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Abstract: The growing electrification of vehicles and tools increases the demand for low resistance
contacts. Today’s batteries for electric vehicles consist of large quantities of single battery cells to
reach the desired nominal voltage and energy. Each single cell needs a contacting of its cell terminals,
which raises the necessity of an automated contacting process with low joint resistances to reduce the
energy loss in the cell transitions. A capable joining process suitable for highly electrically conductive
materials like copper or aluminium is the laser beam welding. This study contains the theoretical
examination of the joint resistance and a simulation of the current flow dependent on the contacting
welds’ position in an overlap configuration. The results are verified by examinations of laser-welded
joints in a test bench environment. The investigations are analysing the influence of the shape and
position of the weld seams as well as the influence of the laser welding parameters. The investigation
identifies a tendency for current to flow predominantly through a contact’s edges. The use of a double
weld seam with the largest possible distance greatly increases the joint’s conductivity, by leveraging
this tendency and implementing a parallel connection. A simplistic increase of welded contact area
does not only have a significantly smaller effect on the overall conductivity, but can eventually also
reduce it.

Keywords: resistance measurement; contact quality; laser beam welding; aluminium; copper;
lithium-ion batteries; battery systems; spatial power modulation; single mode fibre laser

1. Introduction

Over the past years, the demand for large battery packs for electric vehicles (EV) has steadily
increased with the ongoing electrification of the transportation sector and a growing demand for greater
ranges. State of the art EV battery packs consist of a large quantity of cells connected in series to achieve
the desired voltage level and in parallel in order to enable higher charge- and discharge-currents.
For example, the EV Tesla Model S comprises of total count of over 7000 type 18,650 battery cells inside
its battery pack [1]. A single defective connection can lead to failure or a reduction in performance.
The quality of the joint has a decisive influence on the already discussed sustainability and safety of
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electric vehicles [2] Increased resistance at a welded joint causes more heat loss at this spot and leads to
an increased electrical and thermal load on the individual cells, which in turn can lead to failure or
accelerated aging. Laser beam welding is a promising technology to contact battery cells enabling
automated, fast and precise production of conductive joints. In comparison to other conventional
welding techniques, such as resistance spot welding, the laser beam welding has a reduced thermal
energy input [3]. Compared to ultrasonic welding, the laser beam welding technique does not induce
a mechanical force [4]. The resulting transition resistances are in the range of the basic material
resistances. The overall performance of the battery pack is therefore improved by the reduction of the
ohmic resistance of the joints and heat loss inside the battery cell.

Furthermore, laser beam welding produces a small heat-affected zone. In the context of production,
laser beam welding is well suited to be integrated into almost fully automated production lines in the
manufacturing process of battery packs and EVs. The joining of aluminium and copper is particularly
challenging in laser welding as the metal pair forms intermetallic phases, which can yield lower weld
qualities [5–7]. These phases can be identified in cross sections, see Figure 1. For the investigation,
the different colours in the mixing zone (dark grey and yellow areas) give a first indication on the
concentration of the metals. For further investigation an energy dispersive X-ray spectroscopy can be
performed, but will not part of this study.
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compared in terms of their conductivity. 
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Figure 1. Cross section of a laser welded aluminium and copper joint (P = 294 W, v = 120 mm/s,
A = 0.15 mm, f = 1000 Hz).

This paper showcases an evaluation of various laser welded joints for the connection of pouch cell
terminals to the battery pack in an overlap configuration. The specimen design is related to pouch
cells. Due to the focus on the connection quality, no functional cells are used for this investigation.
First, an ohmic-resistance model for the joints is introduced. With the help of this model the current
flow across the overlap transition is analysed. Lastly different geometries of welds were chosen and
compared in terms of their conductivity.

2. State of the Art

2.1. Measurement of Electrical Resistance of Laser-Welded Joints

A current passing through a conductor encounters an electrical resistance, analogous to an
opposing force by mechanical friction. This resistance is defined in Ohm’s law as the proportion
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of voltage across and current through the same conductor. It is dependent on the specific electrical
resistance of the conductor’s material and its dimensions according to [8].

R = ρ ·
l
A

(1)

R: resistance (Ω); ρ: specific resistivity (Ω·m2/mm); l: conductor’s length (mm) and A: conductor’s
cross-sectional area (m2).

The specific electrical resistance is furthermore dependent on the material’s temperature and exact
chemical composition. Hence impurities can have an effect on the resistivity.

