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Abstract: In this paper, a classic proportional–integral (PI) control strategy as an energy management
strategy (EMS) and a microgrid stand-alone power system configuration are proposed to work
independently out of grid. The proposed system combines photovoltaics (PVs), fuel cells (FCs),
batteries, and supercapacitors (SCs). The system supplies a dump load with its demand power.
The system includes DC/DC and DC/AC converters, as well as a maximum power point tracking
(MPPT) to maximize the harvested energy from PV array. The system advantages are represented
to overcome the problem of each source when used individually and to optimize the hydrogen
consumption. The classic PI control strategy is used to control the main system parameters like FC
current and the state-of-charge (SOC) for the battery and SC. In order to analyze and monitor the
system, it was implemented in the MATLAB/Simulink. The simulation done for fuzzy logic and
high frequency decoupling and state machine control strategies to validate the PI classic control
strategy. The obtained results confirmed that the system works efficiently as a microgrid system.
The results show that the SOC for the battery is kept between 56 and 65.4%, which is considered a
proper value for such types of batteries. The DC bus voltage (VDC) is kept within the acceptable level.
Moreover, the H2 fuel consumption is 12.1 gm, as the FCs are used as supported sources working
with the PV. A big area for improvement is available for cost saving, which suggests the need for
further research through system optimization and employing different control strategies.

Keywords: DC microgrid; energy management; hybrid power system; energy efficiency

1. Introduction

In power system grids, the microgrid is identified as a distributed energy system (DES), including
generators, energy storage elements like batteries (B) and supercapacitors to balance the generated
power and the consumed power [1–3], an energy management system to control the entire operation
of the microgrid sources [4,5], and load. All of these items are combined together and work in
parallel with the utility grid, or out of grid as a stand-alone system used for a small area and few
consumers [6,7]. Generally, the microgrid is considered a cluster of the utility grid [8], as shown in
Figure 1. Using a utility grid for power distribution has some disadvantages, such as transmission
losses, especially when the generating plants are far away from the consumers, bad environmental
impact because of emission, and climate change due to the use of conventional resources in the
generation phase. Microgrids represent an alternative option that has the potential to overcome
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these problems. Microgrids can minimize power losses through transmission, reduce CO2 emissions,
and limit climate change, especially when using renewable energy resources in electricity generation.
It also saves money in several ways, such as preventing outage, selling electricity to national grids
through feed, and tariff or net metering systems. Using power systems that combine renewable sources
with zero emission besides energy storage elements makes the system able to achieve maximum
efficiency compared to systems containing conventional sources [9–11]. An energy management
system is a system that controls the operation of the microgrid (MG) system. It uses many approaches
and control strategies to get maximum system performance. These control strategies may include a
state machine, a classic proportional–integral (PI) control, a fuzzy logic control, an external energy
maximization, an equivalent minimization, and a frequency decoupling control strategy [12].

Batteries 2019, 5, x FOR PEER REVIEW 2 of 25 

impact because of emission, and climate change due to the use of conventional resources in the 
generation phase. Microgrids represent an alternative option that has the potential to overcome these 
problems. Microgrids can minimize power losses through transmission, reduce CO2 emissions, and 
limit climate change, especially when using renewable energy resources in electricity generation. It 
also saves money in several ways, such as preventing outage, selling electricity to national grids 
through feed, and tariff or net metering systems. Using power systems that combine renewable 
sources with zero emission besides energy storage elements makes the system able to achieve 
maximum efficiency compared to systems containing conventional sources [9–11]. An energy 
management system is a system that controls the operation of the microgrid (MG) system. It uses 
many approaches and control strategies to get maximum system performance. These control 
strategies may include a state machine, a classic proportional–integral (PI) control, a fuzzy logic 
control, an external energy maximization, an equivalent minimization, and a frequency decoupling 
control strategy [12]. 

 
Figure 1. Configuration of DC microgrid. 

