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Abstract: The feasibility of utilizing disordered Ni-based metal hydroxide, as both the anode and
the cathode materials, in alkaline rechargeable batteries was validated for the first time. Co and Mn
were introduced into the hexagonal Ni(OH)2 crystal structure to create disorder and defects that
resulted in a conductivity increase. The highest discharge capacity of 55.6 mAh¨g´1 was obtained
using a commercial Li-ion cathode precursor, specifically NCM111 hydroxide, as anode material
in the Ni-Ni battery. Charge/discharge curves, cyclic voltammetry (CV), X-ray diffraction (XRD)
analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy
dispersive spectroscopy (EDS) analysis, and electron energy loss spectroscopy (EELS) were used to
study the capacity degradation mechanism, and the segregation of Ni, Co, and Mn hydroxides in the
mixed hydroxide. Further optimization of composition and control in micro-segregation are needed
to increase the discharge capacity closer to the theoretical value, 578 mAh¨g´1.

Keywords: alkaline rechargeable battery; Ni-Ni battery; NiCoMn hydroxide anode;
disordered materials

1. Introduction

The first Ni(OH)2-based alkaline rechargeable batteries, Ni-Fe and Ni-Cd, were patented by
Thomas A. Edison in 1901 and 1902, respectively [1,2]. Since then, many works have been done
to improve the performance of rechargeable batteries [3–5]. The half-cell reactions at positive and
negative electrodes and the full cell reaction are shown in Equations (1)–(3), respectively (where Mt is
a transition metal, for example Fe or Cd).

NipOHq2 ` OH´ é NiOOH ` H2O ` e´ pforward : charge, reverse : dischargeq (1)

MtpOHq2 ` 2e´ é Mt ` 2OH´ pforward : charge, reverse : dischargeq (2)

MtpOHq2 ` 2NipOHq2 é Mt ` 2NiOOH ` 2H2O pforward : charge, reverse : dischargeq (3)

Basically, the negative electrode uses the transformation of a transition metal between the +2
and 0 oxidation states during charge/discharge operation. During the last two decades, the Ni-TM
(transition metal) batteries extended into Ni-Zn and Ni-Co systems. More recently, even a Ni-Mn
rechargeable system has been proposed [6]. The comparisons between various Ni-TMs have been
summarized in Table 1. The common features of these rechargeable batteries are low-cost and wide
working temperature ranges. Although the reaction in Equation (2) involves a two-electron transfer
(resulting in a very high theoretical capacity, see Table 2), the utilization of active material is not
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sufficient. As a result, practical Ni-TM cells often occur with low gravimetric energy and, thus, are not
suitable for mobile and automobile applications. In the late 1980s, a new type of alkaline rechargeable
battery, nickel/metal hydride (Ni/MH), which uses a metal hydride (MH) alloy as the negative
electrode (anode) active material [7] was commercialized by Matsushita, Sanyo, Toshiba, Yuasa, and
Ovonic [8]. The new anode half-cell reaction and full-cell reactions are shown in Equations (4) and (5),
respectively, where Mh is one of the MH alloys.

Mh ` H2O ` e´ é MhH ` OH´ pforward : charge, reverse : dischargeq (4)

Mh ` NipOHq2 é MhH ` NiOOH pforward : charge, reverse : dischargeq (5)

Table 1. Comparisons of Ni-TM alkaline rechargeable battery. TM: transition metal.

Battery Anode
(Charge/Discharge) Pros Cons Commercial

Product Energy Density

Ni-Mn Mn/Mn(OH)2
‚ Low cost Only theoretical No 130–190 Wh¨ kg´1 [6]
‚ High voltage (2.2 V)

Ni-Fe Fe/Fe(OH)2
‚ Low cost ‚ Low energy density

Yes 30 Wh¨ kg´1 [9]
‚ Long cycle life ‚ Low power

Ni-Co Co/Co(OH)2 ‚ High capacity High cost No Projected to be
165 Wh¨ kg´1 [10,11]

Ni-Zn Zn/Zn(OH)2
‚ Low cost Cycle life still has

room to improve Yes 65-120 Wh¨ kg´1 [12]
‚ Higher voltage (1.5 V)

Ni-Cd Cd/Cd(OH)2

‚ Low cost
Yes 40-60 Wh¨ kg´1 [13]‚ Long cycle life ‚ Toxic

‚ High power at low temperature ‚ Low energy density

Table 2. Properties of hydroxides as negative electrode (anode) candidates in Ni-TM battery systems.
All data are from reference [14] unless otherwise cited.

