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Abstract:



Online estimation techniques are extensively used to determine the parameters of various uncertain dynamic systems. In this paper, online estimation of the open-circuit voltage ([image: there is no content]) of lithium-ion batteries is proposed by two different adaptive filtering methods (i.e., recursive least square, [image: there is no content], and least mean square, [image: there is no content]), along with an adaptive observer. The proposed techniques use the battery’s terminal voltage and current to estimate the [image: there is no content], which is correlated to the state of charge ([image: there is no content]). Experimental results highlight the effectiveness of the proposed methods in online estimation at different charge/discharge conditions and temperatures. The comparative study illustrates the advantages and limitations of each online estimation method.
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1. Introduction


Lithium-ion batteries have a higher energy and power density with respect to other chemistries like nickel cadmium (NiCad), nickel metal hydride (NiMH), and lead–acid [1,2]. Additionally, lithium-ion batteries have numerous advantages, such as compact size, low weight, high capacity, rapid charge capability, long cycle life, wide temperature operation range, low rate of self-discharge, no outgassing of hydrogen, and no memory effects [3]. These batteries have been widely used in real-time applications such as consumer electronics, automotive, and power tools. For these applications, the estimation of the state of charge ([image: there is no content]) plays a vital role in their performance, since an inaccurate [image: there is no content] estimation would damage the battery and consequently reduce its lifetime and performance.



Traditional [image: there is no content] estimation techniques are used because of their simplicity. A basic real-time [image: there is no content] estimation is coulomb counting (also called ampere-hour counting method), which is an open-loop algorithm that uses the battery’s entering and leaving currents and integrates them through time. This method has several flaws, such as the accumulation of current sensor errors and difficulty in determining the initial value of [image: there is no content] [4]. Despite its flaws, it is preferred in real-time applications where high accuracy is not a requirement. The other method to estimate [image: there is no content] uses open-circuit voltage ([image: there is no content]), which is related to the charge status of the battery [5]. However, this statement is true only when the battery is in steady-state. Therefore, a hybrid estimation technique combines the coulomb counting and [image: there is no content] methods. However, some applications need continuous operation and do not allow the battery to reach steady-state, which increases the need for online [image: there is no content] estimation techniques.



Numerous advanced estimation techniques are proposed at the expense of higher computation due to complex design. A simple battery model is implemented in [6] with a sliding mode observer to compensate for modeling uncertainties. In [7], a reduced observer technique is proposed to estimate [image: there is no content]. However, this estimation technique requires the knowledge of the battery’s parameters, which leads to reduced accuracy with aging. This drawback has been overcome with the adaptive [image: there is no content] estimation strategy in [8]. Particle filter (PF) is a sequential Monte Carlo method which uses the samples of random weights (particles) for the estimation probability distribution function of nonlinear systems [8]. The Kalman filter (KF) has been widely used for the estimation of [image: there is no content] and other battery parameters which have a direct relationship with the [image: there is no content] [9]; this filter is a recursive algorithm that estimates the internal dynamic states of a system. To consider the nonlinear behavior of [image: there is no content], an extended Kalman filter (EKF) and unscented Kalman filter (UKF) are proposed in [10]. The fundamental principle of EKF is to linearize the nonlinear functions by using an expansion of a first-order Taylor series. Certain statistical assumptions and local linearization of state equations are the drawbacks of this well-known filter [11]. In [12], a different definition of [image: there is no content] is proposed for a pack of batteries connected in series by finding out the voltage at the battery’s terminals. Then, [image: there is no content] is estimated using EKF, which yields nearly half of the error compared to the two time constant (TTC) method. In [13], a comparison between EKF and square root unscented Kalman filter (SR-UKF) shows better performance of SR-UKF with respect to EKF. Another [image: there is no content] estimation technique with adaptive extended Kalman filter (AEKF) and wavelet transform matrix (WTM) is proposed in [14] to avoid the electromagnetic noise created in the measurement of voltage and current in electric vehicles (EVs). In addition, a fractional order Kalman Filter approach is introduced in [15] to estimate [image: there is no content] based on fractional order model. An [image: there is no content] observer is applied to estimate the [image: there is no content] of a battery depending on the equivalent circuit of the linear state space model used as an inspection robot on a power transmission line [16].