Manoj et al. [13] discussed the two main types of MG: Alternative current microgrid (ACMG) 
and direct current microgrid (DCMG). The DCMG has some advantages over the ACMG, such as 
high efficiency, easy connection on the DC bus, and system reliabilities. They confirmed that in 
DCMGs, there are three factors influencing power disturbance: Fluctuation of power exchange, 
power variation between the storage system and the power sources, and the fast change in the DC 
bus load. Ravichandrudu et al. [14] designed an MG system using renewable sources, which has the 
benefits of utilizing renewable energy sources and reducing transmission losses when using wind 
and hydro. The proposed microgrid system has three operation modes. Phurailatpam et al. [15] 
proposed a DCMG system that includes a photovoltaic (PV) power system and uses the battery as an 
energy storage system. The DC/DC converters were discussed, as well as the maximum power point 
tracking (MPPT) for the PV. The system performance at constant and variable values for irradiance, 
wind speed, and load was monitored and analyzed. The simulation results showed that the system 
maintained the DC bus voltage at constant value, which confirmed the advantages of the DCMG 
compared with the ACMG. Elsied et al. [16] proposed a novel energy management strategy based on 
binary particle swarm optimization (BPSO) to optimize the performance of the MG, maximize the 
micro grid power, and decrease the system CO2 emissions. The system was supported by an 
experimental lab test. The obtained results proved that the BPSO is efficient when used with the MG. 

Figure 1. Configuration of DC microgrid.

Manoj et al. [13] discussed the two main types of MG: Alternative current microgrid (ACMG)
and direct current microgrid (DCMG). The DCMG has some advantages over the ACMG, such as
high efficiency, easy connection on the DC bus, and system reliabilities. They confirmed that in
DCMGs, there are three factors influencing power disturbance: Fluctuation of power exchange, power
variation between the storage system and the power sources, and the fast change in the DC bus load.
Ravichandrudu et al. [14] designed an MG system using renewable sources, which has the benefits of
utilizing renewable energy sources and reducing transmission losses when using wind and hydro.
The proposed microgrid system has three operation modes. Phurailatpam et al. [15] proposed a
DCMG system that includes a photovoltaic (PV) power system and uses the battery as an energy
storage system. The DC/DC converters were discussed, as well as the maximum power point tracking
(MPPT) for the PV. The system performance at constant and variable values for irradiance, wind speed,
and load was monitored and analyzed. The simulation results showed that the system maintained
the DC bus voltage at constant value, which confirmed the advantages of the DCMG compared with
the ACMG. Elsied et al. [16] proposed a novel energy management strategy based on binary particle
swarm optimization (BPSO) to optimize the performance of the MG, maximize the micro grid power,
and decrease the system CO2 emissions. The system was supported by an experimental lab test.
The obtained results proved that the BPSO is efficient when used with the MG. For a DCMG hybrid
system, Garita et al. [17] examined the efficiency of an energy management strategy (EMS) used in
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a DCMG configuration containing a PV and a battery integrated together in one unit. An energy
management system was used with three main system configurations. It works through seven operation
modes as power flow direction under two different case studies (OFF—grid and peak shaving) to
achieve maximum system performance. In their study of DCMG, Eghtedarpour et al. [18] propose three
levels of control to improve the performance of the DCMG. The first level is where no communication
is required and the control is done based on the local measurements. The second level is based on a
DC microgrid energy management system. The third level is the top level of control, which controls
multi-microgrids. Shehata et al. [19] proposed an energy management strategy for DCMG based on
a multi-agent system applied using the JADE framework, where PI controllers are used as an EMS.
The interface between the multi-agent system and the MATLAB/Simulink software was done through
the MACSimJX interface. An analytical solution used as a reference model supported by a numerical
method was proposed by Hadj-Said et al. [20] to confirm the suitability of the proposed EMS used in
parallel hybrid electric vehicles (HEV) to achieve maximum system performance. The proposed EMS
was applied successfully on continuous and discrete optimization cases. Sedaghati et al. [21] discussed
a PV–FC–B–SC hybrid system based on grid-connected microgrids. A control strategy called adaptive
fractional fuzzy sliding mode control (AFFSMC) was used for the inverter. The fuzzy rules are designed
to accurately estimate the uncertain parameters. The results showed that the proposed strategy works
efficiently. When the analytical solution was applied for a certain model, such as the optimal auxiliary
functions method (OAFM) proposed by Herisanu et al. [22], it was found to be a reliable and efficient
tool for mechanical and electrical performance of the system. For the PV/wind hybrid system in a
microgrid, the wind turbine generator is characterized by its slow response, while the PV array enjoys
a fast response. If both generators are combined in one system, the voltage of the DC bus takes a long
time to reach a stable condition that affects the overall system response, especially when the load is
variably switching [23]. For the battery/supercapacitor hybrid system, as proposed by Vasily et al. [24],
a number of the internal problems of the battery negatively affects the system’s overall performance,
such as its short life cycle and its low efficiency due to the number of charging/discharging times,
causing fast breakdown of the battery. For the PV/FC hybrid power system, the main problem is the
efficiency of both the PV and the FC, and the low density and high initial cost of the PV arrays. Despite
the concerns raised for the mentioned hybrid systems, sometimes the configuration itself cannot
achieve its target, as [25], when all the system components are connected in a series and, as a result,
if there is a problem in any component (PV, Electrolyzer, storage, and FC), the power production could
be affected, thus impacting the system’s financial return and cost. Using the PV as a preliminary source
decreases the unwanted side effects of using the FC, such as low efficiency during the operation period,
high cost, unstable low generated voltage, and finally, the high ripple current linked to the output
voltage which reduces the FC lifetime [26,27].

