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Abstract: The effects of seven constituent phases—CeNi3, NdNi3, Nd2Ni7, Pr2Ni7, Sm5Ni19, Nd5Co19,
and CaCu5—on the gaseous phase and electrochemical characteristics of a superlattice metal hydride
alloy made by induction melting with a composition of Sm14La5.7Mg4.0Ni73Al3.3 were studied through
a series of annealing experiments. With an increase in annealing temperature, the abundance of
non-superlattice CaCu5 phase first decreases and then increases, which is opposite to the phase
abundance evolution of Nd2Ni7—the phase with the best electrochemical performance. The optimal
annealing condition for the composition in this study is 920 ◦C for 5 h. Extensive correlation studies
reveal that the A2B7 phase demonstrates higher gaseous phase hydrogen storage and electrochemical
discharge capacities and better battery performance in high-rate dischargeability, charge retention,
and cycle life. Moreover, the hexagonal stacking structure is found to be more favorable than the
rhombohedral structure.

Keywords: metal hydride (MH); nickel/metal hydride (Ni/MH) battery; hydrogen absorbing alloy;
electrochemistry; superlattice alloy

1. Introduction

Misch metal (Mm, a mixture of more than one rare earth element)-based superlattice metal hydride
(MH) alloys are very important for today’s nickel/metal hydride (Ni/MH) batteries, because of their
higher hydrogen storage (H-storage) capacity, better high-rate dischargeability (HRD) capability,
superior low-temperature and charge retention performances, and improved cycle stability [1–8].
The three main components in the superlattice alloy can be classified by chemical stoichiometry—or
more precisely, the B/A ratio—and they are AB3, A2B7, and A5B19. In each component, there are two
different types of structures—hexagonal and rhombohedral, depending on the stacking sequence for
the A2B4 slabs (illustrated in pink in Figure 1). Each A2B4 slab shifts on the ab-plane by 1/3

→
a and 1/3

→
b from its neighbor. Studies on superlattice alloys began with the structure [9] and gaseous phase (GP)
H-storage characteristics of the single rare earth element (RE)-based AB3 alloys [10–12] and soon shifted
to the Mm-based A2B7 chemistry for battery applications [13–16]. Some researchers continued to work
on RE-based AB3 chemistry for its basic electrochemical (EC) properties [17–22]. In the meantime,
RE-based A5B19 was also highly promoted for battery applications [23–27]. Several comparative works
on the EC performances of various superlattice phases were previously reported and are summarized
as follows. In a (LaMg)Nix (x = 3, 3.5, and 3.8) system, the capacity decreased, and both HRD and
cycle stability increased with the increase of x from 3 to 3.5 and finally 3.8 [28]. In a (LaY)(NiMnAl)x

(x = 3, 3.5, and 3.8) system, both capacity and cycle stability reached the maximum at x = 3.5, and
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HRD increased with the increase in x [29]. The EC properties of the Mm-based ABx (where A is Mm,
B is a combination of several transition metals and Al, and x = 2, 3, 3.5, 3.8, and 5) were compared,
and A2B7 showed the best overall performance [30,31], which prompted many investigations in the
A2B7 superlattice alloys [32–37]. However, no data were provided to support the comparative work.
Therefore, in this work we detail the correlations between the constituent phase abundances and
various properties.
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Figure 1. Stacking sequences along the c-axis direction of various hexagonal and rhombohedral
structures available for the superlattice metal hydride alloys.

Annealing has been used to effectively alter the phase components in the AB [38,39], AB2 [40–43],
AB3 [44–47], A2B7 [48–51], A5B19 [52], AB5 [53–55], A8B21 [56,57], and body-centered-cubic (bcc) [58]
MH alloys. According to first-principle calculations on superlattice MH alloy systems, the preferable
phase abundance can be influenced by the starting composition and annealing condition [59,60].
For example, the A2B7 phase is more stable than the mixture of the AB3 and AB5 phases in the
La3MgNi14 alloy, however, the opposite is true in the La2CeMgNi14 alloy [60]. Therefore, while
annealing increased the A2B7 phase abundance in the La-based superlattice alloy [61], it promoted
phase segregation in the LaPrNd-based alloy [62]. Moreover, phase segregation is more prominent
in the Mm-based (A is more than one RE element) superlattice alloys than in the RE-based (A is only
one RE element) alloys. In this work, annealing is applied to engineer the abundances of constituent
components in a SmLa-based superlattice alloy, and the correlations of phase abundances with the GP
and EC properties are reported.

