts into practice the methodology behind the EOL threshold calculation through sim-
ulations. The generated methodology is generalizable and captures the application and
battery characteristics of an EV. The paper is structured as follows: Section 2 presents the
generalizable systematic methodology for estimating the EOL. This section is composed of
3 phases. In the first phase, the health indicators (HIs) used in the literature are introduced
and correlated with the condition monitoring variables (behavioural variables). In the
second phase, the most common application specifications are analysed. In addition, the ap-
plication specifications of two typical use cases are down-scaled to cell level: a high-energy
EV and a high-power EV. In the third phase, the model-based simulation environment is in-
troduced. Here, the battery testing methodology followed in the EU-funded Horizon 2020
project iModBatt [21] is applied to construct the battery electric and thermal models. These
models are used to simulate the battery performance for a range of operating conditions to
map the EOL threshold that describes the EOL event. Afterwards, Section 3 presents and
discusses the results of the proposed two examples. Section 4 is dedicated to the validation
of the stated hypotheses and the obtained EOL threshold of the evaluated high-energy EV
application. Finally, the conclusions are drawn in Section 5.
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2. Methodology

The EOL definition for LIBs integrated in EVs is usually a fixed value that neglects
the battery and application characteristics. In this context, a generalizable methodology to
determine the EOL that also captures the application and battery characteristics of an EV
is presented.

The proposed methodology focuses on developing an “M”-dimensional EOL thresh-
old, where M represents the chosen number of HIs that define the EOL event. The proposal
consists of an algorithm that searches the combinational value of the selected HIs at
which the battery system stops fulfilling the specifications defined by the application.
The methodology is divided into the following five steps, which are developed in three
different phases:

1. Select the HIs of interest.

2. Detect the behavioural variable (electric, thermal, physical, etc.) where the effects of
the chosen Hls can be observed.

3.  Define the EOL criteria by addressing the link between the battery behavioural
variables of interest and the downscaled application specifications.

4.  Define the values of the chosen HIs that will be evaluated. Generate the evaluation
grid composed of the combination of those values.

5. Find the combinational value of the HIs where the battery system stops fulfilling the
EOL criteria.

The first two steps are related to the HlIs and are developed in the first phase of the
methodology. Firstly, the Hls are selected. There are many different HIs and, depending
on the aim and resources of the EOL evaluation, it will be more interesting to use one or
another. Nevertheless, there is a selection restriction. The relative pure ohmic resistance
increase must be selected because of the design of the proposed approach to estimate the
EOL event. Apart from this, the proposed method allows the use of any kind and any
number of HIs. Secondly, the behavioural variables in which the effect of the chosen HIs can
be observed are detected. It is important to detect properly the measurable variables that
influence each HI in order to establish the link between Hls and application restrictions.

The third and fourth steps, which are developed in the second phase of the methodol-
ogy, consist of merging the chosen Hls and the application specifications in order to run
the simulation environment. Firstly, the application specifications are downscaled from
system level to cell level. The downscaled application specifications are translated into the
battery behavioural variables of interest (the variables linked with the selected Hls). As a
result, we obtain (1) the EOL criteria that describe the EOL event and (2) the testing inputs
that correspond to each EOL criterion. Secondly, the grid that delimitates the case study is
generated with the values of the HIs. For this, M — 1 vectors are determined. Each vector
has the values that each HI but one (the pure ohmic resistance increase) will take in the
simulation. The evaluation grid is generated based on the combinations of those vectors.

The fifth step consists of calculating the EOL threshold by integrating the previously
built elements in a model-based simulation environment. This simulation environment is
developed in the third phase of the methodology. Firstly, the electric-thermal behaviour
of the battery system is modelled. Then, the battery electric and thermal behaviour is
simulated, where the relative pure ohmic resistance is modified with the aim of finding
the exact operating conditions where the battery system stops fulfilling the application
specifications. As a result of identifying those operating conditions, an M-dimensional
EOL threshold map that considers M HIs of interest is calculated.

2.1. Phase 1: Health Indicators

The health indicators (HIs) describe the aging behaviour and represent the state of
health (SOH) of a battery/cell. The HIs must evolve with time and it is advantageous for
them to be measurable quantities [20]. There are many kinds of variables that can be used
as Hls. The most common HI is the relative capacity (relative to the dischargeable capacity
measured at the beginning of life), which is often labelled as the SOH itself. It is a direct
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representation of the energy that the battery can provide. A decrease in the dischargeable
capacity of the battery translates to a lower EV driving range.

The relative value of the inner pure ohmic resistance of the battery appears in many
studies as well. The pure ohmic resistance limits the applicable power at certain state-of-
charge (SOC) levels. The increase of the pure ohmic resistive value increases the effect
that the current has on the observed voltage value. As a result, the end-of-charge and
end-of-discharge voltage limits are reached at earlier SOC values if the same current is
applied. It especially affects the charging time in case of fast charging [22].

