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Abstract: Online estimation techniques are extensively used to determine the parameters of various
uncertain dynamic systems. In this paper, online estimation of the open-circuit voltage (OCV) of
lithium-ion batteries is proposed by two different adaptive filtering methods (i.e., recursive least
square, RLS, and least mean square, LMS), along with an adaptive observer. The proposed techniques
use the battery’s terminal voltage and current to estimate the OCV, which is correlated to the state of
charge (SOC). Experimental results highlight the effectiveness of the proposed methods in online
estimation at different charge/discharge conditions and temperatures. The comparative study
illustrates the advantages and limitations of each online estimation method.

Keywords: lithium-ion batteries; least mean square (LMS); recursive least square (RLS); open-circuit
voltage (OCV) estimation

1. Introduction

Lithium-ion batteries have a higher energy and power density with respect to other chemistries
like nickel cadmium (NiCad), nickel metal hydride (NiMH), and lead–acid [1,2]. Additionally,
lithium-ion batteries have numerous advantages, such as compact size, low weight, high capacity,
rapid charge capability, long cycle life, wide temperature operation range, low rate of self-discharge,
no outgassing of hydrogen, and no memory effects [3]. These batteries have been widely used
in real-time applications such as consumer electronics, automotive, and power tools. For these
applications, the estimation of the state of charge (SOC) plays a vital role in their performance,
since an inaccurate SOC estimation would damage the battery and consequently reduce its lifetime
and performance.

Traditional SOC estimation techniques are used because of their simplicity. A basic real-time SOC
estimation is coulomb counting (also called ampere-hour counting method), which is an open-loop
algorithm that uses the battery’s entering and leaving currents and integrates them through time.
This method has several flaws, such as the accumulation of current sensor errors and difficulty in
determining the initial value of SOC [4]. Despite its flaws, it is preferred in real-time applications
where high accuracy is not a requirement. The other method to estimate SOC uses open-circuit voltage
(OCV), which is related to the charge status of the battery [5]. However, this statement is true only
when the battery is in steady-state. Therefore, a hybrid estimation technique combines the coulomb
counting and OCV methods. However, some applications need continuous operation and do not allow
the battery to reach steady-state, which increases the need for online SOC estimation techniques.
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Numerous advanced estimation techniques are proposed at the expense of higher computation
due to complex design. A simple battery model is implemented in [6] with a sliding mode observer to
compensate for modeling uncertainties. In [7], a reduced observer technique is proposed to estimate
SOC. However, this estimation technique requires the knowledge of the battery’s parameters, which
leads to reduced accuracy with aging. This drawback has been overcome with the adaptive SOC
estimation strategy in [8]. Particle filter (PF) is a sequential Monte Carlo method which uses the
samples of random weights (particles) for the estimation probability distribution function of nonlinear
systems [8]. The Kalman filter (KF) has been widely used for the estimation of OCV and other battery
parameters which have a direct relationship with the SOC [9]; this filter is a recursive algorithm
that estimates the internal dynamic states of a system. To consider the nonlinear behavior of OCV,
an extended Kalman filter (EKF) and unscented Kalman filter (UKF) are proposed in [10]. The
fundamental principle of EKF is to linearize the nonlinear functions by using an expansion of a
first-order Taylor series. Certain statistical assumptions and local linearization of state equations are
the drawbacks of this well-known filter [11]. In [12], a different definition of SOC is proposed for a
pack of batteries connected in series by finding out the voltage at the battery’s terminals. Then, SOC is
estimated using EKF, which yields nearly half of the error compared to the two time constant (TTC)
method. In [13], a comparison between EKF and square root unscented Kalman filter (SR-UKF) shows
better performance of SR-UKF with respect to EKF. Another SOC estimation technique with adaptive
extended Kalman filter (AEKF) and wavelet transform matrix (WTM) is proposed in [14] to avoid the
electromagnetic noise created in the measurement of voltage and current in electric vehicles (EVs). In
addition, a fractional order Kalman Filter approach is introduced in [15] to estimate SOC based on
fractional order model. An H∞ observer is applied to estimate the SOC of a battery depending on the
equivalent circuit of the linear state space model used as an inspection robot on a power transmission
line [16].