Moreover, fuzzy logic and neural networks are widely used for robust approximation of systems subjected to uncertainties [17]. Various strategies are applied to estimate the [image: there is no content] and yield acceptable results [18,19]. Although neural networks provide satisfactory performance, they fail to incorporate any human expertise already acquired about the dynamics of the system at hand. This shortcoming has been overcome by adopting different models of fuzzy neural networks in [20,21], but at the cost of higher computation.



This paper presents a comparative study of different online [image: there is no content] estimation techniques for lithium-ion batteries. Here, two adaptive filtering methods— namely, least mean square ([image: there is no content]) and recursive least square ([image: there is no content])—are designed and implemented. Moreover, an adaptive observer is also implemented for comparison purposes. It is important to note that all compared estimation strategies do not require any prior knowledge of the battery’s parameters. Numerous comparative studies have been presented for [image: there is no content] estimation [22,23,24,25,26,27,28,29,30,31]. While few studies investigate the impact of different battery circuit models on the [image: there is no content] estimation [22,23,24], others focus on the comparison of different estimation algorithms [25,26,27,28,29,30,31]. Among these, comparison of different kinds of Kalman filters, such as UKF, EKF, and AEKF, is popular [22,26,28]. However, the aforementioned comparative studies either use constant charge/discharge currents or do not consider the impact of temperature on the estimation. Temperature variations are known to introduce a drift in the battery’s parameters, which reduces the estimation accuracy. Unlike these studies, the proposed comparative analysis considers both temperature variations and highly nonlinear time-varying charge/discharge current profiles for validation. Design and implementation details of all three estimation algorithms are provided. Experimental results show the accuracy and convergence properties of all estimation methods. The rest of the paper is organized as follows. Section 2 depicts the lithium-ion battery circuit model along with its system dynamics. The proposed strategy of online parameter estimation is detailed in Section 3. Experimental results are reported and discussed in Section 4. A conclusion is drawn based on these results, and future studies in this field are suggested.




2. Modeling of Lithium-Ion Batteries


Similar to other types of batteries, the lithium-ion battery has four main components: positive and negative electrodes, electrolyte, and a separator. Its electric circuit model is shown in Figure 1. The voltage–current characteristic is modeled by an resistance-capacitance ([image: there is no content]) network, with [image: there is no content] being the internal battery’s resistance. On the other side, the [image: there is no content]–[image: there is no content] characteristic is represented by a self-discharging resistance, a battery storage capacitor, and a current-controlled current source. To bridge these two networks, a voltage-controlled voltage source is used [32].


Figure 1. Electric circuit of a lithium battery. [image: there is no content]: open-circuit voltage; [image: there is no content]: state of charge.



[image: Batteries 03 00012 g001]






The voltage–current mathematical model can be represented by the following state equations:


[image: there is no content]



(1)






[image: there is no content]



(2)




where [image: there is no content] is the voltage at battery terminals, [image: there is no content] is the current at battery terminals, [image: there is no content] is the open circuit voltage, [image: there is no content] is the internal resistance, R is the equivalent resistance, C is the equivalent capacitance, and [image: there is no content] is the voltage across the [image: there is no content] network.



In this paper, we aim to estimate the [image: there is no content] (i.e., [image: there is no content]), as it is directly related to the battery’s [image: there is no content] by considering the parameters [image: there is no content], and [image: there is no content] as unknown. The battery system’s measurable parameters are the battery’s terminal voltage [image: there is no content] and current [image: there is no content]. The current [image: there is no content] is assumed as positive in charge mode and negative in discharge. The battery’s terminal voltage [image: there is no content], current [image: there is no content], and their derivatives [image: there is no content] are taken to be bounded and continuous in nature. The estimation algorithm sampling frequency is to be high enough such that the variation of the battery’s [image: there is no content] between two samples is negligible (i.e., [image: there is no content]). Finally, the [image: there is no content] and [image: there is no content] are continuously excited.