The measurement of an electrical resistance can be executed by a combined measurement of the
voltage and current, as suggested by Ohm’s law. A popular method for this combined measurement is
the so called four-terminal sensing. The four-terminal sensing describes the introduction of a defined
current through the conductor and a separated voltage measurement. By separating the sensing wires
the measured voltage does not falsely include the voltage across the current carrying wires. As a
voltage measurement usually has a high impedance the current through the voltmeter can be neglected
for significantly lower measured resistances.

In view of laser-welded joints of battery contacts, the analysis of the electrical resistance might
present a suitable indicator for the weld quality. This postulation is based on the effect of impurities in
the material and the dimension of the actual contact area on the joints conductivity. However, solely
the quantity of the resistance might result in incorrect results when comparing different laser-welded
joints. For instance, a joint of worse quality can show a significantly higher conductivity due to a larger
cross-sectional area of the conductor. To allow valid comparisons between joints of different dimensions,
the electrical resistance must be further processed to yield the so-called contact quality index.

The contact quality index (CQI, or resistance equivalence factor) describes the proportion of the
joint’s resistance in respect to its base materials and dimensions [9,10]. To calculate the CQI of a lap
joint an additional measurement of the material’s resistances is necessary, besides determination of
the actual joint resistance. Assuming a constant cross-sectional area of the conductors and constant
measurement distances, these can be acquired as per [9,11] shown in Figure 2.
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Figure 2. Schematic illustration for the calculation of the contact quality index (CQI).

The base resistance for the joint is derived by assuming a seamless, resistance-less joint from one
material into the other over its length. The expected resistance for this geometrically optimal case
would equal half the sum of the measured material’s resistances, namely the average. The CQI can
now be calculated by dividing the actual joint’s resistance by the base joint’s resistance. The equation
is shown in (4).

R′Ci =
UCi
Imeas

and RCi = R′Ci ·
sJ

s
for i ∈ {1, 2} (2)

R′ J =
UJ

Imeas
and RJ = R′ J − (R′C1 + R′C2) ·

s− sJ

2 · s
(3)
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CQI =
2 ·RJ

RC1 + RC2
(4)

R′Ci: measured conductor resistance (Ω); RCi: conductor resistance for length sJ (Ω); R′ J: measured
joint resistance (Ω); RJ: corrected joint resistance (Ω); UCi: voltage across conductor i (V); UJ: voltage
across joint (V); IMeas: measuring current (A); s: measuring distance (mm); s j: joint distance (mm); CQI:
contact quality index (1).

A CQI value of 1 can be interpreted as a joint of similar conductivity as the base materials; a value
less than 1 indicates a higher, a value higher than 1 a lower conductivity. With the CQI joints of different
materials and dimensions can now be compared for its joining method and effect on electrical resistivity.

2.2. Laser Beam Welding with Spatial Power Modulation

For the joining of materials with high thermal conductivity, laser beam welding is a suitable
process. Using small focus diameters of a few 10 µm, the resulting high intensities are able to melt
and vaporize the material to achieve deep and narrow weld seams. The process is defined with two
process stages, the heat conduction welding and the deep penetration welding. For heat conduction
welding the material is molten due to the absorption of the laser beam’s energy on the surface. This
process significantly depends on the absorptivity of the material. Significantly higher welding depths
can be achieved by exceeding a characteristic intensity threshold using a deep penetration welding
process. Therefore the material is vaporized and a keyhole is formed inside the molten pool. Multiple
interactions of the laser beam inside this keyhole lead to an increase of the energy input resulting in a
higher weld seam depth [12].

To manipulate the shape of the weld seam cross section and to stabilize the process during a deep
penetration weld, a spatial power modulation can be used. Therefore the linear feed is superposed
with a circular oscillation movement. The path is then characterized by an oscillation amplitude A,
frequency f and feed rate v f . In [13] a change from a v-shaped to a rectangular shaped weld seam
cross section has been seen. Furthermore, an influence on the hardness, on the mixing of the materials
in overlap configurations and on the roughness of the weld seam surface have been identified [13,14].

2.3. Laser Beam Welding of Electrical Contacts

For laser welding of electrical contacts, the contact resistance is the most important index,
particularly indicated by the previously defined CQI. Therefore [15] has investigated similar material
joints and reached a CQI of 0.55 for a copper connection and 0.57 for aluminium. In this case the joining
partners have been connected by two parallel weld seams in an overlap configuration. By using two
lines with the highest distance possible, the material in the overlap area is connected in parallel and
shows a reduced transition resistance due to the higher current-carrying cross-section.