2. Experimental Setup

First, Eutectix (Troy, MI, USA) prepared a 250 kg ingot using the conventional induction melting
method [31]. Five 2 kg ingot pieces were annealed in 1 atm atmosphere of Ar for 5 h at different
temperatures. Each ingot was hydrided and then crushed and ground into the size of −200 mesh.
Chemical compositions of ingots before and after annealing were verified with a Varian Liberty 100
inductively coupled plasma-optical emission spectrometer (ICP-OES, Agilent Technologies, Santa
Clara, CA, USA). A Philips X’Pert Pro X-ray diffractometer (XRD, Amsterdam, The Netherlands)
and a JEOL-JSM6320F scanning electron microscope (SEM, Tokyo, Japan) with energy dispersive
spectroscopy (EDS) was used to conduct microstructure analysis. GP H-storage characteristics were
evaluated with a Suzuki-Shokan multi-channel pressure-concentration-temperature system (PCT,
Tokyo, Japan). Negative electrodes were fabricated by compacting the alloy powder onto an expanded
nickel substrate through a roll mill without any binder. Half-cell measurements were performed using
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a CTE MCL2 Mini cell testing system (Chen Tech Electric MFG. Co., Ltd., New Taipei, Taiwan) with a
partially pre-charged Ni(OH)2 positive electrode and a 30% KOH electrolyte. The electrode was first
charged with a current density of 100 mA·g−1 for 4 h and then discharged with a current density of
400 mA·g−1 until a cutoff voltage of 0.9 V was reached. More discharges at smaller current densities
(300, 200, 100, 50, and 5 mA·g−1) with the same cutoff voltage were performed afterward with a 2 min
rest in between. The sum of capacities from six discharge stages was used as the full discharge capacity.
The HRD was defined as the ratio of the capacity obtained at the highest rate (400 mA·g−1) vs. full
discharge capacity. A Solartron 1250 Frequency Response Analyzer (Solartron Analytical, Leicester,
UK) with a sine wave amplitude of 10 mV and a frequency range of 0.5 mHz to 10 kHz was used
for the AC impedance measurement. A Digital Measurement Systems Model 880 vibrating sample
magnetometer (MicroSense, Lowell, MA, USA) was used to measure the magnetic susceptibility of
the alloy powder surface after activation, which was performed by immersing the powder in 30 wt %
KOH solution at 100 ◦C for 4 h.

For the sealed cell testing, a C-size cylindrical cell was chosen. While the negative electrode was
fabricated by dry compacting the alloy powder onto nickel mesh current collectors, the counter positive
electrode was fabricated by pasting a mixture of 89% standard AP50 [63] with the composition of
Ni0.91Co0.045Zn0.045(OH)2 (BASF—Ovonic, Rochester Hills, MI, USA), 5 wt % Co powder, and 6% CoO
powder onto nickel foam substrates. Scimat 700/79 acrylic acid grafted polypropylene/polyethylene
separators were used (Freudenberg Group, Weinheim, Germany). A 1.5 to 1.7 negative-to-positive
capacity ratio cell design was used to maintain a good balance between the over-charge and
over-discharge reservoirs [64]. A 30 wt % KOH solution with LiOH (1.5 wt %) additive was used as the
electrolyte. Formation was performed with a six-cycle process using a Maccor Battery Cycler (Maccor,
Tulsa, OK, USA). Details of cell testing can be found in an earlier publication [65].

3. Results and Discussion

The design compositions for this study are presented in Table 1. Sm was chosen as the main RE
element because it is relatively inexpensive (like La and Ce) and less oxidable (for a comparison to
other RE elements, see Table 7 in [31]). However, the metal–hydrogen bond strength of the Sm-based
superlattice MH alloy is too weak (Sm2Ni7 has a discharge capacity of 170 mAh·g−1 [66]), and thus
adding La is necessary to increase the storage capacity [67]. LaSm-based superlattice MH alloys
with the La/Sm ratio above 1 were previously reported. While the AB5 phase cannot be removed
completely by annealing in those alloys, the AB5 phase abundance still decreased with the increase in
Sm-content [27,68–72]. In this experiment, a La/Sm ratio of 0.4 was adopted to attempt to suppress the
AB5 phase abundance. Two common constituent elements used in the AB5 MH alloy, Mn and Co, are
excluded in this study for better charge retention and cycle stability [1,73]. Al is included to prevent
the hydrogenation-induced-amorphization in the superlattice MH alloys [36].

Table 1. Designed composition and ICP results in at%. B/A is the ratio of the B-atom (Ni and Al) to the
A-atom (La, Sm, and Mg).

Alloy Annealing Temperature Source La Sm Mg Ni Al B/A

- - Design 5.7 14.0 4.0 73.0 3.3 3.2
A0 - ICP 5.7 14.0 3.9 73.0 3.4 3.2
A1 880 ◦C ICP 6.0 14.5 4.2 72.1 3.2 3.0
A2 900 ◦C ICP 5.8 13.9 4.0 72.9 3.4 3.2
A3 920 ◦C ICP 5.8 13.9 4.0 73.0 3.3 3.2
A4 940 ◦C ICP 5.8 14.3 4.0 72.7 3.2 3.1
A5 960 ◦C ICP 5.8 14.5 4.0 72.5 3.2 3.1

Five pieces of ingot from the induction melting were annealed at 880, 900, 920, 940, and 960 ◦C for
5 h in an Ar environment. Compositions of the as-cast (alloy A0) and annealed ingots (alloys A1 to A5)
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were measured by ICP, and the results are summarized in Table 1. ICP results reveal that the annealed
ingots have similar Mg-content, but are slightly rich in La and lean in Ni.