These two Hls are relatively easy to measure/estimate, and their effect on the per-
formance decrease can be directly addressed to application specifications (driving range,
charging time, etc.). The increase of the pure ohmic resistance as well as the decrease of the
dischargeable capacity affects the voltage vs capacity response of the battery (the increase
of the pure ohmic resistance is linked to the power capability of the battery because of
the ohmic drop and heat dissipation). Nonetheless, these two Hls are not the only ones
that can be used to describe the aging behaviour of the battery. There are some other HIs
reported in literature:

- The decrease of the end-of-discharge voltage with repetitive operating conditions [19].
- The drift of the open circuit voltage (OCV) of the electrodes [19].

- The increase of the time constant of the transitory response of the battery [12].

- The decrease of the thermal conductivity of the inner components of the battery [12].
- The increase of the effect of the reversible part of the heat generation [12].

- The loss of lithium ion inventory (LLI) [23].

- The loss of active material (LAM) on the electrodes [23].

- The organic reduction of the electrolyte or the pressure inside the battery [12].

However, it is not common to define the EOL with those Hls. Some of them represent
variables with low observability. For example, LLI, LAM or the organic concentration of
the electrolyte cannot be measured; they need to be guessed under several assumptions.
Some others represent variables with no records of typical aging check-up tests. Thermal
performance variations are an example since they are typically dismissed from the aging
evaluations. A few represent variables with a lower study interest level compared to the
commonly used HIs. If the pure ohmic resistance increase is evaluated, the rest of the
impedance aspects are dismissed. This is why we have only used the two most common
HIs for the proposed case study: the relative capacity and the relative resistance.

2.2. Phase 2: Application Specifications

The proposed EOL mapping is application-oriented. The application is the main
element of the EOL criterion. Among the typical EV applications, the most common
restricting specification is the driving range. In general, EVs used to require a minimum
driving range that needs to be covered throughout their lifespan. This minimum driving
range could be used to define the EOL event. Nonetheless, there could be some other
restrictions such as a minimum time of operation, a minimum acceleration specification,
a maximum charging time, a maximum heat generation or the assurance of avoiding
catastrophic events (safety margin).

In this study, two applications are evaluated: (1) an EV with high-energy application
requirements and (2) an EV with high-power application requirements. Taking as example
these two applications, we will explain the downscaling of the application specifications
from system to cell level and the definition of the EOL criteria.

2.2.1. High-Energy EV Application

The evaluated high-energy EV application consists of an electric public bus that needs
to cover a certain bus route without any charging stop during the expected 17 h of operation.
The remaining 7 h of the day are used to clean and charge the bus. In consequence, the
application has two restrictions: one restriction in terms of driving range (17 h of non-stop
operation without reaching the minimum voltage threshold) and a second restriction in
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terms of charging time (in 7 h the bus needs to be charged to fulfil the next day’s 17 h of
non-stop operation). Those restrictions define the EOL criteria. The EOL event will come
when the battery system is not able to provide the required amount of energy for the 17
h of operation. Among the different reasons behind the occurrence of the EOL event, we
have discarded the charging time and only have considered the driving range as an EOL
criterion since the charge is done at 0.5 C and it is expected to always have plenty of time
to charge the battery system within the predefined 7 h.

The characteristics of the application led to the selection of a high-energy NMC-C
pouch cell. The battery/cell characteristics are shown in Table 1.

Table 1. High-Energy battery specifications.

Item Specification

Nominal capacity 54 [Ah]
Maximum voltage 4.2 V]
Minimum voltage 2.5[V]

Nominal voltage 3.65 [V]
Standard charge current 54 [A]
Standard discharge current 54 [A]

Nominal resistance 0.65 [mQ]

The bus manufacturer did a detailed analysis of the characteristics of the bus route
and gave us the expected power profile for the battery system. Based on the design of the
battery system, the provided power profile was downscaled by dividing it by the number
of cells on the designed battery system. As a result, the most probable power profile at cell
level was obtained.

We analysed the battery system and we saw that the liquid-based battery cooling
of the bus has a high cooling and heating power and good thermal contact to the cells.
Therefore, each cell is assumed to have an independent adiabatic thermal environment. As
a result, the room temperature profile is simplified to a constant 25 °C temperature profile.

The obtained downscaled power profile was tested on the selected battery in a climatic
chamber at 25 °C, thus emulating the real operation of the bus. The battery was previously
charged to 100% SOC. The voltage response and SOC evolution are shown in Figure 1.

Vol
44 oltage 100 soc
42:1'&. 80
S 4 Ty —
Z % ¥ 60
238 ""NN 5}
5 Y¥ipe @ 40
> 36t MN“ + {
h..\
34 N 2
3.2t - - . 4 0
0 05 1 15 0 0.5 1 15
Time[h] Time[h]

Figure 1. High-energy application profile: voltage response and the SOC evolution of the battery.