The investigation of [16] focuses on welding of dissimilar materials using a pulsed Nd:YAG laser.
Weld seam depth and temperature gradient in the melt pool are controlled by a temporal power
modulation. The investigations show a reduced mixing of the materials, higher process stability and
higher seam quality.

Depending on the application, aluminium or copper is usually used to conduct electricity. Due to
the reduced density, aluminium is used for lightweight applications, while copper with its higher
conductivity is used when space is limited. Joining aluminium to copper, leads to numerous challenges.
The differences in melting point, thermal conductivity and expansion cause tensions during the
solidification, which can lead to cracks in the weld seam. Furthermore, the materials are soluble in the
liquid state and form intermetallic phases inside the mixing zone of the weld seam. Besides the increase
of hardness and crack sensitivity, the intermetallic phases increase the electrical resistance [5–7,17].

3. Electrical Equivalent Model for Joint

The investigation focused on laser-welded lithium ion pouch cells. The relatively broad contacts
of these cells consist of aluminium and copper and offer a large contact area. Hence, in the joining
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of lithium ion pouch cells the overlap joint represents a suitable joining method. The joint in this
investigation was aligned along the current direction, producing a straight junction with an expected
homogenous current density in the conductors’ cross-sectional areas (Figure 2).

The given lap joint can be modelled by using electrical equivalent circuit diagram from [4]. Each
joining partner, M and m, was subdivided into equally sized stretch elements resistances. The partners
were joined by bridge elements (indexed with J) representing the current-carrying interconnections.
The resulting equivalent circuit is shown in Figure 3. The dimensions of each resistance in the
equivalent circuit could be mapped according to regarded materials, joining methods and joint areas to
represent the equivalent, real lap joint. All simulation results were based on basic electrical equations
implemented in Python.
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Figure 3. Model of the lap joint using an electrical equivalent circuit diagram.

The simulation of an electrical current through the equivalent diagram of a joint with homogenous
resistance revealed a significant phenomenon. The current had an inherent tendency to flow along the
edges of the joint, represented by the first and last bridge elements of index 0 and n. The tendency
increased with decreasing bridge resistance in comparison to the joining partners’ resistances (indexed
with C). This phenomenon was explained by comparing the given equivalent circuit to a cascaded
bridge circuit. With decreasing bridge resistance, the model approximated a cascaded bridge circuit,
which by definition did not carry any current through the bridges when balanced (of equal resistance
ratio). In fact, it is theoretically impossible for the current to be equal across all bridges in the equivalent
circuit with n > 1 of a given joint, if no variance in the resistances is introduced. This can be proven
mathematically by assuming equal bridge currents and overall equal resistances in the model (n > 1)
and yielding a contradiction by calculating the overall joint resistance via circuit diagram simplification
and the mesh current method.

For the simulation of laser-welded seams on the joint, the electrical values for the model were
determined experimentally. Considering the limitations of the two-dimensional model, the bridge
elements modelled a contact line across the whole conductor’s width. The model was set to be of order
n = 110, hence having 111 distinct bridge resistances (indices 0 through 110). The bridge elements
RJ,i, representing either a weld or a purely frictional contact across the joint, could be determined
by combining the measurements of a representative laser-welded joint, a purely frictional contact
joint and a joint consisting solely of a laser welded seam. The produced bridge resistances show an
improvement in conductivity for laser-welded bridges as compared to frictional contacts by a factor
of 9800, 8750 and 178,000 for aluminium–copper, copper–copper and aluminium–aluminium joints
respectively. The significantly higher factor in the pure aluminium joint can be explained by high
resistances of its frictional contact due to surface oxidation [18]. A simulation of current through a joint
with simplified resistances yields the proportional current through each bridge element RJ,i presented
in Figure 4 (model of order n = 110 model with RM,i = Rm,i = RM/n).



Batteries 2020, 6, 24 6 of 12

Batteries 2020, 6, x FOR PEER REVIEW 6 of 12 

 
Figure 4. Simulation of current through a simplified model with a central weld seam. 

The figure clearly shows the higher conductivity of the laser-weld, spanning over the central ten 
bridge elements. Additionally, the previously explained tendency of the current flowing through the 
joint’s edges could be identified in the rising current rates towards the bridge indices of 0 and 110. 
Modifying the identical model to have the laser-welded bridges to be divided to the joint’s edges, 
yields simulated current rates as shown in Figure 5. 

 
Figure 5. Simulation of current through a simplified model with weld seams on the joint’s edges. 