Along the same lines, a number of studies explored the same application with the same
configuration; however, compared with the present paper, it was found that all the previous works
that have the same components connected the SC to the DC bus through a DC/DC converter to control
the charging/discharging of the SC [28–30]. By contrast, in the present paper, the SC has been directly
connected to the DC, which has two advantages over other connection methods. The first one is
reducing the cost of the system through removing one DC/DC converter, and the second advantage is
the fast response of the SC to load changing. One of the important parameters for the proton exchange
membrane fuel cell (PEMFC) used in this paper is that it works at low temperatures, which gives the
chance to enhance its size to achieve maximum power production. The solid oxide fuel cell (SOFC)
used for the hybrid system [21], by contrast, needs long start-up times and requires insulation and
heat dispersion due to temperature concerns. In addition, the PEMFC has higher efficiency, more fuel
flexibility, smaller size as it does not require cooling or thermal dissipation, and is less expensive
compared to SOFC. The main contribution of this paper is to propose an MG configuration containing
PV/FC/B/SC to supply a dump AC variable load with its needed power. It also proposes a classic PI
control strategy as an EMS to control the FC current and calculate the hydrogen consumed by the fuel
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cell. For the proposed system, the PV system decreases the FC hydrogen consumption during day light
when it is available, especially in areas of high irradiance values, for a long time. It also gives a chance
to increase the size of the clean power generated to decrease greenhouse gasses and global warming,
which is good for the environment and climate change. Also, using a battery and a supercapacitor
as storage elements gives the system an advantage over individual systems, as the specific power
is low, while the specific energy is high—but the supercapacitor has a high specific power and low
specific energy [31,32]. In this paper, the performance of the system is simulated using two different
energy management strategies (fuzzy logic control strategy and high frequency decoupling and state
machine control strategies) to validate the proposed PI control strategy. The simulation results show
that the PI control strategy is better than the high frequency decoupling and state machine control
strategy in terms of hydrogen consumption. Although the hydrogen consumed by the fuzzy logic
control strategy is close to the consumed value by PI, the PI control strategy is easy and simple for
implementation. The overall system performance proves that the system works efficiently when
applied for a three-phase AC variable load. The cost optimization issue was not calculated in this
study, and could be considered in future papers. The next sections of this paper present the overall
system description of the proposed system structure, system components, the control strategy, results
and discussion, and finally, the conclusion.

2. Overall System Description

A hybrid power system containing a PV, FC, battery, and SC is designed to examine the
optimal configuration for the power system shown in Figure 2. It is implemented and simulated in
MATLAB/Simulink (version 2018a) software to monitor, control, and analyze the system. The PV panel
is connected to a DC/DC boost converter, which is controlled through an MPPT based on perturb and
observe (P&O) to get the maximum power of the solar panels. The irradiance values were assumed
through the Simulink signal builders and the temperature is fixed at 25 ◦C. The system component was
chosen to get the maximum system performance when working together to cover the disadvantages of
each source when operating as a stand-alone source. The system is designed to supply a dump load
with its demand power. The system covers the disadvantages of each individual power system when
working as a separate system. The surplus power from PV is utilized in charging the SC and battery.
It keeps their state-of-charge (SOC) in proper value for operation.
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3. System Components

3.1. PV Arrays

The equivalent circuit for the PV solar cell is represented in Figure 3 [33,34], where IL is the current
generated inside the solar cell according to the sunlight. As a basic configuration, the solar cell is a
P–N junction, so the diode current ID is taken into consideration.
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The output current is calculated by applying Kirchhoff’s law and is displayed as follows:

I = IL − I0 (exp
(
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)
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Vo + IRs
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where I denotes the output current; I0 is the diode saturation current; V denotes the output voltage;
a is the identifying factor of the cells; and VT is called the thermal voltage [35,36]. Solving Equation (1)
for short circuit current and RP value is very large compared to the series resistance. The saturation
current as a function of temperature is calculated directly by the following equation [37]:

I0 = I0.ref
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T
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{
qEg
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−

1
T

)}
(2)

where Tref and T are the reference and ambient temperatures, respectively, and Eg denotes the energy
gap of the material. The relation between the photon current generated and the solar irradiance is
represented as follows [38]:

IL =
G
Ga

(IL.ref + Vsc ∆T) (3)

where: G is the solar irradiance; Ga is the reference solar irradiance, which is equivalent to 1 KW/m2

at the standard test condition (STC); ∆T denotes the temperature difference between the actual
temperature and the temperature at STC, which is 25 ◦C; and Vsc is the temperature coefficient [39].
Rezk et al. represent in [40] the modeling of the I–V curve of the PV under all conditions of irradiance
and temperature. Table 1 represents the data sheet of the solar panels used in the proposed system in
this paper.