Afterwards, the simulation results were exploited. Firstly, the applied current profile
was considered as the most probable current profile of the application. This current profile
is used as the testing input to calculate the EOL event under the defined EOL criteria.
Secondly, we have defined the capacity decrease values that will be studied. The values
are selected based on the observed response of the battery. In this case, the values are
selected based on the SOC value that the battery reaches at the end of the discharge, which
is 12.17%. Taking this into account, the range of the capacity decrease has been limited
from 0 to 20%. The jump between points is decided in terms of the desired accuracy level
and computational resources. In this case, we selected a jump of 1%.
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After defining the values of the first HI, the values of the other HIs, except the one
for ohmic resistance, need to be defined too. In this example, only one HI except for the
pure ohmic resistance has been selected, so there is no need to calculate the values of any
other HI.

2.2.2. High-Power EV Application

The evaluated high-power EV application consists of an electric public bus that needs
to cover a certain bus route. The bus works every day for 16 h and it spends the rest of
the day (8 h) being cleaned and charged. During application, the bus is fast-charged for
7 min at the start or at the end of the bus route with a constant-current (CC) charge strategy
(as safety, the charge can go under a constant-voltage (CV) phase if the conditions are met).
In consequence, the application has three restrictions: a restriction in terms of driving range
of the line itself (the bus route needs to be operated without reaching the minimum voltage
threshold); a second restriction in terms of charging time (in 8 h the bus has to be charged
enough to fulfil the 16 h of operation of the next day); and a third restriction related to
the driving range needed for the whole day, that takes into account the first driving range
restriction, but also the charge opportunities at the beginning and at the end of the bus
route (the bus needs to be able to fulfil the 16 h of daily operation without reaching the
minimum voltage threshold thanks to the charging opportunities of 7 min at the beginning
and at the end of the line). Those restrictions define the EOL criteria. The EOL event will
come when the battery system is not able to provide the required amount of energy to
complete the bus route throughout the 16 h of operation. Among the different reasons
behind the occurrence of the EOL event, the slow charging time as an EOL criterion was
discarded since the charge is done at 1C and therefore it is expected to always have plenty
of time to charge the battery system within the predefined 8 h. Besides, since the first
restriction is part of the third restriction, the EOL criterion is built only based on the third
restriction: the driving range of the 16 h of daily operation.

The characteristics of the application led to the selection of a high-power NMC-LTO
prismatic cell. The battery/cell characteristics are shown in Table 2.

Table 2. High-power battery specifications.

Item Specification
Nominal capacity 23 [Ah]
Maximum voltage 2.7 [V]
Minimum voltage 1.5[V]

Nominal voltage 2.3 [V]

Fast charge current 115 [A]

Fast discharge current 115 [A]
Nominal resistance 0.6 [mQ]

The bus manufacturer gave us the power profile of the battery system and the maxi-
mum current values of the fast charging station. Based on this data, we downscaled the
power profile from battery system level to cell level and we determined that the maximum
fast-charge current is 4C.

The downscaled power profile is repeated 12 times each day with stops of 7 min
in between each repetition in order to charge the battery system. The power profile of
the bus route is invariant, notwithstanding the evolution of the battery condition. The
battery has to deliver the demanded power at the demanded time irrespective of the battery
state. Nonetheless, the charging process of 7 min can change from a constant power to
a CV phase depending on the battery state (voltage). The testing input that represents
this charge cannot be defined as a constant current profile since the applied charging
power depends on the voltage of the battery. Therefore, the testing input related with
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the opportunistic charging process (fast charge) consists of a constant current value that
the charging manager will adjust if the requirements are met (if the battery reaches the
end-of-charge voltage, the charging manager will change the charging strategy from CC to
CV, reducing the charge current accordingly).

Both high-energy EV application and high-power EV application have the same liquid
based heating—cooling system. Therefore, the room temperature profile is simplified to a
constant 25 °C temperature profile as well.

The resultant testing input was run on the selected cell in a climatic chamber at 25 °C,
thus emulating the real operation of the high-power electric bus. As for the initial condition,
the battery was charged to 100% SOC. The voltage response and SOC evolution is shown
in Figure 2.
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Figure 2. High-Power application profile: voltage response and the SOC evolution of the battery.

After finishing the test, we defined the most probable current profile that represents
the bus route. We merged this current profile with the constant current value on the
opportunistic charging process to generate the testing input that will be used in the EOL
event definition. Then, we defined the capacity decrease values that will be studied. The
minimum SOC was 49.61% after applying the bus route operation profile and 44.05% after
applying the daily operation profile. As consequence, the range of the capacity decrease
was limited from 0 to 60%. The jump between points was decided to be 1%.

Finally, the values of the other HIs, except the one for ohmic resistance, need to be
defined too. In this example, as in the high-energy EV application, only one HI except for
the pure ohmic resistance has been selected, so there is no need to calculate the values of
any other HL

2.3. Phase 3: Simulation

The developed algorithm estimates the “M”-dimensional EOL threshold (recall that
“M” is the number of selected HIs) by calculating the values of the selected battery Hls
that define the EOL event. The proposal simulates the electric and thermal behaviour
of the battery under the downscaled operation profiles at the defined health conditions
to estimate the value of the pure ohmic resistance that defines the EOL event. For this
purpose, the electric and thermal behaviour of the selected battery was modelled. In
those developed models, the selected Hls were set as free variables (variables that can be
modified from the outside).