Hydroxide Formula
Weight

Theoretical
Capacity

(mAh¨ g´1)

Density
(g¨ cm´3)

Solubility in
Cold Water

(g¨ 100¨ cm´3)

E0(Mt) in
Equation (7)

[15] (V)

M–O Bond
Strength

(kJ¨ mol´1¨ M)

Mn(OH)2 88.94 603 3.258 0.0002 ´0.163 402.9
Fe(OH)2 89.55 597 3.4 0.00015 0.493 390.4
Co(OH)2 92.93 577 3.597 0.00032 0.659 384.5
Ni(OH)2 92.69 578 4.15 0.013 0.648 382.0
Zn(OH)2 99.39 539 3.258 0.0002 0.034 180 [16]
Cd(OH)2 146.41 366 4.79 0.00025 0.583 235.6

With the higher capacity found in the MH alloy (330 mAh¨ g´1 and 400 mAh¨ g´1 for AB5 and AB2

MH alloys, respectively), Ni/MH soon controlled the consumer market and was used to power the
first commercially built electric vehicle (EV-1) of modern times by General Motors [17]. The history of
battery for electrical vehicles, the EV-1 and its immediate predecessors and successors were reviewed
by Matthé and Eberle [18]. Later on, Li-ion batteries entered the consumer market and dominated it
with a higher energy density compared to that in Ni/MH battery. However, Ni/MH batteries still
power more than 10 million hybrid electric vehicles (mainly the Prius, made by Toyota [19]), due to its
high power, longevity, and excellent abuse tolerance. With the focus on rechargeable batteries in the
consumer market switching to a stationary market, the battery industry is facing two major challenges,
specifically cost and cycle stability, in replacing the currently used lead-acid battery [20,21]. The Ni-TM
system happens to fall in the right direction for the stationary market. Additionally, by comparing
the half-cell reactions in Equations (2) and (4), the Ni-TM batteries demonstrate an advantage over
Ni/MH batteries at very low temperatures by not diluting the electrolyte with water generated from
the discharge process. A few anode material candidates for the Ni-TM system are compared in Table 2.
Although the theoretical capacities obtained from these materials are very high (due to two-electron
transfer), the utilization is limited by the poor conductivity of the hydroxide. The electrochemical
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reaction, Equation (2), can be re-written into a standard form as Equation (6), with the equilibrium
potential given by Equation (7) [15]:

HMtO2
´ ` 3H+ ` 2e´ é Mt ` 2H2O (6)

Eo “ EopMtq ´ 0.00886pH ` 0.0295log pHMtO3
´q (7)

Lower Eo values correspond to metals with lower oxidation energy (easier to be oxidized).
From this table, it is easy to see that both Ni and Co have a potential similar to Cd and can have
highly reversibility redox reactions occur in the voltage range of interest. Significant research has
been devoted into Ni-Co batteries and results have been summarized in a review article [22]. In the
past, a few methodologies were developed to improve the utilization (reversibility of Equation (2)),
including: Reducing crystallite size [22], alloying with B [23], Si [24], P [25], and S [26] to increase
the degree of disorder (DOD [27]), mixing silica [28], nitride [29], carbon nanotube [30], and CMK-3
(an ordered mesoporous form of carbon) [31], and forming Co3O4 nanowires [32].

Ni, with a similar oxidation potential and metal–oxygen (M–O) bond strength (Table 2) but
a much lower raw material cost compared to Co, is a rational choice for a Ni-TM rechargeable system.
The challenge is the same as Co(OH)2: Ni(OH)2 has a very poor electronic conductance. Intrinsic pure
Ni(OH)2 is a good insulator. In order to increase the conductivity, both composition [33–35] and
structural [36] modifications are necessary and have been successfully developed. It is interesting to
see the use of the disordered Ni(OH)2 as the anode material for the Ni-Ni alkaline battery. With the
funding from a U.S. Department of Energy sponsored Robust Affordable Next Generation EV (RANGE)
program [37], we are able to investigate the feasibility of such a Ni-Ni battery and present the results
in this paper.