3. Online Parameter Estimation


In this section, [image: there is no content], [image: there is no content], and adaptive observer algorithms are designed to estimate the online battery’s [image: there is no content]. Rearranging Equation (2) leads to:


[image: there is no content]











Substituting [image: there is no content] in (1) and considering the aforementioned assumptions gives:


[image: there is no content]



(3)







Multiplying with [image: there is no content] yields:


[image: there is no content]



(4)







Therefore, the battery’s dynamics (4) can be expressed using the following regression model:


[image: there is no content]



(5)




where Ψ∈R4=[Vb˙Ib˙Ib1] is a vector of known functions (regressor), and [image: there is no content] is a vector of parameters:


[image: there is no content]



(6)







Hence, precise estimation of parameter [image: there is no content] eventually leads to an accurate [image: there is no content] estimation. Thus, the output of an adaptive filter can be expressed as:


[image: there is no content]



(7)




where [image: there is no content] is the filter’s parameter estimate vector. Therefore, the estimation error can be defined as:


[image: there is no content]



(8)







To achieve accurate [image: there is no content] estimation, three different algorithms (i.e., [image: there is no content], [image: there is no content], and adaptive observer) are designed to drive the estimation error [image: there is no content] to zero. [image: there is no content] algorithm is a widely used algorithm in adaptive filters, and is known for a low computational complexity. In addition, [image: there is no content] algorithm is another adaptive filter where the coefficients are calculated recursively, which minimizes the weighted linear least squares cost function related to input signals. Unlike the other algorithms, [image: there is no content] input signals are considered as deterministic, whereas in [image: there is no content] they are considered as stochastic. In contrast to the other algorithms, [image: there is no content] converges extremely quickly, but at the cost of higher computational complexity. Similar to [image: there is no content], adaptive observers offer fast convergence with the simplicity of [image: there is no content] [8]. Moreover, The adaptive observer estimator’s stability is guaranteed by Lyapunov’s direct method, unlike the aforementioned methods. Next, the proposed methods for the online [image: there is no content] estimation approach are explained.



3.1. Least Mean Square Filter


The [image: there is no content] algorithm emerged as a simple yet effective method for the operation of adaptive finite impulse response (FIR) filters. [image: there is no content]-based algorithms are model-independent because no statistical knowledge about the system in hand is needed in deriving them. Rather, it is a stochastic gradient algorithm that uses simple computational terms to iterate the weights in the direction of the gradient of the squared magnitude of the error signal, as follows:


ΔW^(k)=μΨ(k)eb(k)



(9)




where k is the discrete-time index and [image: there is no content] is a step-size or adaptation constant rate. Here, the step-size [image: there is no content] influences the filter’s coefficients or weights since a large value would lead to high fluctuations in filter weights estimation. On the other hand, if the chosen [image: there is no content] is too small, time taken for convergence to optimal weights would be too long. Therefore, optimal selection of [image: there is no content] is necessary, and a series of tests are usually performed to find a reasonable step-size. However, it is better to have a slower convergence rate and a more accurate output than fluctuating output because of high step-size. Algorithm 1 shows the step-by-step process used by the [image: there is no content] filter.



	Algorithm 1 [image: there is no content] filter.