Moreover, fuzzy logic and neural networks are widely used for robust approximation of systems
subjected to uncertainties [17]. Various strategies are applied to estimate the SOC and yield acceptable
results [18,19]. Although neural networks provide satisfactory performance, they fail to incorporate
any human expertise already acquired about the dynamics of the system at hand. This shortcoming
has been overcome by adopting different models of fuzzy neural networks in [20,21], but at the cost of
higher computation.

This paper presents a comparative study of different online OCV estimation techniques for
lithium-ion batteries. Here, two adaptive filtering methods— namely, least mean square (LMS) and
recursive least square (RLS)—are designed and implemented. Moreover, an adaptive observer is also
implemented for comparison purposes. It is important to note that all compared estimation strategies
do not require any prior knowledge of the battery’s parameters. Numerous comparative studies have
been presented for SOC estimation [22–31]. While few studies investigate the impact of different
battery circuit models on the SOC estimation [22–24], others focus on the comparison of different
estimation algorithms [25–31]. Among these, comparison of different kinds of Kalman filters, such
as UKF, EKF, and AEKF, is popular [22,26,28]. However, the aforementioned comparative studies
either use constant charge/discharge currents or do not consider the impact of temperature on the
estimation. Temperature variations are known to introduce a drift in the battery’s parameters, which
reduces the estimation accuracy. Unlike these studies, the proposed comparative analysis considers
both temperature variations and highly nonlinear time-varying charge/discharge current profiles
for validation. Design and implementation details of all three estimation algorithms are provided.
Experimental results show the accuracy and convergence properties of all estimation methods. The rest
of the paper is organized as follows. Section 2 depicts the lithium-ion battery circuit model along with
its system dynamics. The proposed strategy of online parameter estimation is detailed in Section 3.
Experimental results are reported and discussed in Section 4. A conclusion is drawn based on these
results, and future studies in this field are suggested.
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2. Modeling of Lithium-Ion Batteries

Similar to other types of batteries, the lithium-ion battery has four main components: positive
and negative electrodes, electrolyte, and a separator. Its electric circuit model is shown in Figure 1.
The voltage–current characteristic is modeled by an resistance-capacitance (RC) network, with Rb
being the internal battery’s resistance. On the other side, the OCV–SOC characteristic is represented
by a self-discharging resistance, a battery storage capacitor, and a current-controlled current source.
To bridge these two networks, a voltage-controlled voltage source is used [32].

Ib
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-

+

Vb
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Figure 1. Electric circuit of a lithium battery. OCV: open-circuit voltage; SOC: state of charge.

The voltage–current mathematical model can be represented by the following state equations:

V̇p =
1

RC
Vp −

1
C

Ib (1)

Vb = Voc + Vp + Rb Ib (2)

where Vb is the voltage at battery terminals, Ib is the current at battery terminals, Voc is the open circuit
voltage, Rb is the internal resistance, R is the equivalent resistance, C is the equivalent capacitance,
and Vp is the voltage across the RC network.

In this paper, we aim to estimate the OCV (i.e., Voc), as it is directly related to the battery’s SOC
by considering the parameters R, C, and Rb as unknown. The battery system’s measurable parameters
are the battery’s terminal voltage Vb and current Ib. The current Ib is assumed as positive in charge
mode and negative in discharge. The battery’s terminal voltage Vb, current Ib, and their derivatives
V̇b, İb are taken to be bounded and continuous in nature. The estimation algorithm sampling frequency
is to be high enough such that the variation of the battery’s OCV between two samples is negligible
(i.e., V̇oc ≈ 0). Finally, the Vb and Ib are continuously excited.

3. Online Parameter Estimation

In this section, LMS, RLS, and adaptive observer algorithms are designed to estimate the online
battery’s OCV. Rearranging Equation (2) leads to:

Vp = Vb −Voc − Rb Ib

Substituting Vp in (1) and considering the aforementioned assumptions gives:

V̇b −
1

RC
Vb − Rb İb +

Rb
RC

Ib +
1
C

Ib +
1

RC
Voc = 0 (3)

Multiplying with RC yields:

Vb = RCV̇b − RbRCİb + (R + Rb)Ib + Voc (4)
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Therefore, the battery’s dynamics (4) can be expressed using the following regression model:

RCV̇b − RbRCİb + (R + Rb)Ib + Voc = ΨTW (5)

where Ψ ∈ R4 = [V̇b İb Ib 1] is a vector of known functions (regressor), and W ∈ R4 is a vector
of parameters:

W1 = RC

W2 = −RbRC

W3 = R + Rb

W4 = Voc

(6)

Hence, precise estimation of parameter W4 eventually leads to an accurate SOC estimation. Thus,
the output of an adaptive filter can be expressed as:

V̂b = ΨTŴ (7)

where Ŵ is the filter’s parameter estimate vector. Therefore, the estimation error can be defined as:

eb = Vb − V̂b (8)

To achieve accurate OCV estimation, three different algorithms (i.e., LMS, RLS, and adaptive
observer) are designed to drive the estimation error eb to zero. LMS algorithm is a widely used
algorithm in adaptive filters, and is known for a low computational complexity. In addition, RLS
algorithm is another adaptive filter where the coefficients are calculated recursively, which minimizes
the weighted linear least squares cost function related to input signals. Unlike the other algorithms,
RLS input signals are considered as deterministic, whereas in LMS they are considered as stochastic.
In contrast to the other algorithms, RLS converges extremely quickly, but at the cost of higher
computational complexity. Similar to RLS, adaptive observers offer fast convergence with the simplicity
of LMS [8]. Moreover, The adaptive observer estimator’s stability is guaranteed by Lyapunov’s direct
method, unlike the aforementioned methods. Next, the proposed methods for the online OCV
estimation approach are explained.

3.1. Least Mean Square Filter

The LMS algorithm emerged as a simple yet effective method for the operation of adaptive finite
impulse response (FIR) filters. LMS-based algorithms are model-independent because no statistical
knowledge about the system in hand is needed in deriving them. Rather, it is a stochastic gradient
algorithm that uses simple computational terms to iterate the weights in the direction of the gradient
of the squared magnitude of the error signal, as follows:

∆Ŵ(k) = µ Ψ(k) eb(k) (9)

where k is the discrete-time index and µ is a step-size or adaptation constant rate. Here, the step-size
µ influences the filter’s coefficients or weights since a large value would lead to high fluctuations in
filter weights estimation. On the other hand, if the chosen µ is too small, time taken for convergence to
optimal weights would be too long. Therefore, optimal selection of µ is necessary, and a series of tests
are usually performed to find a reasonable step-size. However, it is better to have a slower convergence
rate and a more accurate output than fluctuating output because of high step-size. Algorithm 1 shows
the step-by-step process used by the LMS filter.
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Algorithm 1 LMS filter.
Begin

Step 1: Initialize the vector of parameters Ŵ to a set of predefined values.
Repeat

Step 2: Compute the battery voltage estimation law in (7).
Step 3: From (8), calculate the estimation error.
Step 4: Compute the vector parameters update using (9).
Step 5: Update the vector parameters using, Ŵ(k) = Ŵ(k− 1) + ∆Ŵ(k).

until Receives the stop request.
End

3.2. Recursive Least Square Filter

The RLS algorithm uses the inverse correlation matrix of the input data, leading to a higher
performance at the expense of an increase in computational complexity with respect to LMS.
RLS-based algorithms are model-dependent, since their derivatives assume the use of a multivariate
Gaussian model. The RLS filter recursively computes the filter coefficients update by minimizing a
weighted least-squared cost function as follows:

∆Ŵ(k) = G(k) eb(k) (10)

where G(k) is the gain vector, which is updated as:

G(k + 1) =
P(k)Ψ(k + 1)

λ+ ΨT(k + 1)P(k)Ψ(k + 1)
(11)

where P(k) is the inverse correlation matrix of the input vector. The standard RLS algorithm uses the
following equation to update the inverse correlation matrix:

P(k + 1) =
1
λ

(
P(k)− P(k)Ψ(k + 1)Ψ(k + 1)T P(k)

λ+ ΨT(k + 1)P(k)Ψ(k + 1)

)
(12)

Here, λ is the forgetting factor required as an exponential factor to give less weight to past errors.
If λ = 0, the algorithm has no memory. Conversely, the algorithm has an infinite memory with λ = 1.
Therefore, this factor is usually a constant that lies between 0 and 1 in conventional RLS algorithms.
Algorithm 2 shows the step-by-step process used by the RLS filter.

Algorithm 2 RLS filter.