2.3.1. Battery Model

The applied battery model describes the electric and thermal behaviour of the chosen
battery. It is assumed that the scale up from the battery/cell level to the battery system is
trivial and that the interactions between cells are negligible. The developed electric [24]
and thermal models [25] are shown in Figure 3.
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Figure 3. (a) Equivalent electric model; (b) Equivalent thermal model.

The proposed electric model is a first order resistor-capacitor (RC) equivalent electric
circuit that employs the thermodynamically stable open circuit voltage OCV, the ohmic
resistance of the battery, and a RC circuit that describes the polarization of the battery
caused by transfer, diffusion and other factors, see Equations (1) and (2) [26].

dUp (tk) " Up (tk)
dt Ry

I(te) = Cp )

U(t) = OCV(ti) — I(ti)R — Up (ti) @)

This electric circuit is one of the most common equivalent circuit models applied in
battery modelling [27], which includes an OCYV, a resistor and a RC network in series to
forecast battery response at a particular SOC [28]. However, since in real (LIB) applications
all parameters vary as functions of working conditions (temperature, current rate) and
battery usage history (degradation) [28], multi-value parameters are usually applied such as
in this case. For this purpose, an array of the values of the parameters at different conditions
are saved, allowing a posterior lookup from a table, finding the appropriate value for each
parameter and interpolating them at different conditions. For the parametrization of the
resistor and the RC network, a pulse characterization test is performed at six different
current rates (2 C, 1 C and 0.5 C at charge and discharge) as well as at three different room
temperatures (10 °C, 25 °C and 45 °C), see Table 3. The OCV values are also taken at those
three different temperatures, profiting from the rest times between different pulses of the
applied pulse characterization test.

Table 3. Pulse characterization test used on the parametrization of the equivalent electric circuit at a certain current I, and

at a certain temperature T,.

Step Action Mode Conditions Comments Current Temp.
1 Rest - 1h
2 Charge CC-Ccv Vmax@0.05C Ia
3 Rest - 1h
4 Discharge CC-CV Vmin@0.05C Capacity measurement Ia
5 Rest - 1h
6 Start cycle Pulse test, charge, start T,
7 Rest - 1h OCV measurement
8 Charge - 60s@not 100% SoC Charge Pulse. Resistance estimation I
9 Rest - 10 min
10 Charge - 10%SOC Set SOC: 10,20, ... ,80,90
11 End cycle
12 Charge CcC-Ccv Vmax@0.05C Ia
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Table 3. Cont.
Step Action Mode Conditions Comments Current  Temp.
13 Start cycle Pulse test, discharge, start
14 Rest - 1h OCV measurement
15 Discharge - 60s@not 0% SOC Discharge Pulse. Resistance estimation I
16 Rest - 10 min
17 Discharge - 10%SOC Set SOC: 90,80, ... ,20,10 Ta
18 End cycle
19 Discharge cCc-cv Vmin@0.05C I
20 Rest - 1h
21 Charge - 30%SOC Charge to 30% I

On the other hand, the proposed thermal model is a 1D RCR equivalent thermal
circuit that employs the thermal behaviour of the battery as a first-order impedance
(Rth_bat, Cn_pat) [29] and the cooling as a thermal resistance (Ry,_c01) (Equations (4)—(6)).
The capacitive response (Cy, pat) is linked to the specific heat capacity of the battery and
the resistive response (R, pat) is linked to the inner thermal conductivity of the battery.
This model is built under the following simplifications and assumptions [30]:

- The heat is generated at just one point (1D).

- The thermal properties of the battery are completely homogeneous all along the
battery.

- All the cells have the same temperature (no heat transfer between cells).

- The physical properties of the battery are independent of the temperature.

- The battery experiences only convection cooling.

e
Rthfbat = m (3)
That (tk—1) — Tamb (t)
Qcool(t) = 4
cool( k) Rth_bat T Rth_cool ( )
dOCV
Qpat(tx) = I(tk)z'R+I(tk)‘Tbat(tkfl)'T 5)
te) — Qeool (£
That(tc) = Tpat(tc—1) + At- Qe k()j col (1) (6)
th_bat
Cthﬁbat = % - m'Cp (7)

dt

The parameters of the model are calculated by applying three specific thermal tests.
Firstly, the specific heat capacity is calculated using the energy conservation Equation
(7) on the Thermal Hazard Technology (THT) heat capacity protocol defined in Table 4.
Then, the entropic factor of the battery, which represents the evolution of the OCV at
different temperatures considering different SOC, is modelled with the test described in
Table 5. Finally, the remaining thermal variables of the equivalent thermal circuit are
obtained by fitting the equivalent thermal circuit equations on any performance test. In
this case, the first part of the Hybrid Power Pulse Characterization [4] test is taken: the 1C
charge discharge.
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Table 4. Specific heat capacity test.