3.1. Microsctructure Analysis

XRD patterns of alloys in this study are presented in Figure 2. These patterns show the typical
multi-phase superlattice structures. By using the Jade 9.0 software (MDI, Livermore, CA, USA), we
were able to deconvolute each pattern into its constituent phases, and the results are summarized in
Table 2. One example of such deconvolution is plotted in Figure 3. There are two stacking structures for
each stoichiometry (AB3, A2B7, and A5B19)—hexagonal (H) and rhombohedral (R). Most of the phase
transformations in the superlattice phases are through the peritectic reaction and are very sensitive
to the annealing conditions (temperature and duration). From Table 2, it is clear that annealing
initially suppresses the unwanted non-superlattice AB5 phase, which decreases both the capacity
and HRD [72,73]. However, further increases in annealing temperature promotes the formation
of AB5. Evolutions in phase stoichiometry (x value in ABx) and stacking structure (hexagonal vs.
rhombohedral) with different annealing temperatures are plotted in Figure 4. Annealing first increases
the A2B7 abundance at the expense the AB3 abundance, but further increases in annealing temperature
decreases the A2B7 abundance. In comparison, the changes in A5B19 abundance are less obvious.
For the stacking structure evolution, annealing first increases the hexagonal structure and then slowly
decreases it as the annealing temperature increases (Figure 4b).
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Representative SEM backscattering electron image (BEI) micrographs from alloys A0 (as-cast) and
A3 (annealed at 920 ◦C) are compared in Figure 5. While obvious phase segregation can be observed
in alloy A0 (Figure 5a), alloy A3 appears to be more uniform (Figure 5b). EDS was used to measure
chemical compositions of several spots in each micrograph, and the results are summarized in Table 3.
In alloy A0 (Figure 5a), undissolved La (spot 1), the SmNi (spot 2), AB3 (spot 4), AB2 (spot 6) and AB5

(spot 7) phases can be identified. The main phase (spot 5) is a mixture of the AB3, A2B7, and A5B19

phases. In the annealed alloy A3, only occasional undissolved La and Sm (spot 1) and the AB2 phase
(spot 4) can be identified, and the majority is composed of a fine mixture of the AB3, A2B7, and A5B17

phases (Figure 5b).
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Figure 5. SEM backscattering electron image (BEI) micrographs from alloys (a) A0 and (b) A3.
Compositions of the numbered areas were analyzed by EDS, and the results are shown in Table 3.

Table 3. Summary of EDS results from several selective spots in the SEM–BEI micrographs of alloys A0
and A3 shown in Figure 5a,b.

Sample Location La Sm Mg Ni Al B/A Phase

A0

3a-1 90.8 5.1 1.5 1.9 0.7 0.03 La
3a-2 2.5 42.9 7.3 47.0 0.3 0.90 AB
3a-3 9.3 13.6 5.2 65.7 6.2 2.56 AB2/AB3
3a-4 4.1 15.3 5.4 71.6 3.6 3.03 AB3
3a-5 3.4 15.0 4.4 73.6 3.6 3.39 AB3/A2B7/A5B19
3a-6 7.2 14.3 13.5 63.7 1.2 1.85 AB2
3a-7 3.5 14.0 0.6 78.3 3.6 4.52 AB5

A3

3b-1 27.9 61.0 2.7 7.3 1.1 0.09 La/Sm
3b-2 5.1 14.4 5.1 71.1 4.3 3.07 AB3/A2B7
3b-3 3.1 13.9 4.0 75.2 3.8 3.76 A2B7/A5B19
3b-4 4.8 14.5 15.6 64.0 1.0 1.86 AB2

3.2. Gaseous Phase Hydrogen Storage

In this study, PCT analysis was used to examine hydrogen absorption/desorption characteristics
of alloys, and the isotherms measured at 30 and 45 ◦C are plotted in Figure 6. While no obvious
plateau is observed in the isotherms of alloy A0, isotherms of the annealed alloys show well-defined
plateau regions. GP H-storage properties obtained from the PCT analysis are summarized in Table 4.
Both maximum and reversible capacities first increase and then decrease with an increase in annealing
temperature, and the annealed alloys have higher storage capacities compared to the as-cast alloy A0.
The desorption pressure at 0.75 wt % H-storage increases monotonically with an increase in annealing
temperature. For the annealed alloys, the slope factor (ratio of the H-storage capacity between 0.02 and
0.5 MPa to the total reversible capacity) first decreases (more slanted, less uniform in composition [74])
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and then increases (flatter and more uniform in composition) as the annealing temperature increases,
but all are higher than that of the as-cast alloy A0. PCT hysteresis, defined as