	 [image: Batteries 03 00012 i001]









3.2. Recursive Least Square Filter


The [image: there is no content] algorithm uses the inverse correlation matrix of the input data, leading to a higher performance at the expense of an increase in computational complexity with respect to [image: there is no content]. [image: there is no content]-based algorithms are model-dependent, since their derivatives assume the use of a multivariate Gaussian model. The [image: there is no content] filter recursively computes the filter coefficients update by minimizing a weighted least-squared cost function as follows:


ΔW^(k)=G(k)eb(k)



(10)




where [image: there is no content] is the gain vector, which is updated as:


[image: there is no content]



(11)




where [image: there is no content] is the inverse correlation matrix of the input vector. The standard [image: there is no content] algorithm uses the following equation to update the inverse correlation matrix:


[image: there is no content]



(12)







Here, [image: there is no content] is the forgetting factor required as an exponential factor to give less weight to past errors. If [image: there is no content], the algorithm has no memory. Conversely, the algorithm has an infinite memory with [image: there is no content]. Therefore, this factor is usually a constant that lies between 0 and 1 in conventional [image: there is no content] algorithms. Algorithm 2 shows the step-by-step process used by the [image: there is no content] filter.



	Algorithm 2 [image: there is no content] filter.



	 [image: Batteries 03 00012 i002]









3.3. Adaptive Observer


Similar to adaptive filters, adaptive observers can also track parameters online as they vary over time. In here, the design and implementation details of an adaptive observer are laid out and explained [8]. The battery’s voltage estimation law is defined as:


[image: there is no content]



(13)




with:


[image: there is no content]



(14)




where [image: there is no content] and [image: there is no content] are the proportional and integral gains, respectively. Substituting (14) into (13) gives:


[image: there is no content]



(15)







Adding and subtracting [image: there is no content] on the right side of the above equation gives:


[image: there is no content]



(16)







Subtracting (5) from (16) and using linear regression gives:


[image: there is no content]



(17)




where [image: there is no content] and [image: there is no content]. So, the estimation law (13) gives the closed-loop dynamics as follows:


[image: there is no content]



(18)







The state-space form of the above equation can be written as:


[image: there is no content]



(19)




where X∈R2=[∫ebeb]T is the state vector and [image: there is no content] is the state-space input. [image: there is no content] and [image: there is no content] are given by:


A=01−Ki−(Kp+β^),B=01











Hence, the estimator’s gains [image: there is no content] and [image: there is no content] can be chosen to place the closed loop poles at desired places using a pole placement technique. For the given nonlinear system, the adaptive estimator’s stability and error’s convergence to zero can be guaranteed with the following adaptation law:


[image: there is no content]



(20)




where [image: there is no content] and [image: there is no content] is a positive constant gain and P is a symmetric positive definite matrix which is chosen to satisfy the Lyapunov equation:


[image: there is no content]



(21)




where Q is a positive definite matrix. Algorithm 3 shows the step-by-step process of the adaptive observer.





	Algorithm 3 Adaptive Observer [8].



	 [image: Batteries 03 00012 i003]








4. Experimental Results


4.1. Setup


To evaluate the performance of the proposed techniques, a 15 Ah lithium-ion battery was subjected to predefined charge/discharge current profiles at various temperatures (0 ∘C, 10 ∘C, 25 ∘C, and 40 ∘C). For each charge/discharge cycle, the battery’s terminal voltage and current were measured as is illustrated in Figure 2. The collected experimental data at different temperatures was used with a sampling time of 1 s to validate the effectiveness of the adaptive filters. The estimated voltage of each technique is compared against the measured terminal voltage. For a better comparison, the relative [image: there is no content] estimation error of between both [image: there is no content] and [image: there is no content] algorithms is calculated with the following relation:


Relativeerror=Voc(LMS)−Voc(RLS)










Figure 2. Illustration of the experimental setup.



[image: Batteries 03 00012 g002]






In addition, the estimated battery’s voltage and [image: there is no content] obtained with the adaptive observer presented in [5] are shown as a benchmark.