2. Experimental Setup

The anode materials were prepared by a co-precipitation method in a continuous stirring tank
reactor (CSTR) [7,38], where the sulfate salts of the nickel and/or manganese and cobalt were dissolved
in deionized water. A suitable amount of solution was gradually pumped into the reactor in accordance
with the desired mole ratio between the three elements. The pH value of the mixture was maintained
between 10.5 and 12 by pumping sodium hydroxide solution (30 wt %) at a specific flow rate.
Stirring rate (800 rpm), reaction temperature (60 ˝C), pH value, salt concentration, and residence
time are well controlled and experimentally varied to achieve a desirable particle size and morphology.

Carbon black and polyvinylidene fluoride (PVDF) were used in the negative electrode to enhance
conductivity and electrode integrity. To construct the negative electrode, 100 mg of active material
(hydroxide from one, two, or three transition metals) were stir-mixed thoroughly with carbon black
and PVDF in a weight ratio of 3:2:1. A 0.5 ˆ 0.5 inch2 nickel mesh was used as a substrate and current
collector with a nickel mesh tab leading out of the square substrate for testing connections. The mixture
of carbon black, PVDF, and metal hydroxides was evenly pressed onto both sides of the nickel mesh
by a hydraulic press under 300 MPa for 5 s to form the anode for this experiment. The positive
electrode was a sintered type of Ni0.9Co0.1 active material, which is commonly used in Ni-Cd batteries.
The positive and negative electrodes were sandwiched together with a polypropylene/polyethylene
separator in a flooded half-cell configuration. The capacity at the positive electrode was significantly
more than that at the negative electrode, resulting in a negative limited design. Electrochemical
testing was performed with an Arbin electrochemical testing station (Arbin Instrument, College
Station, TX, USA). Cyclic voltammetry (CV) was obtained using a Gamry Potentiostats (Gamry
Instruments Inc., Warminster, PA, USA). The particle size distribution of the powder was measured
with a Microtrac-SRA 150 (Microtrac, Montgomeryville, PA, USA). X-ray diffraction (XRD) analysis
was performed with a Philips X’Pert Pro X-ray diffractometer (Philips, Amsterdam, The Netherlands)
and the generated patterns were fitted, and peaks indexed, by Jade 9 software (Jade Software Corp.
Ltd., Christchurch, New Zealand). A JEOL-JSM6320F scanning electron microscope (SEM, JEOL, Tokyo,
Japan) with energy dispersive spectroscopy (EDS) was applied in investigating the phase distributions
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and compositions of the powders. A FEI Titan 80–300 (scanning) transmission electron microscope
(TEM/STEM, Hillsboro, OR, USA) was employed to study the microstructure of the alloy samples.
For TEM characterization, mechanical polishing was used to thin samples, followed by ion milling.

3. Results

3.1. Electrochemical Measurements

Seven hydroxides, two elements (Ni and Mn), three binaries (Ni-Co, Ni-Zn, and Ni-Mn), and
two ternaries (both based on Ni-Co-Mn) were prepared by the CSTR process. The ternary hydroxides
are the precursor material for the cathode materials used in Li-ion rechargeable batteries, and herein is
used as an anode material for a Ni-Ni battery. Their composition and observed discharge capacities
at a discharge current of 5 mA¨g´1 from Cycles 1 and 5 are listed in Table 3. All the elemental
and binary hydroxides show zero, or close to zero, capacity and both ternary hydroxide, NCM111
hydroxide (Ni0.33Co0.33Mn0.33) and NCM424 hydroxide (Ni0.4Co0.2Mn0.4), show the best capacities
at approximately 20 mAh¨g´1 (Figure 1). It is interesting to find that the capacity improves with
increasingly DOD through addition of more ingredients in the co-precipitation process. In principle,
the idea of using a disordered hydroxide during the CSTR process is validated, but composition and
process optimizations are necessary for a further improvement in capacity.
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Figure 1. First cycle charge and discharge curves with a NCM111 hydroxide (Ni0.33Co0.33Mn0.33)
negative electrode.