Begin
Step 1: Initialize the vector of parameters Ŵ to a set of predefined values,
assign the initial values to gain vector and inverse correlation matrix.
Repeat

Step 2: Compute the battery voltage estimation law in (7).
Step 3: From (8), calculate the estimation error.
Step 4: Compute the gain vector using (11).
Step 5: Compute the inverse correlation matrix update using (12).
Step 6: Compute the vector parameters update using (10).
Step 7: Update the vector parameters using Ŵ(k) = Ŵ(k− 1) + ∆Ŵ(k).

until Receives the stop request.
End
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3.3. Adaptive Observer

Similar to adaptive filters, adaptive observers can also track parameters online as they vary
over time. In here, the design and implementation details of an adaptive observer are laid out and
explained [8]. The battery’s voltage estimation law is defined as:

V̂b = R̂ĈV̇r − R̂bR̂Ĉ İb + (R̂ + R̂b)Ib + V̂oc (13)

with:
V̇r =

ˆ̇Vb − Kpeb − Ki

∫
eb (14)

where Kp and Ki are the proportional and integral gains, respectively. Substituting (14) into (13) gives:

V̂b = R̂Ĉ ˆ̇Vb − R̂ĈKpeb − R̂ĈKi

∫
eb − R̂bR̂Ĉ İb + (R̂ + R̂b)Ib + V̂oc (15)

Adding and subtracting R̂ĈV̇b on the right side of the above equation gives:

V̂b = −R̂Ĉėb − R̂ĈKpeb − R̂ĈKi

∫
eb − R̂bR̂Ĉ İb + (R̂ + R̂b)Ib + R̂ĉV̇b + V̂oc (16)

Subtracting (5) from (16) and using linear regression gives:

ėb + (Kp + β̂)eb + Ki

∫
eb = β̂ΨTW̃ (17)

where W̃ = W − Ŵ and β = (1/RC). So, the estimation law (13) gives the closed-loop dynamics
as follows:

ėb + (Kp + β̂)eb + Ki

∫
eb = 0 (18)

The state-space form of the above equation can be written as:

Ẋ = AX + BU (19)

where X ∈ R2 = [
∫

eb eb]
T is the state vector and U ∈ R = β̂ΨTW̃ is the state-space input. A ∈ R2x2

and B ∈ R2 are given by:

A =

[
0 1
−Ki −(Kp + β̂)

]
, B =

[
0
1

]
Hence, the estimator’s gains Kp and Ki can be chosen to place the closed loop poles at desired

places using a pole placement technique. For the given nonlinear system, the adaptive estimator’s
stability and error’s convergence to zero can be guaranteed with the following adaptation law:

ˆ̇W = −ΓΨBT PX (20)

where Γ = [γ1,γ2] and γi is a positive constant gain and P is a symmetric positive definite matrix
which is chosen to satisfy the Lyapunov equation:

AT P + PA = −Q (21)

where Q is a positive definite matrix. Algorithm 3 shows the step-by-step process of the adaptive observer.
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Algorithm 3 Adaptive Observer [8].

Begin
Step 1: Initialize the vector of parameters Ŵ to a set of predefined values,
and error e to zero.
Repeat

Step 2: Compute the battery voltage estimation law in (7).
Step 3: From (8), calculate the estimation error.
Step 6: Compute the vector parameters update ∆Ŵ(k) = ˆ̇W; i.e., (20).
Step 7: Update the vector parameters using Ŵ(k) = Ŵ(k− 1) + ∆Ŵ(k).

until Receives the stop request.
End

4. Experimental Results

4.1. Setup

To evaluate the performance of the proposed techniques, a 15 Ah lithium-ion battery was subjected
to predefined charge/discharge current profiles at various temperatures (0 ◦C, 10 ◦C, 25 ◦C, and 40 ◦C).
For each charge/discharge cycle, the battery’s terminal voltage and current were measured as is
illustrated in Figure 2. The collected experimental data at different temperatures was used with
a sampling time of 1 s to validate the effectiveness of the adaptive filters. The estimated voltage
of each technique is compared against the measured terminal voltage. For a better comparison,
the relative OCV estimation error of between both LMS and RLS algorithms is calculated with the
following relation:

Relative error = Voc(LMS)−Voc(RLS)

In addition, the estimated battery’s voltage and OCV obtained with the adaptive observer
presented in [5] are shown as a benchmark.

load

+

charger

m

Electronic

Voltage

Current
USB-6008
NI DAQ

Low-pass Estimation
algorithmfilter

Computer

S2S1

Battery

Figure 2. Illustration of the experimental setup.