Table 1. Data sheet for the TPB 156x156-72-P-295W.

Module Type TPB 156x156-72-P-295W

Module power class 295 Wp
Composition 72 (156 × 156 mm) polycrystalline silicon solar cells per module

Max. power (Pmpp) (in W) 295
Max. voltage (Umpp) (in V) 35.3
Max. current (Impp) (in A) 8.36

Open-circuit voltage (Uoc) (in V) 44.3
Short-circuit current (ISC) (in A) 8.67

Cell temperature (TNOCT) (in ◦C) 46
Module efficiency (in %) 15.2
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Figure 4 shows the relationship between the generated current and output power, along with the
voltage for the type TPB 156x156-72-P-295W PV solar module used in this paper. The maximum value
of the current, called ISC current, when the output terminals are shorted and the maximum value of
voltage is the Voc at the value of zero current.
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Several researches discussed in detail the MPPT algorithms and how to use them for maximizing
the generated power from PV [41–45]. In this paper, the MPPT used is based on the perturb and observe
(P&O) algorithm with the flowchart shown in Figure 5. P&O is the most common technique in which
the power is compared at several samples and perturbs the current. This process is repeated until the
difference in power is zero. Larminie et al. discussed several techniques of MPPT, including P&O [46].
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3.2. Fuel Cell

The advantages of the proton exchange membrane fuel cell (PEMFC) include its high efficiency,
reaching up to 45%, high energy density out of small dimensions (up to 2 W/cm2), silent operation,
low-temperature operation, fast start-up, and system robustness [47,48]. The most important advantage
of the PEMFC is the minimum pollutants, where the hydrogen fuel used in FC has no adverse effects
on the environment [49,50]. In spite of the FC advantages, the FC has some disadvantages like its slow
response to the load variation, its unstable output voltage, its short lifetime because of the increase
in current ripple, and its relatively high cost. The overall equivalent circuit for the FC discussed by
Outeiro et al. is shown in Figure 6 [50].
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The modeling and simulation of the FC were discussed in [51] as follows:

A =
RT
zαF

(4)

Eoc = En Kc (5)

io =
zFk

(
PH2 + PO2

)
RH

e
−∆G
RT (6)

where R is 8.3145 J/(mol K); Kc denotes voltage constant at nominal condition of operation; T is
temperature of operation (K); F is 96,485 A s/mol; ∆G is size of the activation barrier, which depends
on the type of electrode and catalyst used; h denotes Planck’s constant = 6.626 × 10−34 J s; z is number
of moving electrons; k denotes Boltzmann’s constant = 1.38 × 10−23 J/K; PO2 denotes partial pressure
of oxygen inside the stack (atm); PH2 is partial pressure of hydrogen inside the stack (atm); En is
Nernst voltage, which is the thermodynamics voltage of the cells and depends on the temperatures
and partial pressures of reactants and products inside the stack (V); and α is charge transfer coefficient,
which depends on the type of electrodes and catalysts used. For block A in the FC equivalent circuit,
the utilization factor for the fuel and the air (H2 and O2) is calculated as follow:

U f O2 =
nr

O2

nin
O2

=
6000RTNi f c

2zFPairVlmp(air) y%
(7)

U f H2 =
nr

H2

nin
H2

=
6000RTNi f c

zFP f uelVlmp( f uel) x%
(8)

where Pfuel is absolute supply pressure of fuel (atm); Pair is absolute supply pressure of air (atm);
N denotes number of cells; Vlpm(air) is air flow rate (L/min); Vlpm(fuel) is fuel flow rate (L/min);
y denotes percentage of oxygen in the oxidant (%); x denotes percentage of hydrogen in the fuel (%);
and the 60,000 constant comes from the conversion from the L/min flow rate used in the model to m3/s
(1 L/min = 1/60,000 m3/s). The Nernst voltage is determined in Block B as follows:

ENernst t = 1.229− (T − 298.15)
−44.43

zF
+
−RT
zF

ln (PH2 P
1
2
O2
), when T ≤ 100 ◦C (9)

ENernst t = 1.229− (T − 298.15)
−44.43

zF
+
−RT
zF

ln (
PH2P

1
2
O2

PH2O
), when T > 100 ◦C (10)

The partial pressure for H2, O2, and H2O are calculated also in block B as follows:

PH2 =
(
1−U f H2

)
x% P f uel (11)

PH2O =
(
W + 2y%U f O2

)
Pair (12)

PO2 =
(
1−U f O2

)
y% Pair (13)

where W denotes percentage of water vapor in the oxidant (%) and PH2O is partial pressure of water
vapor inside the stack (atm). The updated values of the exchange current io and the open circuit voltage
are calculated according to the partial pressure and the Nernst voltage. The (I–V) curve of the FC used
in this paper is represented in Figure 7. It represents the relation between the current density and the
FC voltage. Table 2 represents the data sheet for FC used in present case study.
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Table 2. Data sheet parameters of the proton exchange membrane fuel cell (PEMFC).

Parameters

Nominal power (w) 10,287.5
Max power (w) 12,544

Nernst voltage (V) 1.1491
Hydrogen (H2) 98.98%
Oxidation (O2) 42.885

Fuel flow rate (lpm) 114.9
Air flow rate (lpm) 732
System Temp (K) 318

P Fuel (bar) 1.16
P Air (bar) 1

3.3. Battery

The main target of using and integrating a battery and a supercapacitor with the renewable energy
resources power configuration is to store the surplus of energy produced from the other sources and
reuse it whenever there is a shortage in energy [52,53]. In this paper, the proposed design was built
based on the lithium-ion battery. The battery parameters are shown in Table 3 and the discharge
parameters are shown in Table 4.

Table 3. Battery parameters.

Parameters

Nominal voltage (V) 48
Rated capacity (Ah) 40

Initial state-of-charge (%) 65



Batteries 2019, 5, 63 10 of 26

Table 4. Battery discharge parameters.

Discharge

Maximum capacity (Ah) 40
Fully charged voltage (V) 55.8714

Nominal discharge current (A) 17.3913
Capacity (Ah) at nominal voltage 36.1739

Exponential zone [Voltage (V), Capacity (Ah)] [52.3, 1.96]
Discharge current [i1, i2, i3, . . . ] (A) [20, 80]

For batteries, there are three main modeling types: Mathematical model, electro-chemical model,
and equivalent circuit model [54]. Honorat et al. discussed the three methods of fast characteristics of
automotive lithium-ion second life batteries [55], whereas madani et al. [56] discussed the electrical
equivalent circuit for second order batteries. Jiuchun et al. [57] argue that the electrical equivalent
circuit is the best model for representing the battery, due to the unsuitability of the mathematical model
for actual application and the complexity of the electro-chemical model. Valant et al. [58] tested the
modules used in secondary application of grid in lab conditions. Generally, the equivalent circuit of the
ideal battery combines the open circuit voltage and the battery internal resistance. Figure 8 represents
the equivalent battery circuit and Figure 9 represents the battery performance—where Vb is the battery
voltage; ib is the battery current; Voc is the open circuit voltage as a function of SOC h (t); Rp and Cp are
the resistance and the capacitance of the battery polarization; and Rs is the internal resistance.
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For discharge mode, the battery voltage equation is represented as follow [59]:

Vbatt = E0 – K (
Q

Q− it
) i∗ − K (

Q
Q− it

) it + A e−Bit (i∗ > 0) (14)

For charge mode, the battery voltage equation is represented as follows:

Vbatt = E0 – K (
Q

it + 0.1 Q
) i∗ − K (

Q
Q− it

) it + A e−Bit (i∗ < 0) (15)

The fully charged state voltage is displayed as follows:

Vfull = E0 − Ri + A (16)

The exponential section voltage is calculated as follows:

Vexp = E0 − K (
Q

Q−Qexp
) (Qexp + i) − Ri + A e

−3
Qexp

Qexp (17)

And finally, the nominal zone cell voltage is calculated as follows:

Vnom = E0 − K (
Q

Q−Qnom
) (Qnom + i) − Ri + A e

−3
Qexp

Qnom (18)

where E0 is constant voltage, in V; K is polarization constant, in Ah−1; i* is low frequency current
dynamics, in A; i is battery current, in A; it is extracted capacity, in Ah; Q is maximum battery capacity,
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in Ah; A is exponential voltage, in V; and B is exponential capacity, in Ah−1. SOC is estimated according
to coulomb counting by accumulating the capacity during battery charging/discharging:

SOC = SOC0 −
1

Qn

∫ t

0
ηidt (19)

3.4. Supercapacitors (SC)

The SC is used with the battery to decrease the peak current in the battery when the load is highly
fluctuating because of its high specific power. As the battery cannot supply the needed power at a high
rate because of it characteristics, the SC covers this power shortage. SC has a high-efficiency cycle (about
100%) which is suitable for both frequent charge/discharge cycles and storage of energy, compared
to the battery, which is used to supply the average needed power. It means that the SC delivers the
power faster and has more charge/recharge cycles than the battery [60]. That is why the supercapacitor
is used as a complementary element with other electrical sources that have different dynamic behavior
and different energy storage quantities [61]. The main parameters of the supercapacitor source used in
this paper are shown in Table 5, while the self-discharge parameters are listed in Table 6.

Table 5. Supercapacitor (SC) main parameters.

Parameters

Rated capacitance (F) 15.6
Equivalent DC series resistance (Ohms) 1.50 × 10−1

Rated voltage (V) 291.6
Initial voltage (V) 270

Operating temperature (Celsius) 25

Table 6. Supercapacitor (SC) self-discharge parameters.

Self-Discharge

Current prior open-circuit (A) 10
Voltage at 0 s, 10 s, 100 s, and 1000 s [Voc, V3, V4, V5] (V) [48, 47.8, 47.06, 44.65]

Charge current [i1, i2, i3, . . . ] (A) [10, 20, 100, 500]

Figure 10 shows the electrical equivalent circuit for the SC [62], where C is the capacitance of SC,
EPR is the equivalent parallel resistances, and ESR is the equivalent series internal resistances of SC.

EUC =
1
2

C
(
V2

i − V2
f

)
EUC (20)

where EUC is the dragged energy from the SC and
(
V2

i −V2
f

)
is the voltage change between the final and

initial voltage. The series/parallel configuration of the capacitors in SC was determined by the value of
the terminal voltage. The total capacitance and resistance for the SC can be determined as follows:

Rtotal = ns
ESR
np

(21)

ESR =
∆Vd

Id
(22)

Ctotal = np
C
ns

(23)

C = Id
(t2 − t1)

(V2 − V1)
(24)
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where Id is the discharging current; ns is the number of connected capacitors in series; and np is the
number of series strings in parallel. The characteristics of the supercapacitor charge is shown in
Figure 11.
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4. Energy Management System

As the proposed system in this paper contains multi-electrical power sources like FC and PV,
an energy storage element could be used as a power source when discharging. Hence, there is a need
for an energy management strategy, based on a computer program to control, monitor, and optimize
the system operation to get maximum system performance [63]. The EMS is used to increase the system
overall efficiency, decrease the hydrogen fuel consumption in the FC power system when the FC is
used as a component of the hybrid system, increase the life cycle of the system component to keep the
stability of the DC voltage, and control the SOC and prevent its deep discharge [64]. There are many
EMSs and control strategies that are used with renewable hybrid power systems, such as state machine
control, fuzzy logic control (FLC), Control loop cascade, proportional–integral–derivative (PID) control
approach, and instantaneous optimization approach. The PI cascaded control was promoted in this
paper as a microgrid control strategy. This control strategy calculates and sets the reference values
of FC current, battery charge, and discharge currents. Figure 12 shows the flowchart of the fuel cell
current control with each comparison step between the reference values of SOC, load power with PV
power, and finally, the minimum and maximum values for the DC bus voltage (VDC). Regarding the
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EMS used in the present case study, the classic PI controller gives the simplest way because it has a
few number of inputs, is easy to be configured, has feedback, and is inexpensive compared with other
EMSs like FLC. FLC has more rules for more accuracy, low speed performance, and much more cost
with regard to the programming and hardware interface [65].
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Figure 12. Fuel cell current control flow chart.

The PI control strategy is simulated in MATLAB/Simulink, as illustrated in Figure 13. Figure 13a
shows the actual percentage of SOC measured in the simulation program compared with a
predetermined value (60%). According to the difference, the program increases/decreases the reference
power of the fuel cell. Figure 13b illustrates the shortage power from load/PV comparison, where the
behavior of the strategy output is calculated according to the difference between the load and the PV
power. Figure 13c shows the reference value of the fuel cell current according to the reference power,
and Figure 13d shows the fuel cell reference current according to VDC limits.
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reference current according to DC bus voltage (VDC).