Step Comments
1 Calibration of the Accelerating Rate Calorimeter (ACR) [31] according to mass and battery volume
2 Joint assembly of sandwich type analysis (battery-thermal blanket-battery)
3 Heat generation according to THT (5-10 mW/gr and 7.75 W/m? max.)
4 Adiabatic environment generation (Heaters ARC)
5 Measuring dT/dt stable area (30 °C and 50 °C)

Table 5. Entropic factor tests.

Step Action Value End Conditions Comments

1 Discharge 1C Vmin

2 Charge 1C % SOC desired

3 Pause - *24/2h

4 Set temp —20°C -

5 Pause - 2h

6 Set temp —-10°C -

7 Pause - 2h

8 Set temp 0°C -

9 Pause - 2h

10 Set temp 10°C -

11 Pause _ oh (* initial 24 h pause at 0% and

100% SOC. The rest SOC rest 2 h)

12 Set temp 20°C -

13 Pause - 2h

14 Set temp 30°C -

15 Pause - 2h

16 Set temp 40°C -

17 Pause - 2h

18 Set temp 50 °C -

19 Pause - 2h

20 Set temp 60 °C -

21 Pause - 2h

2.3.2. Algorithm

The proposed EOL mapping algorithm is presented in Algorithm 1. It consists of
searching the values of each of the selected HI that define the EOL event. In other words,
it is designed to find the Hls that make the battery reach the EOL criterion. For that, the
described electric-thermal model is simulated under certain use conditions related to the
EOL criteria (under certain testing input).
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Algorithm 1. Top view algorithm of the proposed EOL mapping approach.

H1P _ M (u) L
{EOLTH}izl - EOLThresholdMupping <{HI(]) }]'=1, {EOLcriteria’ TI(u) }uzl
e _ 1) ... grmM-1)
t {9} }izl = GRID(HIV, ., HIM-1))
2 fori=1to pdo
3: foru:(_l)toLdo ® @
J _ u 1 M
4 EOLY) 1oy = BATT_MODEL (EOL() .., 1, HI®), TI))
5 end for
6 EoLY) = MIN(EoLr_tomp)
7 end for

Where
p = Number of threshold points or evaluation points on the EOL map.

Sg) = (i) evaluation point or combination of the HI values under evaluation.

EoL(T% = End of Life threshold value at (i) evaluation point.

HIY) = Value vector of (j) Health Indicator.

GRID = Generator of the evaluated numerical grid.

BATT_MODEL = Battery electric-thermal model adapted to the EOL criteria and the Hls.
EOL((::?t oria = (1) End of Life criterion imposed by the application specifications.
M = Number of HIs.

L = Number of End of Life criteria.

TI = Test input of the model that allows the test of each EOL criterion.

The selected use cases are both EV applications with a driving range as EOL criteria.
Both have the same two HIs under evaluation: the capacity decrease and the resistance
increase. Both algorithms perform the evaluation loop N times, where N is the num-
ber of combinations between the defined values of the selected Hls except for the pure
ohmic resistance. In this case, N only represents the number of capacity decrease values
under evaluation (N = 21 in high-energy EV application and N = 61 in high-power
EV application).

Once N is defined, the value of the pure ohmic resistance (the free parameter) is calcu-
lated. In order to simplify the proposed approach to calculate the pure ohmic resistance
that defines the EOL event, we have stated the following hypotheses for the high-energy
EV application:

- The polarization voltage and OCV do not change significantly with the increase of the
pure ohmic resistance and thus are neglected.

- The pure ohmic resistance increases uniformly over the whole SOC range.

- The change in the heating of the cell due to the pure ohmic resistance increase does
not significantly affect the voltage response of the cell and, thus, is neglected.

Considering these three hypotheses, the required resistance increase (AR) that leads
to overcome the minimum voltage threshold (Ugpp) is calculated at each loop iteration
based on the electric equivalent circuit equations, see Equation (8).

AR = min(Ut_HgEOD> % 100, AR IR* (8)

Nonetheless, the third hypothesis cannot be assumed for a high-power EV application
due to the effect the resistance has on the fast charge. In this scenario, firstly, the CC charge
strategy (with CV phase if the requirements are met) is emulated in the simulation, and
secondly, a way of finding iteratively the real EOL threshold is generated when integrating
those fast charges.

For the first issue, a proportional integral (PI) controller that emulates the CC and
CV (if the requirements are met) charge strategy is implemented, see pseudo-code in
Algorithm 2. The PI controller’s parameters are adjusted manually, where the integral
controller’s parameter is left dependent on the estimated pure ohmic resistance increase
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(Kpe = 20, Kje = 500/ AR). The previous integral value (Icp) in the first iteration is made
equal to Equation (9).

Icyga — (error-K
o = — (k re) ©)
1€

Algorithm 2. PI controller algorithm used to control the CV phase on the fast charging process.

Icua = CVcontroller(Ico, Icaa_N, Ugoc, Uest, Kie, Kpe)
1 error = Uggc — Uest

2 Ic = Icg + error

3 Icua = —((error-Kpe) + (Ic-Kie))

4 if Icua < IcHA N

5 Icna = Icua N

6: else if Icga > 0

7 Icpa =0

8 end if

Where

Icaa N = Charge current at Constant-Current (CC) phase.