PCT hysteresis = ln
(

absorption pressure at 0.75 wt % H− storage
desorption pressure at 0.75 wt % H− storage

)
(1)

of alloys A4 and A5 are relatively smaller, which suggest a better resistance to pulverization during
charge/discharge cycling [75]. Changes in enthalpy (∆H) and entropy (∆S) were calculated by using
the desorption pressures (P) at 0.75 wt % H-storage measured at different temperatures in the Van’t
Hoff equation,

∆G = ∆H − T∆S = < T lnP, (2)

where T and < are the absolute temperature and ideal gas constant, respectively. Calculation results
are listed in the last two rows of Table 4. Both ∆H and ∆S of the annealed alloys are lower than those
of the as-cast alloy A0. Among the annealed alloys, both ∆H and ∆S increase (except for alloy A5) with
an increase in annealing temperature. The lowest ∆S value obtained from alloy A5 is the closest to the
∆S value for H2 gas (−135 J·mol H2

−1 K−1), indicating the highest degree of order of hydrogen in the
MH alloy [76].
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Table 4. Summary of gaseous phase properties measured at 30 ◦C.

Gaseous Phase Properties Unit A0 A1 A2 A3 A4 A5

Capacity at 2 MPa wt % 1.11 1.18 1.21 1.21 1.18 1.08
Reversible capacity wt % 0.95 0.98 1.17 1.17 1.13 1.00
Desorption pressure MPa 0.16 0.029 0.035 0.037 0.071 0.091
Slope factor % 69 78 76 72 77 79
Hysteresis 0.17 0.16 0.22 0.17 0.08 0.09
–∆H kJ·mol H2

−1 25.8 38.8 35.2 33.6 31.8 39.3
–∆S J·mol H2

−1·K−1 89 118 107 102 102 129

3.3. Electrochemical and Magnetic Susceptibility Measurements

Before the half-cell capacity measurement, the compacted negative electrode went through a 4 h
activation process in 30 wt % KOH at 100 ◦C. The second cycle capacities obtained at different discharge
currents for each alloy are plotted in Figure 7a together with those for a standard and commercially
available AB5 alloy (Alloy B with a chemical composition of La10.5Ce4.3Pr0.5Nd1.4Ni60Co12.7Mn5.9Al4.7

supplied by Eutectix). Discharge capacity decreases with the increase in discharge rate in a roughly
linear manner. The slope of capacity vs. discharge rate for the superlattice alloys (dashed red line) is
lower than the slope for the AB5 alloy (solid green line), which confirms the superiority of superlattice
alloys in HRD, as previously reported [30]. EC test results of alloys in this study are summarized in
Table 5. Annealing improves the capacity substantially. Both the capacity and half-cell HRD (the ratio
between the capacities obtained at 400 and 5 mA·g−1) increase first and then decrease with the increase
in annealing temperature and peak at alloy A2 (Figure 7b). EC discharge capacities of alloys A1 to A3
(323 to 326 mAh·g−1) are very close to the maximum H-storage capacities in GP (1.18 to 1.21 wt %,
which is equivalent to 316 to 324 mAh·g−1).

Evolution in half-cell HRD was further investigated by the bulk hydrogen diffusion constant (D)
and surface reaction current (Io), and the results are listed in Table 5. Details of both measurements
were previously reported [33]. While the D value remains approximately the same, the Io value
peaks at alloy A2. Therefore, we conclude the half-cell HRD in this series of annealed superlattice
alloys is related more to the surface catalytic ability, which agrees with our previous findings
from the Co-substituted Mm-based superlattice MH alloys [33]. With the −40 ◦C AC impedance
measurement, both charge-transfer resistance (R) and double-layer capacitance (C) were obtained,
and are summarized in Table 5. With an increase in annealing temperature, both R and RC product
(a measure of surface catalytic ability [77]) first decrease and then increase; this trend is similar to that
observed in HRD. Moreover, alloys A2, A3, and A4 demonstrate the best low-temperature performance
(the lowest Rs), which is dominated by the surface catalytic ability (the lowest RC products).