The first five and last five slots were now assigned to the laser-welded resistances and hence 
represented a joint of overall similar cross-sectional surface area to the central weld example. Due to 
the tendency of edge currents the overall carried current through the weld was significantly higher 
than in the example of the central weld; the current through the frictional contact was negligibly 
small. As a result, the implementation of a “double weld” not only effectively doubled the 
conductivity of the joint (by connecting the materials in parallel, increasing the conductor’s cross-
sectional area in direction of main current flow) but also complemented the current to predominantly 
flow through the laser-welded seams on the joints edges. 

Figure 4. Simulation of current through a simplified model with a central weld seam.

The figure clearly shows the higher conductivity of the laser-weld, spanning over the central ten
bridge elements. Additionally, the previously explained tendency of the current flowing through the
joint’s edges could be identified in the rising current rates towards the bridge indices of 0 and 110.
Modifying the identical model to have the laser-welded bridges to be divided to the joint’s edges,
yields simulated current rates as shown in Figure 5.
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Figure 5. Simulation of current through a simplified model with weld seams on the joint’s edges.

The first five and last five slots were now assigned to the laser-welded resistances and hence
represented a joint of overall similar cross-sectional surface area to the central weld example. Due to
the tendency of edge currents the overall carried current through the weld was significantly higher
than in the example of the central weld; the current through the frictional contact was negligibly small.
As a result, the implementation of a “double weld” not only effectively doubled the conductivity of
the joint (by connecting the materials in parallel, increasing the conductor’s cross-sectional area in
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direction of main current flow) but also complemented the current to predominantly flow through the
laser-welded seams on the joints edges.

A variance of the resistances for the modelled materials introduced a shift in the bridges’ current
densities, whereas higher densities were found at the side of the lower conductive material (and
accordingly the end of the material with higher conductivity). The distribution roughly resembled
the rate of currents found in parallel resistances of different magnitude. Overall the simulations yield
an understanding of current distribution in the overlap joint and its variance introduced by weld
placement or different materials.

4. Metrological Investigation of Resistances of Laser Welded Joints

The experimental part of the investigation focused on the comparison of different welding
characteristics and geometries on overlap joints. The equipment consisted of a laser welding machine,
a micro-ohmmeter and a custom test bench. The laser machine was an IPG YLR 1000 SM, single-mode
fibre laser with a maximum emission power rating of 1 kW. The ohmmeter was a LoRe precision
micro-ohmmeter from Werner Industrielle Elektronik and had a resolution of 1 nΩ in low measurement
ranges starting at 10 nΩ. The custom test bench was designed to measure overlap joints in a manner
to obtain both the joints resistance and CQI in respect to the materials, while retaining a maximum
standard deviation of ±45 µm in the measurement tips’ placement.

The investigation included the survey of different welding parameters and of different weld
geometries altogether. The specimens were fabricated from aluminium Al99.5 and copper Cu-ETP
metal strips of dimensions 20 mm width, 85 mm length and 0.3 mm strength. The specimen geometry
and material were based on a connection of pouch cell batteries. As per Figure 6 the joints overlap sJ

was dimensioned to be of 10.5 mm length.
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Figure 6. Schematic set-up of measuring the specimen.

The measuring sections span over s = 11 mm; the deviation between measurement and actual joint
distance (s and sJ respectively) was eliminated mathematically post measurement. The produced joints
included Al–Al, Cu–Cu and Al on Cu joining; Cu on Al joints were averted due to high instabilities in
the welding process. The differences in material properties and the occurrence of intermetallic phases
led to weld defects such as cracks.

The investigation of different welding parameters was conducted on the geometry of a central
weld. Variances were introduced in respect to weld length across the joint, weld width along the joint
and for the case of Al–Cu joints the induction of resistive intermetallic phases by altering the laser’s
power. The joint’s resistance progressively increased with a reduction of weld length (Figure 7).
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Figure 7. Resistance and CQI of the central weld joints with varying length.

Although the variation of weld widths introduced instabilities in the welding process, an overall
slight resistance reduction was also measured with the increase of weld width. The intentional
introduction of intermetallic phases was to test the measurability of such. The measured resistances
did indeed show a dependency to the introduced laser power and hint a local minimum for optimal
parametrization (Figure 8).
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Figure 8. Resistance and CQI of central weld joints with varying laser powers and hence intermetallic
phases (vf = 100 mm/s, A = 0.2 mm, f = 1000 Hz).