The control of the charging/discharging battery current is done according to PI control strategy.
It depends on a summation of two PI controllers. One of them is based on the power difference
between the load and the PV power, and the other is based on the difference between the actual and the
reference of the VDC, which is 270 VDC in this case. According to the result of these two PI controllers,
the output of the strategy by charge/discharge the battery. Figure 14 shows the flowchart of the battery
charge/discharge procedure.
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Figure 15 shows the PI control strategy MATLAB model for battery.
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Figure 15. PI control strategy for battery charge/discharge.

The system is designed to supply a variable three-phase dump load, as shown in Figure 16a,
with its needed power. The load profile is assumed to be variable with different levels of power in order
to test the performance of the proposed system at variable value of load (from about 0 to 9 kW) along
the total duration of simulation. The system is implemented and simulated in MATLAB/Simulink for a
total simulation time of 350 s. During this period, the behavior of the system could be divided into
three different stages according to the PV power, as shown in Table 7.
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Table 7. Simulation stages and its boundaries.

Stages Time PV Power (Watt)

Stage #1 From 0 to 90 s 0
Stage #2 From 90 to 250 s 0 > PV > 7326
Stage #3 From 250 to 350 s 0
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4.1. Performance during Stage #1

The start of this stage is at 0 s, and its end is determined at 90 s. In this period, the PV power
is zero, as shown in Figure 16c. In this stage, the zero PV power is because of no solar irradiance,
as shown in Figure 16b. During the period from 0 to 40 s, there is a surplus of power because the load
is zero. The fuel cell current is at minimum (ifc = 20 A) because the SOC initial value (60%) is greater
than its reference value (60%), which leads the VDC to increase more than 270 V, which is the set point
for the system DC bus voltage. The battery and supercapacitor start to charge, as per battery charging
current (Figure 17a).
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Figure 18 shows line voltage, phase current, fuel cell power, and battery power. At 40 s, the load
starts to increase and the supercapacitor starts to supply the load with the power faster than the fuel
cell and battery because of its charge/discharge response. Then, the battery and fuel cell start to supply
their power at 43 s and 44 s, as illustrated in Figure 18c,d. The fuel cell power, the battery, and the
supercapacitor power follows the load power until the end of this stage at 90 s, according to the PI
control strategy.
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4.2. Performance during Stage #2

This stage is initiated at 90 s and ends at 250 s. The PV output power increases with the increasing
of the irradiance value according to day light. As the temperature is assumed to be constant (t = 25 ◦C),
the PV power is mainly dependent on the PV current shown in Figure 16d. The EMS estimates the
difference between the load power Pload and the PV power, and then determines the new values of
the fuel cell current and the battery charge/discharge current. In this case, the PV power interferes in
controlling the battery charging/discharging, as well as controlling the FC current (Figure 19a).
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The PV power reaches its maximum value of 7326 watt at 170 s. At this point, the generated
PV power exceeds the load demand, leading to a surplus of power. This surplus power is used to
charge the battery and supercapacitor through the PI control strategy, and simultaneously decreases
the power consumed from the fuel cell at the same time until 180 s. During the period from 80 to 250 s,
the load demand is more than the generated PV power and there is no surplus power. The battery and
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supercapacitor then discharge and share the load power with the PV array and fuel cell. Figure 20
shows the results for all of the system collected together.
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4.3. Performance during Stage #3

This stage starts at 250 s up until 350 s. In this stage, the generated PV power is zero and the load
is supplied by the fuel cell power, battery power, and the supercapacitor power, the same as stage 1.
At the end of this stage, the load power is zero and the fuel cell supplies power for charging the battery
and supercapacitor. As a result, the VDC increases again and reaches the value of 285 VDC by the
end of this stage. The system keeps working in this manner until the end of the simulation. Figure 20
shows the performance of all power sources along the overall simulation period from 0 to 350 s.

5. Comparison Study

In order to validate the results of the classic PI control strategy as a satisfying energy management
system to control hybrid energy sources working in a microgrid, the results of a classic PI control
strategy simulation were compared with the results of a fuzzy control strategy and a high frequency
decoupling and state machine control strategy. Qi Li et al. [66] discussed the fuzzy logic control strategy
as an energy management system for a FC/battery/supercapacitor hybrid vehicle. It was used for
enhancing the fuel to increase the mileage of the journey, and the results show that the system achieved
the power requirement at four standard driving cycles. In the current research, the FIS function in
MATLAB was configured with three input signals to the FIS, which were load power, PV power,
and battery SOC%, while the output was configured as the FC current. Eight rules were assigned to
represent the operation of the system during the simulation periods. Figure 21 shows the Fuzzy FIS
configuration used in the simulation.
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Table 8 shows the eight rules of the fuzzy control system which control the fuel cell current output
signal. The eight rules contain the most conditions so that the system can act accordingly.