Ugoc = End of charge voltage, which is also the consign voltage.

Uest = Estimated voltage with the model.

K;e = Integral controller’s gain.

Kpe = Proportional controller’s gain.

Icaa = Charging current consign.

Ic = Integral gain of the PI controller.

Ico = Previous integral gain of the PI controller.

error = Voltage difference between the estimated and the consign voltages.

For the second issue, firstly, it is assumed that the real resistance increase (AR) is below
a certain resistance increase (ARp). This resistance increase (ARg) is calculated based on
the two stated hypotheses and by neglecting the effect of the resistance increase on the
battery response, see Equation (8). Afterwards, a bisection method (a numerical method) is
applied with a limit of iterations (Ngy = 5), see Algorithm 3.

Algorithm 3. Bisection method used on the resistance increase calculation with fast charges.

AR = BisectionMethod (AR, I, K;e, Kpe)

1: Study,,ge = [%,AR]

2: fori =1to Ngpm do

3: ARtest = mean (Studyrange>

4: SOCiest = BATT_MODEL_PI (ARtest, I, Kie,er)
5: if SOCiest < 0

6: Studynge = | 2, ARtest]
7: else

8: Studyrange = [ARtest, AR]

9: end if

10: end for

11: AR = Studymnge(l)

Where

Ngm = Number of iterations on the bisection method.
ARptest = Resistance increase value under study:.
SOC¢est = Obtained SOC response of the battery under the I current profile.

3. Results and Discussion

The EOL mapping algorithm has been applied to both use cases. The EOL map for the
application with a high-energy requirement is displayed in Figure 4A and the EOL map
for the application with a high-power requirement is displayed in Figure 4B.
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Figure 4. The obtained EOL map in terms of the resistance increase and the capacity decrease on (A) the high-energy electric
vehicle application and (B) the high-power electric vehicle application.

The observed results in Figure 4A show that the EOL event of the high-energy EV
application is not reached with a capacity decrease up to 10% unless there is a resistance
increase higher than 1500% (a 16 times bigger resistance than the initial one). Between ca-
pacity decrease values from 10 to 12.2%, the resistance increase that describes the EOL event
decreases drastically from 1400 to 0% (to the resistance at the beginning of life). Batteries
with capacity decrease values from 12.2% onwards cannot be used for this application.

The observed results in Figure 4B show that the EOL event is not reached with a
capacity decrease up to 41% unless there is a resistance increase higher than 200% (triple
the value at the beginning of life). Between capacity decrease values of 41 to 49%, the
required resistance to reach the EOL decreases to the value at the beginning of life (a
resistance increase value of 0%). Batteries with capacity decrease values from 49% onwards
cannot be used for this application.

The high-energy EV application applies a relatively small discharge current rate to the
battery system (the mean current rate is around 0.2 C and there are current peaks of 1 C at
most). In consequence, the voltage drop due to the pure ohmic resistance is small, even at
relatively huge resistance increases, while 100% increase in resistance is considered already
as the EOL threshold in current literature [8,9]. Besides, the selected high-energy LIB has
a huge voltage difference between the minimum value and its nominal value, which is
almost maintained until 5% SOC. In this case, the difference between these two voltages is
more than 1V, which is a comparatively high margin to overcome with the voltage drop
due to the battery’s pure ohmic resistance. Based on this, it is stated that the resistance
does not significantly affect the EOL event of the evaluated high-energy application.

The EOL event of the high-power EV application is reached with significantly lower
relative pure ohmic resistance values than in the high-energy application. The EOL event
of the high-power EV application is reached with resistance increase values below 500%
from the start (from the beginning of life) no matter the capacity decrease. In contrast, the
EOL event of the high-energy EV application is reached with resistance increases below
500% at a significantly advanced state of degradation (with a capacity decrease of 12%).

The required resistance increase to reach the EOL drops drastically from a certain
capacity decrease onwards. This phenomenon is especially evident in the high-energy
EV application, where the EOL becomes defined from a combined 12% capacity decrease
and 500% resistance increase to a combined 12.2% capacity decrease and 0% resistance
increase (for a difference of 0.2% capacity decrease, there is a change of 500% of the required
resistance increase to reach the EOL).
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The high-power EV application applies relatively high discharge current rates (maxi-
mum discharge current peaks of 5 C) with repeated 7 min ultra-fast charges (the battery is
charged at 4 C [32]). The ultra-fast charge with a short duration is especially sensitive to
the resistance increase. Besides, the voltage window of this high-power LIB is significantly
smaller than that of the high-energy LIB as it requires lower voltage drops to reach the
maximum and minimum voltage threshold. Based on this, it is stated that the EOL event
on high-power EV applications must consider both the capacity decrease and the resistance
increase.