Magnetic susceptibility was measured to study the evolution in surface metallic Ni with
the annealing temperature. Details of this measurement and the connection between magnetic
susceptibility and HRD were previously published [78,79]. Saturated magnetic susceptibility (MS,
closely related to the surface catalytic ability) first decreases and then increases with an increase in
annealing temperature, suggesting that the surface’s catalytic ability first decreases and then increases.
This result is contradictory to the conclusion drawn from the RC product result. Therefore, the
lowest Rs and RC products observed in alloys A2, A3, and A4 do not correlate with the amount
of surface metallic nickel. This discrepancy is rare, but there is example when the surface oxide
microstructure, rather than the metallic nickel, played an important role in affecting the HRD and low
temperature performances [80]. Further study of the surface oxide microstructure by transmission
microscope is necessary to explain the source of highly catalytic surface of alloys A2, A3, and A4. Lastly,
the applied field strength corresponding to half of MS (H1/2) of these alloys are similar, indicating
the size of metallic nickel inclusion in the surface oxide remains constant despite the change in
annealing condition.
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Table 5. Summary of electrochemical half-cells.

Electrochemical and Magnetics Properties Unit A0 A1 A2 A3 A4 A5

High-rate discharge capacity mAh·g−1 249 288 295 291 283 266
Full discharge capacity mAh·g−1 285 323 326 323 315 300
Half-cell HRD % 87.5 89.2 90.4 90.1 89.8 88.7
Diffusion coefficient, D 10−10 cm2·s−1 4.0 4.0 4.2 4.4 4.2 4.1
Surface reaction current, Io mA·g−1 24.2 24.0 33.1 23.8 21.9 17.6
Charge-transfer resistance at −40 ◦C, R Ω·g 4.9 8.8 4.0 3.7 3.4 5.3
Double-layer capacitance at −40 ◦C, C F·g−1 1.6 0.86 1.02 0.88 1.12 1.29
RC product at −40 ◦C s 7.7 7.6 4.1 3.3 3.8 6.8
Total saturated magnetic susceptibility, MS emu·g−1 1.45 1.36 0.96 0.60 1.05 1.12
Applied field where M.S. = 1

2 MS, H1/2 kOe 0.11 0.10 0.11 0.12 0.10 0.10

3.4. Sealed Cell Performance

Five annealed alloys (alloys A1 to A5) were incorporated into cylindrical C-size cells (20 cells for
each alloy), and each cell has a nominal capacity of 5.0 Ah. After a standard formation process [65],
cells were distributed to various tests, and the results are discussed in the following sections.

3.4.1. High-Rate Performance

Four different discharge rates (C/5, C/2, C, and 2C) were used to obtain the room temperature
(RT) discharge voltage curves, and the results from cells made with alloys A1 and A3 are shown in
Figure 8. As the discharge rate increases, voltage is suppressed by the internal resistivity in the cell [65],
and the discharge capacity obtained at the fixed cutoff voltage (0.8 V) decreases. Cells made with alloy
A3 show a smaller voltage reduction with the increase in discharge rate, which indicates a lower cell
internal resistance compared to the internal resistance in the cell made with alloy A1. The normalized
discharge capacity obtained at a 2C rate for cells made with the five annealed alloys are listed in Table 6.
The data displays an initial increasing and later decreasing trend with an increase in alloy annealing
temperature. Cells made with alloy A3 yield the best RT high-rate (2C) performance in this test.
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Figure 8. Room temperature discharge voltage curves at different discharge rates (C/5, C/2, C, and 2C)
for cells made with alloys (a) A1 and (b) A3.

Table 6. Summary of C-cell test results (RT stands for room temperature).

C-Cell Results Unit A1 A2 A3 A4 A5

2C at RT capacity/0.2C at RT capacity % 87 90 93 90 87
1C at −10 ◦C capacity/0.2C at RT capacity % 92 94 95 94 91
14-day charge retention % 85.3 84.9 84.8 76.1 85.3
28-day 45 ◦C voltage stand V 1.213 1.222 1.218 1.218 1.220
Peak power at RT (20th cycle) W·kg−1 183 198 206 200 194
0.5C/0.5C cycle life (before reaching 3 Ah) Number of cycles 220 255 365 340 210
C/C cycle life (before reaching 3 Ah) Number of cycles 110 185 205 130 120

3.4.2. Low-Temperature Performance

Low-temperature performance was evaluated at −10 ◦C and a 1C discharge rate, and the results
are summarized in Table 6. Like the trend in high-rate performance, a trend of initial increase followed
by decrease is observed for the low-temperature performance with an increase in alloy annealing
temperature. The cell made with alloy A3 shows the best low-temperature result, which can be
attributed to its surface catalytic ability being the best (lowest RC product in Table 5).

3.4.3. Charge Retention

RT charge retention test results are shown in Figure 9a. All cells (except for the one made with
alloy A4) exhibit similar charge retention characteristics. Three cells made with alloy A4 were tested,
and all show inferior charge retention performance compared to the cells made with the other annealed
alloys. 45 ◦C voltage stand test results are plotted in Figure 9b and summarized in Table 6. In this test,
the cells made with alloy A2 demonstrate the best result.

Batteries 2017, 3, 34 10 of 20 

 
(a) 

 
(b) 

Figure 8. Room temperature discharge voltage curves at different discharge rates (C/5, C/2, C, and 
2C) for cells made with alloys (a) A1 and (b) A3. 