The weld geometries and their measured CQIs are presented in Table 1. They were categorized
by central, long-side and double geometries; additionally, asymmetrical geometries for Al–Cu joints
were examined. The values for each configuration indicate the CQI for each material combination
Al–Al (A), Cu–Cu (C) and Al–Cu (M). The long-sided and the sawtooth welds were only tested with
a copper–copper connection as they were not expected to yield significantly different results across
material combinations. The double weld with pattern and the asymmetrical configurations were
likewise only implemented as an aluminium–copper connection.
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Table 1. CQIs of different weld geometries for Al–Al (A), Cu–Cu (C) and Al–Cu (M). Laser parameters:
amplitudes AA = AC = AM = 0.2 mm unless specified; frequencies fA = fC = fM = 1 kHz; feed rates vf,A =

vf,C = vf,M = 100 mm/s unless specified and power (on specimen) PA = 243 W, PC = 498 W, PM = 294 W.

Joint Central Long-Side Double Asymmetrical
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1A = 0.1 mm, vf = 120 mm/s. 2. A = 0.15 mm and vf = 120 mm/s. 3. Process produced unexpectedly high resistances.
Hypothesis: Higher thermal impact affected material deformations and hence elevated frictional contact resistances.
4 Values after correction for inhomogeneous current flow. Raw measurements show higher resistance for single and
lower resistance for double long-side welds.

As presented in the table, a single central weld could reach sufficient contact quality with respect
to the reference materials. All material combinations could achieve values close to a CQI of 1, emulating
the conductance of the materials. All long-sided joints show a higher CQI compared to the single
central line. This may result due to inhomogeneous current densities, not utilizing the full extent
of the available material as shown in Figure 9 below. The inhomogeneous current flow could be
corrected by recalculating the inner two measurement point. Those measurement points were expected
to be affected by the current flow as presented in Figure 8. The recalculation was done by taking
the measured total resistance between the outer measurement points and subtracting the expected
resistances of the metals on both sides. The expected resistances were calculated by averaging the
respective measurements of the remaining, unaffected specimens. The resulting substitute resistances
were expected to deliver more resembling and comparable estimates in cases of inhomogeneous
current flow.



Batteries 2020, 6, 24 10 of 12

Batteries 2020, 6, x FOR PEER REVIEW 10 of 12 

 
Figure 9. Schematic of proposed inhomogeneous current densities affecting voltage measurements. 

By using double welds positioned on the joint’s edges, the CQI was reduced to the near 
theoretical optimum value of 0.5. With this configuration, the available material was utilized as a 
parallel connection, effectively doubling the conducting cross sectional area. As seen with the double 
weld with pattern, a further increase of the connection area by an additional weld seam did not lead 
to a further reduction of the CQI for an aluminium copper connection. 

Due to the materials’ differing resistivity, the current was predominantly through the more 
conductive material, in this case copper. To determine the influence of the different material 
properties and the weld seam geometry, three asymmetrically configurations were investigated. By 
shifting the weld seam closer to the copper edge, an increase of the CQI was measured. A slight 
increase was also seen with a reduced weld seam length on the aluminium edge. By using an arrow 
geometry, the CQI was increased significantly due to the use of just one weld seam instead of two, 
but was still lower compared to a single central weld seam. 

5. Discussion 

During the investigation the model could be verified to represent the single and double joints, 
when initialized with representative data. However, it cannot represent more complex joints, where 
the conductor’s cross-sectional areas did not predominantly carry strictly perpendicular currents. For 
the simulation of such joints a more complex three-dimensional model is required. The phenomenon 
of current distributions within the joint, as seen in the model, provides implications for the 
manufacturing of battery joints. 

For applying a laser welding process in electrical applications, the results lead to following 
design guide lines. To achieve a CQI of 1, it is sufficient to apply a single weld seam along the whole 
width of the joining partners. Requirement is a stable welding process for contacting the joining 
partners. The width of the weld seam, rectangular to the current flow direction did not have a 
significant influence (compare central slim double line in Table 1). The measured values indicate a 
slight CQI reduction for the similar aluminium and the aluminium copper connection. 

By greatly increasing the distance between the two weld seams the CQI was reduced to nearly 
0.5 leading to the assumption that the position of the weld seams had a greater effect on the resistance 
than increasing the connection width and accordingly seam area with additional weld seams. That 
concludes that weld seams should be positioned as wide apart as possible to use the parallel 
connection of the two conductors. This measurement result is further supported by the simulation, 
which identified a predominant current flow through the joint’s edges. 