Table 8. Fuzzy control system rules.

Rule Load PV SOC IFC

1 Low Low OK Low
2 OK Low OK OK
3 OK OK OK Low
4 High Low OK High
5 High OK OK Low
6 High High OK Low
7 High High Low Low
8 Low Low High Low

High frequency decoupling control strategy is used to decrease the effect of the transient
load change by insulating the PEMFC current from the high frequency transient load change [67].
The configuration of the frequency decoupling and state machine control strategy implemented in this
paper is shown in Figure 22.
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Figure 23 displays the results of the fuzzy logic control strategy, where Figure 23a shows the
hydrogen consumption along the simulation period. Figure 23b shows the SOC of the battery.
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Figure 24 displays the results of the high frequency decoupling and state machine control strategy.
The hydrogen consumption along the simulation period is 19.9 (g), as shown in Figure 24a. Figure 24b
shows the SOC of the battery.
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For the main two parameters, hydrogen consumption and SOC (%), Figure 25 shows the
comparison between three control strategies. Figure 25a shows the fuel consumption for PI, fuzzy,
and high frequency decoupling and state machine. The high frequency decoupling and state machine
is the biggest strategy for hydrogen consumption, while the fuzzy and the PI are close.
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Table 9 summarizes the comparison among the classic PI control strategy, fuzzy logic control
strategy, and high frequency decoupling and state machine control strategy.

Table 9. Comparison among considered control strategies.

Method PI Fuzzy High Frequency Decoupling and State Machine

H2 consumption (gram) 12.13 13 19.9
SOC% 56–65 55–65 63.19–65.39

6. Conclusions

The microgrid combined with a renewable hybrid power system is a very promising, efficient,
and clean power generation system. It can replace the conventional fuels easily. In this study,
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the obtained results prove that the designed hybrid power system—which combines PV, FC, battery,
and SC—works efficiently at decreasing the effects of the FC disadvantages. It solves the problems of
the individual source and supplies the load with sufficient and stable power. The PV array supplies
the main power and the FC compensates for the power shortage because of shading and night time.
The battery and SC are used to solve the problems of slow response of the FC during the fast change
of the load power and to remove the peak power from the system. In cases where surplus power
exists, this power is used to charge the battery to keep battery SOC% at a healthy level (between
57 and 65.4%), and sustain the VDC within the range of 265 to 285 in good condition. Moreover,
the H2 fuel consumption is 12.13 gm, as the FC is used as supported sources working with the PV.
The system was simulated for another two control strategies, fuzzy and high frequency decoupling
state machines. The results for comparison prove that the PI control strategy is better than the high
frequency decoupling state machine. In addition, for the fuzzy control strategy, although the results
were close, the PI is easier for implementation. Future researches could focus on improving the system
with regard to cost optimization. It is also suggested that an electric electrolyzer should be attached
to the system to use the surplus power in hydrogen production. Further researches could focus on
helping environment interests such as global warming and climate change, in addition to using other
EMS strategies and optimization techniques to improve the system overhaul performance.
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Nomenclature

MG Microgrid
ACMG Alternative current microgrid
DCMG Direct current microgrid
PEMFC Proton exchange membrane fuel cell
PV Photovoltaic
HESS Hybrid energy storage system
B Battery
BESS Battery energy storage system
Ibat Battery current (A)
MPPT Maximum power point tracking
OAFM Optimal auxiliary function method
O&P Observe and perturb
VDC Voltage in direct current side (V)
SCADA Supervisory control and data acquisition
EMS Energy management system
Pbat Battery power (KW)
JADE Java agent development framework
BPSO Binary particle swarm optimization
AFFSMC Adaptive fractional fuzzy sliding mode control
CO2 Carbon dioxide (gm)
PH Positive high
PL Positive low
Pload Load demand (KW)
Psc Supercapacitor power (KW)
Psur Surplus power (KW)
iFC Full cell current (A)
REHS Renewable energy hybrid system
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SC Supercapacitor
ICA Imperialist competitive algorithm
PSO Particle swarm optimization
QPSO Quantum behaved particle swarm optimization
ACO Ant colony optimization
COA Cuckoo optimization algorithm
PCM Power control management
SOC State-of-charge (%)
VDC DC bus voltage (V)
SOCbat State-of-charge of battery (%)
SOCsc State-of-charge of supercapacitor (%)
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