Table 6. Summary of C-cell test results (RT stands for room temperature). 

C-Cell Results Unit A1 A2 A3 A4 A5 
2C at RT capacity/0.2C at RT capacity % 87 90 93 90 87 
1C at −10 °C capacity/0.2C at RT capacity % 92 94 95 94 91 
14-day charge retention  % 85.3 84.9 84.8 76.1 85.3 
28-day 45 °C voltage stand  V 1.213 1.222 1.218 1.218 1.220 
Peak power at RT (20th cycle) W·kg−1 183 198 206 200 194 
0.5C/0.5C cycle life (before reaching 3 Ah) Number of cycles 220 255 365 340 210 
C/C cycle life (before reaching 3 Ah) Number of cycles 110 185 205 130 120 

3.4.2. Low-Temperature Performance 

Low-temperature performance was evaluated at −10 °C and a 1C discharge rate, and the results 
are summarized in Table 6. Like the trend in high-rate performance, a trend of initial increase 
followed by decrease is observed for the low-temperature performance with an increase in alloy 
annealing temperature. The cell made with alloy A3 shows the best low-temperature result, which 
can be attributed to its surface catalytic ability being the best (lowest RC product in Table 5). 

3.4.3. Charge Retention 

RT charge retention test results are shown in Figure 9a. All cells (except for the one made with 
alloy A4) exhibit similar charge retention characteristics. Three cells made with alloy A4 were tested, 
and all show inferior charge retention performance compared to the cells made with the other 
annealed alloys. 45 °C voltage stand test results are plotted in Figure 9b and summarized in Table 6. 
In this test, the cells made with alloy A2 demonstrate the best result. 

(a) 
 

(b) 

Figure 9. (a) Room temperature charge retentions and (b) 45 °C voltage stands for cells made with 
alloys A1 to A5. 

Figure 9. (a) Room temperature charge retentions and (b) 45 ◦C voltage stands for cells made with
alloys A1 to A5.



Batteries 2017, 3, 34 11 of 20

3.4.4. Peak Power

Peak power was measured at the 20th cycle and RT, and the results are compared in Table 6.
Peak power follows the same trend as those in high-rate and low-temperature performances.
Cells made with alloy A3 show the best balance among peak power, best high-rate, and
low-temperature performances.

3.4.5. Cycle Life

The RT cycle life performance was evaluated in two different configurations: a regular
configuration charged at a C/2 rate and discharged at a C/2 rate, and an accelerated configuration
charged at a C rate and discharged at a C rate. The results are plotted in Figure 10 and summarized in
Table 6. The number of cycles before reaching a capacity of 3 Ah first increases and then decreases
with an increase in alloy annealing temperature. Cells with alloy A3 show the best cycle stability
in both C/2-C/2 and C-C cycling tests. As reported previously, the main degradation mechanism
for superlattice alloy free of Mn and Co is the combination of particle pulverization and surface
oxidation [34,35].
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3.5. Performance Correlation with Individual Phase

Correlations between the seven constituent phase abundances (CeNi3, NdNi3, Nd2Ni7, Pr2Ni7,
Sm5Ni19, Nd5Co19, and CaCu5) and seven GP, eight half-cell EC, and five sealed cell properties were
studied by the linear regression method, and the resulting correlation factors (R2) are summarized in
Table 7. Although these phase abundances were obtained from the XRD analysis of the un-activated
alloys, the XRD performed on the activated alloys only showed additional minute rare-earth oxide
(hydride) peaks and no changes in the main phase peaks were found [81]. For the maximum H-storage
capacity, Nd2Ni7 (Figure 11a) and Pr2Ni7 are considered beneficial, whereas NdNi3 and Nd5Co19 are
detrimental. Reversible H-storage capacity does not correlate well with any phase. NdNi3, Nd5Co19

(Figure 11b), and CaCu5 (Figure 11c) are effective in increasing the PCT plateau pressure; however,
Nd2Ni7 and Pr2Ni7 have an opposite effect. CeNi3 increases the flatness of PCT isotherm, but CaCu5

decreases it. While CeNi3 reduces the PCT hysteresis, Nd2Ni7 and Pr2Ni7 increase it (Figure 11d).
The only strong influence on the change in enthalpy is from CaCu5, which contributes to a much less
negative ∆H value (weaker metal-hydrogen bond strength). NdNi3 and Nd5Co19 may also increase
∆H. None of the phases have a significant correlation with the change in entropy (which is essentially
the change of entropy between hydrogen gas and hydrogen in an ordered solid).
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Table 7. Correlation factors (R2) between the constituent phase abundances and various gaseous phase,
half-cell, and sealed cell properties. Plus (+) and minus (−) signs after the numbers indicate positive
and negative correlations, respectively. Significant correlations with R2 ≥ 0.6 are highlighted in red.
EC full capacity is the discharge capacity measured with a 5 mA·g−1 current density.