4.2. Results

The lithium-ion battery was charged using the battery’s current profile shown in Figure 3.
Experimental results under this condition are depicted in Figures 4–6. As it is shown in Figure 4, both
adaptive filters demonstrated a good ability in providing smooth OCV estimation at transient and
steady-state conditions for different temperatures (0 ◦C, 10 ◦C, 25 ◦C, and 40 ◦C). As expected, the
RLS algorithm showed a faster convergence. The battery’s voltage estimation (shown in Figure 5)
displayed good tracking for all methods. On the other hand, spikes were observed in the battery’s
voltage due to discontinuous charging current profile (Figure 3). Despite these nonlinearities, the
adaptive approaches were able to provide smooth OCV estimation (Figure 4). The relative OCV
estimation error depicted in Figure 6 shows that although LMS had a slower convergence compared



Batteries 2017, 3, 12 8 of 13

to RLS, it was able to gradually drive its relative estimation error to RLS to zero. Moreover, the initial
error for all temperatures was kept in an acceptable range (±0.05 V). It is noteworthy that even if the
estimation of parameters requires persistent excitation in several adaptive systems, the fact that OCV
can be estimated at equilibrium state makes the estimator independent of this requirement.
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Figure 3. Battery’s charge current profile.
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Figure 4. Open circuit voltage (OCV) estimation for different temperatures in charge mode. (a) 0 ◦C;
(b) 10 ◦C; (c) 25 ◦C; and (d) 40 ◦C. LMS: least mean square; and RLS: recursive least square.
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Figure 5. Battery’s voltage at different temperatures in charge mode. (a) 0 ◦C; (b) 10 ◦C; (c) 25 ◦C; and
(d) 40 ◦C.
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Figure 6. Relative error at different temperatures in charge mode. (a) 0 ◦C; (b) 10 ◦C; (c) 25 ◦C; and
(d) 40 ◦C.
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Then, the battery was discharged using the current profile shown in Figure 7. Experimental results
for discharge mode are illustrated in Figures 8–10. In this case, the deviation of the OCV estimates
from the expected value was larger, which resulted in higher errors at startup and few oscillations.
This was expected, since the other estimated parameters were not yet converged to the expected values.
As illustrated in Figure 8, the OCV gradually converged to its desired values for all temperatures
(0 ◦C, 10 ◦C, 25 ◦C, and 40 ◦ C). Again, RLS showed a faster convergence. In addition, the abrupt
change in current again caused spikes in voltage estimation, as shown in Figure 9. The relative error
for discharge mode is depicted in Figure 10. Again, smooth error convergence to zero was observed in
the presence of current nonlinearities.

Time (min)
0 500 1000 1500 2000

C
ur

re
nt

 (A
)

-10

0

10

Figure 7. Battery’s discharge current profile.
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Figure 8. Open-circuit voltage estimation for different temperatures in discharge mode. (a) 0 ◦C;
(b) 10 ◦C; (c) 25 ◦C; and (d) 40 ◦C.
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Figure 9. Battery’s voltage at different temperatures in discharge mode. (a) 0 ◦C; (b) 10 ◦C; (c) 25 ◦C;
and (d) 40 ◦C.
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Figure 10. Relative error at different temperatures in discharge mode. (a) 0 ◦C; (b) 10 ◦C; (c) 25 ◦C; and
(d) 40 ◦C.
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5. Conclusions

In this paper, online OCV estimation was achieved for lithium-ion batteries at different
temperatures. The proposed strategy makes use of three different algorithms to provide smooth
OCV estimation using the battery’s terminal voltage and current. Experimental results highlight the
proposed estimator’s performance. Both adaptive filters show high performance in estimating the
battery’s OCV for charge/discharge modes at various temperatures. RLS showed a faster convergence,
which confirms the credentials for this technique in providing better transient performance at the
expense of a higher computation. However, the LMS algorithm gradually eliminates the gap, which
yields the same estimation as its RLS counterpart. Experimental results for an adaptive observer
are presented as a benchmark. All methods demonstrate different estimation capabilities at various
operating conditions.
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