Finally, it should be highlighted that these results are obtained neglecting any energy
losses (additional or increased consumptions by EV components such as the battery thermal
management system) or resistance increase from the upscaling of the battery to system
level (additional resistance contribution from the connections, wires, power electronics,
etc.). However, they significantly affect the real EOL threshold of the application. As a
consequence, the obtained results are likely to suffer changes in the upscaling process (the
form of the EOL threshold map will be the same; what changes is the initial value of each
HI). Nonetheless, these results (that neglect the energy losses and resistance increases from
the upscaling) can help to define the specifications of the battery system in terms of energy
efficiency and total resistance in early battery system design steps.

4. Validation

The three hypotheses used to simplify the algorithm of the simulation environment in
Section 2.3.2 of this paper have been analysed and validated. The first hypothesis states that
the polarization voltage and OCV do not change significantly with the increase of the pure
ohmic resistance. The second hypothesis states that the resistance is increased uniformly
over the whole SOC range. The third hypothesis states that the change in the heating of the
cell due to the increase of the resistance increase does not significantly affect the voltage
response of the cell. In addition, we have validated the obtained EOL threshold at cell level.
The stated three hypotheses and the resultant EOL threshold have been validated only on
the selected high-energy lithium ion battery because the high-power batteries have not
been aged enough to generate the required data on any of the validations. The high-power
battery was tested at accelerated aging conditions for more than 2 years but there is only
a 5% performance decrease in the worst case, which is insufficiently low to validate the
calculated EOL threshold.

4.1. First Hypothesis

The first hypothesis states that the polarization voltage and OCV does not change
significantly with the increase of the pure ohmic resistance. To validate this, firstly, the
OCVs of a fresh and of an aged cell were compared (Figure 5). The relative capacity was
considered to be the SOH itself. The aged and fresh cell have slightly different OCV profiles.

Secondly, the parameters that define the polarization impedance (the polarization
resistance and the polarization time constant) of a fresh and an aged cell were compared
(Figure 6). The fresh and the aged polarization impedances have values of the same order.
There are significant changes in some specific SOC values due to the degradation but
also due to the uncertainty of the applied estimation process. However, all the values
are between similar upper and lower boundaries, which suggests that the use of the
polarization impedance values estimated on a fresh cell will not have a significant impact
when simulating the voltage response of the aged cell using the polarization impedance
values estimated at fresh state.
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Figure 5. The OCV values at fresh state and aged state of the high-energy battery. (A) is the charge OCV profile and (B) is
the discharge OCV profile.

Resistance[m(2]

25

(A)

(B) ©

100% S
72.5%

70

60 100% SOH

72.5% SOH

3 100% SOH

50 s 72.5% SOH

Taul/s]

40

30

Resistance[m(2]

20

50
SOC[%]

50
SOC[%]

50
SOC[%]

Taul/s]

60

50

40

30

20

(D)

100% SOH
72.5% SOH

50

SOC[%]

Figure 6. Charge transfer impedance at fresh state and aged state of the high-energy battery at the whole SOC range. (A)
is the charge transfer resistance; (B) is the charge Time constant (7); (C) is the discharge transfer resistance and (D) is the
discharge Tau.

Thirdly, the correctness of the proposed model representing the behaviour of an aged
battery with the measured OCV and polarization impedance values at fresh state is tested,
see Figure 7. The simulated aged cell voltage profile has a root mean square error (RMSE)
of 0.028 V and the simulated fresh cell voltage profile has a RMSE of 0.012 V. There is
a relevant difference in the committed errors, but on both cases the committed RMSE is
below 30 mV, which is low enough to consider the proposed model accurate [24].

To sum up, the model that simulates the behaviour of the battery can describe its
voltage response at fresh and aged state with a similar accuracy even though the change in
the OCV and polarization impedance due the aging is neglected. Therefore, this hypothesis

is correct.
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Figure 7. Difference between the estimated voltage and the measured one at fresh state and aged
state of the high-energy battery.

4.2. Second Hypothesis

The second hypothesis states that the resistance increases uniformly over the whole
SOC range. In other words, a measured resistance increase at a SOC value is representa-
tive of the resistance increase over the whole SOC range. This hypothesis simplifies the
integration of the relative resistance as a HI in the simulation.

The simulation calculates the required resistance increase to reach the EOL event. The
calculated resistance increase is related with the resistance of the most critical SOC, and
this SOC depends on the application specifications and battery characteristics. This SOC
level /value can vary.

To validate this hypothesis, we evaluated the differences between the resistance
increase for the most critical SOC values of the high-energy EV application (below 20%)
and the SOC value that represents the selected HI (50% SOC). The results of three tested
batteries with different SOH are shown in Table 6.

Table 6. Pure ohmic resistance homogeneity at different SOH of the High-Energy battery.