Properties CeNi3 NdNi3 Nd2Ni7 Pr2Ni7 Sm5Ni19 Nd5Co19 CaCu5

GP maximum capacity 0.26− 0.51− 0.63+ 0.42+ 0.07+ 0.55− 0.38−
GP reversible capacity 0.24− 0.14− 0.21+ 0.03+ 0.57+ 0.20− 0.37−
Equilibrium pressure 0.02+ 0.89+ 0.68− 0.58− 0.09− 0.92+ 0.92+
PCT slope factor 0.42+ 0.31− 0.00 0.05+ 0.14+ 0.31− 0.46−
PCT hysteresis 0.73− 0.03− 0.46+ 0.39+ 0.17− 0.02− 0.00
∆H 0.12− 0.43+ 0.16− 0.24− 0.02− 0.42+ 0.61+
∆S 0.28− 0.16+ 0.01− 0.05− 0.01− 0.15+ 0.33+
EC high-rate capacity 0.06− 0.79− 0.65+ 0.49+ 0.17+ 0.84− 0.84−
EC full capacity 0.05− 0.84− 0.69+ 0.56+ 0.13+ 0.89− 0.84−
HRD 0.09− 0.52− 0.43+ 0.22+ 0.42+ 0.59− 0.76−
Diffusion constant, D 0.25− 0.05− 0.16+ 0.00 0.42+ 0.09− 0.27−
Exchange Current, Io 0.52− 0.08− 0.33+ 0.31+ 0.00 0.07− 0.02−
−40 ◦C resistivity, R 0.15+ 0.17− 0.06+ 0.32+ 0.53− 0.11− 0.01−
−40 ◦C capacitance, C 0.02+ 0.91+ 0.71− 0.59− 0.05+ 0.94+ 0.85+
RC product 0.17+ 0.08+ 0.11− 0.00 0.65− 0.13+ 0.29+
High rate 0.54− 0.00 0.14+ 0.00 0.20+ 0.00 0.15−
Low temperature 0.50− 0.02− 0.18+ 0.01+ 0.19+ 0.07− 0.23−
Charge retention 0.17− 0.03− 0.31+ 0.30+ 0.48− 0.01− 0.21−
Peak power 0.29− 0.25+ 0.00 0.23− 0.56+ 0.17+ 0.00
Cycle life 0.90− 0.00 0.31+ 0.02+ 0.07+ 0.00 0.30−



Batteries 2017, 3, 34 13 of 20

For the EC properties, Nd2Ni7 (Figure 11a) and Pr2Ni7 make positive contributions to the high-rate
and low-rate discharge capacities, while NdNi3, Nd5Co19 (Figure 11b) and CaCu5 have an opposite
effect. Nd2Ni7 and Sm5Ni19 increase HRD, but NdNi3, Nd5Co19, and CaCu5 decrease it. The increase
in HRD comes from different sources: improvement in surface reaction for Nd2Ni7 (indicated by
its positive correlation with Io) and enhancement of bulk diffusion for Sm5Ni19 (indicated by its
positive correlation with D). For the low-temperature characteristics determined by the AC impedance
measured at −40 ◦C, Sm5Ni19 decreases the charge-transfer resistance by increasing the surface’s
catalytic ability (indicated by its negative correlation with the RC product), but Pr2Ni7 increases it by
reducing the surface’s reactive area (indicated by its negative correlation with C). Although NdNi3,
Nd5Co19, and CaCu5 (Figure 11c) can increase the surface reactive area, they have a marginal effect on
the charge-transfer resistance, due to their relatively low catalytic abilities.

Judging from the ratio between the number of significant correlations (R2 ≥ 0.60) found and
number of properties (7/7 for the GP properties, 14/8 for the half-cell EC properties, and 2/5 for
the sealed cell properties), correlations with the sealed cell properties are the weakest. There are
two explanations for the difficulty in setting up correlations for the sealed cell properties: manual
assembly operation and limited cell number. While the former adds inconsistency, the latter limits the
accuracy of sampling. Therefore, further confirmation on a larger scale (hundreds of cells) is needed.
Nevertheless, correlations obtained from the 100 cells (20 for each annealed alloy) in this study are
shown in the bottom five rows of Table 7. Only CeNi3 shows a significant and detrimental effect on
the high-rate performance. For the low-temperature performance, only Sm5Ni19 exhibits a positive
influence. Both Nd2Ni7 and Pr2Ni7 show a positive impact on the charge retention performance,
but Sm5Ni19 influences it negatively. Among all phases, Sm5Ni19 most effectively increases the peak
power. Only NdNi3 contributes to the increase in cycle stability, whereas CeNi3 (Figure 11d) and
CaCu5 deteriorate it.