The identified dependency of the laser power on the resistance, leads to the assumption that an 
increased weld depth is not improving the CQI. The measurements showed higher values with 
increased laser power and therefore weld depths. The reason for this behaviour might be an increased 
mixing of the copper and aluminium, which leads to an increased occurrence of intermetallic phases. 
These phases inhibit the current flow in the weld seam and lead to an increase of the measured 
resistances. Furthermore, besides affecting the weld seam’s resistance, it can supposedly reduce the 
materials’ conductivity. As seen with the joint “Double with pattern” from Table 1, the addition of a 
pattern to the normal double joint increases the CQI. The introduction of further intermetallic phases 
deals a greater effect on conductivity, than the increase of welded area, in the joint’s central area, less 
significant to the bridge-currents. 

line of equal potential current flow line weld seam measurement probe 

Figure 9. Schematic of proposed inhomogeneous current densities affecting voltage measurements.

By using double welds positioned on the joint’s edges, the CQI was reduced to the near theoretical
optimum value of 0.5. With this configuration, the available material was utilized as a parallel
connection, effectively doubling the conducting cross sectional area. As seen with the double weld
with pattern, a further increase of the connection area by an additional weld seam did not lead to a
further reduction of the CQI for an aluminium copper connection.

Due to the materials’ differing resistivity, the current was predominantly through the more
conductive material, in this case copper. To determine the influence of the different material properties
and the weld seam geometry, three asymmetrically configurations were investigated. By shifting the
weld seam closer to the copper edge, an increase of the CQI was measured. A slight increase was also
seen with a reduced weld seam length on the aluminium edge. By using an arrow geometry, the CQI
was increased significantly due to the use of just one weld seam instead of two, but was still lower
compared to a single central weld seam.

5. Discussion

During the investigation the model could be verified to represent the single and double joints,
when initialized with representative data. However, it cannot represent more complex joints, where the
conductor’s cross-sectional areas did not predominantly carry strictly perpendicular currents. For the
simulation of such joints a more complex three-dimensional model is required. The phenomenon of
current distributions within the joint, as seen in the model, provides implications for the manufacturing
of battery joints.

For applying a laser welding process in electrical applications, the results lead to following design
guide lines. To achieve a CQI of 1, it is sufficient to apply a single weld seam along the whole width
of the joining partners. Requirement is a stable welding process for contacting the joining partners.
The width of the weld seam, rectangular to the current flow direction did not have a significant
influence (compare central slim double line in Table 1). The measured values indicate a slight CQI
reduction for the similar aluminium and the aluminium copper connection.

By greatly increasing the distance between the two weld seams the CQI was reduced to nearly 0.5
leading to the assumption that the position of the weld seams had a greater effect on the resistance than
increasing the connection width and accordingly seam area with additional weld seams. That concludes
that weld seams should be positioned as wide apart as possible to use the parallel connection of the
two conductors. This measurement result is further supported by the simulation, which identified a
predominant current flow through the joint’s edges.

The identified dependency of the laser power on the resistance, leads to the assumption that
an increased weld depth is not improving the CQI. The measurements showed higher values with
increased laser power and therefore weld depths. The reason for this behaviour might be an increased
mixing of the copper and aluminium, which leads to an increased occurrence of intermetallic phases.
These phases inhibit the current flow in the weld seam and lead to an increase of the measured
resistances. Furthermore, besides affecting the weld seam’s resistance, it can supposedly reduce the
materials’ conductivity. As seen with the joint “Double with pattern” from Table 1, the addition of a
pattern to the normal double joint increases the CQI. The introduction of further intermetallic phases
deals a greater effect on conductivity, than the increase of welded area, in the joint’s central area, less
significant to the bridge-currents.
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6. Conclusions

To reduce the electric loss in the connection of battery cells for electric vehicles, the joining process
and the resulting transition resistance are essential. By introducing a model representing the joints’
partial resistances, the current flow through the connection could be investigated. As a consequence,
various joint geometries were investigated using a laser welding process to leverage and examine
the observed edge current phenomenon. Naturally the current density along the material edges of
the overlap, which are perpendicular to the current flow, was predominantly higher compared to
the inner contact area. By measuring a CQI for each proposed connection, the influence of different
weld seam geometries could be identified. Using double welds close to the edges of the overlapped
materials yielded the investigations minimum CQI of about 0.52 and should hence be considered for
manufactural purposes. The sheer increase of the welded contact area should be critically assessed,
as it had a significantly smaller influence to the CQI and could even reduce the joint’s conductivity.
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