Cell ASOH AR at 5% SOC AR at 10% SOC AR at 20% SOC AR at 50% SOC
N°1 11% 18.38% 7.74% 11.47% 15.84%
N°2 18% 22.34% 25.63% 30.25% 33.49%
N°3 21% 24.48% 25.81% 33.17% 40.03%

The results show that the resistance does not increase at the same rate. The cell n° 3
shows a difference of 15.55% between the measured resistance increase values at 5% SOC
and at 50% SOC. This second hypothesis is not correct. However, the results also show
that the resistance increases monotonically over the whole SOC range. The pure ohmic
resistance at every SOC increases due to the aging. In consequence, it is proposed to add
the uncertainty related to the differences the pure ohmic resistance could have at different
SOC values. The proposal consists of adding a confidence range of 20% to the resistance
increase of the calculated EOL threshold, see Section 4.4.
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4.3. Third Hypothesis

The third hypothesis states that the change in the heating of the cell due to the
resistance increase does not significantly affect the voltage response of the cell. This
hypothesis is applied only to the high-energy application use case and it is tested by
simulations of the thermal and electric response of that high-energy battery with the
obtained resistance increase, see Figure 8.
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Figure 8. Above, the temperature profiles with the high-energy application initial resistance and EOL
resistance are shown. Below, the error generated by those two temperature profiles when simulating
the voltage response with the EOL resistance is displayed.

The results show that even though the temperature increases by almost 5 °C due
to the increase in the resistance, the voltage response of the battery remains practically
unaffected; there is a maximum drift of 52 mV between both simulations. This voltage
error could impact the EOL determination only when the voltage level is 52 mV above the
end of discharge voltage. However, this scenario is given at a SOC value lower than 0.5%.
This is why this hypothesis is considered correct.

4.4. High-Energy Application

The calculated EOL threshold itself is evaluated. The calculated EOL threshold of the
high-energy EV application is validated at battery-cell level. We tested seven batteries with
different degradation levels to determine whether they had already experienced the EOL

event. The values for resistance increase and capacity decrease are shown for each cell in
Table 7.

Table 7. Values of Health Indicators of the tested batteries to validate the calculated EOL threshold of the High-Energy electric

vehicle application.

Battery

N°1 N°2 N°3 N° 4 N°5 N°6 N°7

Capacity decrease

0% 3% 4% 11% 17% 19% 21%

Resistance increase

0% 0% 0% 2% 15% 21% 23%
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A downscaled power profile was applied to each of those seven batteries at a fully
charged state. The test was conducted in a climatic chamber set at 25 °C. The batteries that
had already experienced the EOL event were identified by checking that the battery was
not able to complete the downscaled power profile without reaching the end of discharge
voltage. The observations were added to the calculated EOL threshold, see Figure 9.
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Figure 9. Validation of the EOL mapping of the high-energy application. The blue circles represent the batteries that have

fulfilled the operation profile and the red x symbols are the ones that have not fulfilled the operation profile.

The results show that the batteries that combine relative resistance and relative capacity
values lower than the calculated EOL threshold have still not experienced the EOL event
(n°1, 2,3 and 4) and that those that have higher values have already experienced it (n°5, 6
and 7). This proves the veracity of the results and the viability of the defined methodology.
Nonetheless, it can be observed that the tested batteries show low resistance increases
if compared with the resistance increases required to reach the EOL event. In fact, the
resistance and capacity evolution change at similar rates under normal operating conditions.
The required resistance increase defined by the theoretical EOL threshold above 1000%
is not expected to appear during normal degradation of the selected high-energy LIB. It
is practically impossible to generate an aging path that leads to a battery with less than
10% capacity decrease and a resistance increase up to 1000%. This means that the relative
capacity decrease is the dominating value defining the EOL event.

5. Conclusions

The proposal provides the tools to calculate an EOL threshold that captures the
application and battery characteristics. In addition, the methodology allows the integration
of different type of HIs in the EOL definition. It is no longer necessary to select between
the relative capacity or the relative resistance to define the EOL threshold; we are able to
use both or even add some additional ones since we can calculate exactly the combined
values of the selected HIs that define the EOL.

The results have shown that the EOL is dependent on the battery characteristics as well
as on the application specifications. The ranges of resistance increase and capacity decrease
that lead to the EOL vary greatly between applications. We have seen that the commonly
assumed fixed EOL threshold values lead to significant errors in defining the EOL event.
The commonly assumed 80-70% relative capacity EOL threshold is too optimistic for the
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high-energy EV application (the EOL event happens before reaching 87%); and both, the
200% relative resistance and 80-70% relative capacity as EOL threshold are still far from
defining the real EOL event in the high-power EV application (the EOL event is not reached
even at a combination of 400% relative resistance and 60% relative capacity).

The validation of the calculated EOL threshold has shown that the proposed method-
ology could be used, firstly, to develop application-dependent sensitivity analysis of the
different Hls; and secondly, to define battery system specifications in terms of energy
efficiency and resistivity. Thanks to the calculated EOL threshold, we can quantify the
specification of the maximum resistance and the minimum efficiency of the battery system
due to the added wires, connection, electronics, etc.

As for the future, we will add safety considerations to the EOL criteria. The validation
of the EOL threshold of the high-energy EV application has shown that its safety threshold
is below its EOL threshold. However, it is not clear whether the high-power battery can
reach the defined EOL threshold values without crossing the safety threshold; it has not
been possible to age the high-power battery enough to cross the EOL threshold.
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