4.2. Results


The lithium-ion battery was charged using the battery’s current profile shown in Figure 3. Experimental results under this condition are depicted in Figure 4, Figure 5 and Figure 6. As it is shown in Figure 4, both adaptive filters demonstrated a good ability in providing smooth [image: there is no content] estimation at transient and steady-state conditions for different temperatures (0 ∘C, 10 ∘C, 25 ∘C, and 40 ∘C). As expected, the [image: there is no content] algorithm showed a faster convergence. The battery’s voltage estimation (shown in Figure 5) displayed good tracking for all methods. On the other hand, spikes were observed in the battery’s voltage due to discontinuous charging current profile (Figure 3). Despite these nonlinearities, the adaptive approaches were able to provide smooth [image: there is no content] estimation (Figure 4). The relative [image: there is no content] estimation error depicted in Figure 6 shows that although [image: there is no content] had a slower convergence compared to [image: there is no content], it was able to gradually drive its relative estimation error to [image: there is no content] to zero. Moreover, the initial error for all temperatures was kept in an acceptable range ([image: there is no content] V). It is noteworthy that even if the estimation of parameters requires persistent excitation in several adaptive systems, the fact that [image: there is no content] can be estimated at equilibrium state makes the estimator independent of this requirement.


Figure 3. Battery’s charge current profile.



[image: Batteries 03 00012 g003]





Figure 4. Open circuit voltage ([image: there is no content]) estimation for different temperatures in charge mode. (a) 0 ∘C; (b) 10 ∘C; (c) 25 ∘C; and (d) 40 ∘C. [image: there is no content]: least mean square; and [image: there is no content]: recursive least square.



[image: Batteries 03 00012 g004]





Figure 5. Battery’s voltage at different temperatures in charge mode. (a) 0 ∘C; (b) 10 ∘C; (c) 25 ∘C; and (d) 40 ∘C.



[image: Batteries 03 00012 g005]





Figure 6. Relative error at different temperatures in charge mode. (a) 0 ∘C; (b) 10 ∘C; (c) 25 ∘C; and (d) 40 ∘C.



[image: Batteries 03 00012 g006]






Then, the battery was discharged using the current profile shown in Figure 7. Experimental results for discharge mode are illustrated in Figure 8, Figure 9 and Figure 10. In this case, the deviation of the [image: there is no content] estimates from the expected value was larger, which resulted in higher errors at startup and few oscillations. This was expected, since the other estimated parameters were not yet converged to the expected values. As illustrated in Figure 8, the [image: there is no content] gradually converged to its desired values for all temperatures (0 ∘C, 10 ∘C, 25 ∘C, and 40 ∘ C). Again, [image: there is no content] showed a faster convergence. In addition, the abrupt change in current again caused spikes in voltage estimation, as shown in Figure 9. The relative error for discharge mode is depicted in Figure 10. Again, smooth error convergence to zero was observed in the presence of current nonlinearities.


Figure 7. Battery’s discharge current profile.



[image: Batteries 03 00012 g007]





Figure 8. Open-circuit voltage estimation for different temperatures in discharge mode. (a) 0 ∘C; (b) 10 ∘C; (c) 25 ∘C; and (d) 40 ∘C.



[image: Batteries 03 00012 g008]





Figure 9. Battery’s voltage at different temperatures in discharge mode. (a) 0 ∘C; (b) 10 ∘C; (c) 25 ∘C; and (d) 40 ∘C.



[image: Batteries 03 00012 g009]





Figure 10. Relative error at different temperatures in discharge mode. (a) 0 ∘C; (b) 10 ∘C; (c) 25 ∘C; and (d) 40 ∘C.



[image: Batteries 03 00012 g010]








5. Conclusions


In this paper, online [image: there is no content] estimation was achieved for lithium-ion batteries at different temperatures. The proposed strategy makes use of three different algorithms to provide smooth [image: there is no content] estimation using the battery’s terminal voltage and current. Experimental results highlight the proposed estimator’s performance. Both adaptive filters show high performance in estimating the battery’s [image: there is no content] for charge/discharge modes at various temperatures. [image: there is no content] showed a faster convergence, which confirms the credentials for this technique in providing better transient performance at the expense of a higher computation. However, the [image: there is no content] algorithm gradually eliminates the gap, which yields the same estimation as its [image: there is no content] counterpart. Experimental results for an adaptive observer are presented as a benchmark. All methods demonstrate different estimation capabilities at various operating conditions.
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