As the exact chemical composition in each superlattice phase cannot be quantified by SEM–EDS,
the correlations found in this session may come from the non-uniform distribution of A-site and B-site
elements in these phases, but this cannot be verified.

3.6. Performance Correlation with Phase Stoichiometry

In earlier superlattice MH alloy studies of various phases’ contributions to the EC performances,
phases are grouped according to the phase stoichiometry, such as AB3 (CeNi3 and NdNi3), A2B7

(Nd2Ni7 and Pr2Ni7), and A5B19 (Sm5Ni19 and Nd5Co19) [28–30]. In this study, we correlated the
properties with the phase stoichiometry, and the resulted R2s are summarized and shown in the first
three columns of Table 8. AB3 decreases the GP and EC capacities (Figure 12a), increases the plateau
pressure, decreases HRD because of the reductions in D and Io, which also contribute to an inferior
high-rate performance. Moreover, although AB3 decreases the PCT hysteresis, it still deteriorates the
cycle stability. A2B7 increases the GP and EC capacities (Figure 12b), lowers the equilibrium pressure,
increases HRD because of the enhanced D and Io, and improves both the charge retention and cycle
life. A5B19 increases the GP reversible H-storage, improves the −40 ◦C performance via the increase in
surface catalytic ability, increases the peak power, and deteriorates the charge retention. By comparing
these correlations, A2B7 appears to be the most desirable stoichiometry for battery applications among
all stoichiometries for the superlattice MH alloys. This conclusion is in complete agreement with
previous reports [29–31].
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3.7. Performance Correlation with Phase Structure

Another way to classify the various phases in the superlattice MH alloys is by structure symmetry.
Stacking of the A2B4 slabs in the CeNi3, Nd2Ni7, and Sm5Ni19 phases is the same as that in the C14
crystal structure and is considered as the hexagonal group, and the rhombohedral group containing the
NdNi3, Pr2Ni7, and Nd5Co19 phases shares the same A2B4 stacking as the C15 structure. The C14- and
C15-based MH alloys behave differently in the EC environment, and we have reported the comparison
previously [82] and concluded that the C14-predominated alloy is more suitable for high-capacity and
long-cycle life applications, whereas the C15-predominated alloy is preferable in applications requiring
easy activation and good high-rate and low-temperature performances. Therefore, it will be interesting
to determine whether similar conclusions can be drawn from the superlattice MH alloy study.
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R2s obtained by correlating the total abundances of the hexagonal and rhombohedral phase
groups with various properties are listed in the last two columns in Table 8. Compared to those in the
rhombohedral group, the hexagonal group shows higher GP and EC capacities (Figure 13a), a lower
equilibrium pressure (Figure 13a), a flatter PCT isotherm, a better HRD (Figure 13b), and a reduced
surface reactive area at −40 ◦C (Figure 13b), but without affecting the charge-transfer resistance.
Based on the results, a hexagonal phase will be more desirable for battery applications. Furthermore,
combining the preferences in stoichiometry and structure yields the champion of this study—the
Nd2Ni7 phase.
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4. Conclusions

Constituent phase abundances of an SmLa-based superlattice alloy were engineered by changing
the annealing temperature. Various gaseous phase, half-cell electrochemical, and sealed cell properties
and performances were correlated to the individual phase, phase stoichiometry, and type of structure.
Many significant correlations were identified; however, because of the complication of phase structure
and limited sampling size used in this study, all correlations need further confirmation. In general,
an A2B7 stoichiometry and a hexagonal structure are more favorable for battery applications.
Among the six superlattice phases in this study, Nd2Ni7 is the most desirable. As a result, establishment
of a single target of maximizing Nd2Ni7 phase abundance simplifies the composition/process
optimization task. In this study, an annealing condition of 920 ◦C for 5 h for the superlattice
Sm14La5.7Mg4.0Ni73Al3.3 MH alloy renders the highest Nd2Ni7 phase abundance and the best overall
electrochemical performance.
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Abbreviations

Mm Misch metal
MH Metal hydride alloy
Ni/MH Nickel/metal hydride
H-storage Hydrogen-storage
HRD High-rate dischargeability
GP Gaseous phase
RE Rare earth
EC Electrochemical
bcc Body-centered-cubic
ICP-OES Inductively coupled plasma-optical emission spectrometer
XRD X-ray diffractometer
SEM Scanning electron microscope
EDS Energy dispersive spectroscopy
PCT Pressure-concentration-temperature
BEI Backscattering electron image
∆H Change in enthalpy or heat of hydride formation
∆S Change in entropy
P Desorption pressure
T Temperature
R Ideal gas constant
D Bulk hydrogen diffusion coefficient
Io Surface exchange current
R Surface charge-transfer resistance
C Surface double-layer capacitance
MS Saturated magnetic susceptibility
H1/2 Applied field strength corresponding to half of MS
RT Room temperature
R2 Correlation factor
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