Table 3. Discharge capacity in mAh¨ g´1 obtained at a discharge current of 5 mA¨ g´1.

M in M(OH)2 Ni Mn Ni0.91Co0.09 Ni0.91Zn0.09 Ni0.91Mn0.09 Ni0.33Co0.33Mn0.33 Ni0.4Co0.2Mn0.4

First cycle 1.0 0.0 0.0 0.0 0.0 17.2 14.5
Fifth cycle 0.7 0.0 0.0 0.0 0.0 20.7 20.1

The electrochemical properties of the NCM111 hydroxide were further tested with a charge rate of
5 mA¨ g´1 and discharge rate of 0.4 mA¨ g´1. The charge and discharge voltage curves during the first
cycle are plotted in Figure 1. The first charge plateau is observed at 0.71 V (versus Ni(OH)2 cathode),
corresponding to a discharge plateau at 0.68 V. A second plateau occurs at 1.38 V, with a corresponding
discharge plateau at 1.19 V. Discharge voltage efficiency is defined as discharge voltage divided by
the charge voltage, which is read at the middle point of the voltage plateau. The first charge reaction
has a discharge voltage efficiency of 96%, compared to 86% for the second redox reaction. The highest
discharge capacity of the NCM111 hydroxide is 55.6 mAh¨ g´1 and was observed during the first cycle
(Figure 2). Degradations in both capacity and utilization (ratio of charge out versus charge in) with
cycling can be easy seen in Figure 3. The cause of these degradations at a relatively low rate will be
reported in the following sessions.
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3.2. X-ray Diffraction Analysis

The crystal structure of the NCM111 hydroxide anode at the charged state, the 1st discharge
plateau, and the discharged state were characterized by XRD analysis and the resulting patterns are
shown in Figure 5. The lattice constants of the hexagonal hydroxide phase were obtained through the
curve fitting function offered in Jade 9.0 Software and the results are listed in Table 4. The charge or
discharge process of the cell was terminated at the desired discharge state before it was disassembled.
The anode samples were soaked in deionized water overnight and rinsed thoroughly to remove any
KOH electrolyte residue. The anodes were then completely dried in air under room temperature before
XRD analysis. However, some peaks from residue KOH (with a slightly larger lattice constant when
comparing to pure KOH, due to some water content) are still present in Figure 5b.
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Figure 5. X-ray diffraction (XRD) patterns of: (a) a pristine NCM111 hydroxide powder; (b) a NCM111
hydroxide electrode at the first voltage plateau; (c) a charged NCM111 hydroxide fresh electrode; and
(d) a NCM111 hydroxide electrode at a discharged state. Peak positions of a NiOOH and a Ni(OH)2

structures from Powder Diffraction File (PDF) database [39] 00-006-0075 and 00-059-0462, respectively,
are shown in the bottom for comparison.

Table 4. Lattice constants a and c of hydroxide in NCM111 hydroxide at different stages obtained from
the XRD patterns shown in Figure 5.

Lattice Constant (Å) Pristine At the First Discharge Voltage Plateau After First Charge After Discharge

a 2.92 3.09 3.11 3.02
c 13.44 13.82 13.87 13.85

The XRD patterns of the NCM111 hydroxide anode at different discharge state can be fitted with
a hexagonal unit cell (as the original Ni(OH)2). Compared to that in the fresh sample (Figure 5a), the
(100) peak shows shifts from 35.73˝ to 33.59˝ and 33.46˝ for those in the first plateau (Figure 5b) and
charged state (Figure 5c), respectively. Accordingly, the lattice parameter, a, increases from 2.92 Å to
3.09 Å and 3.11 Å, respectively. The lattice parameter, c, fitted by Jade 9, also showed a 2.8% increase,
from 13.44 Å to 13.82 Å. The changes in both lattice parameters, a and c, indicate unit cell expansion
during the charge process. During the charge phase, Ni was reduced to a lower state and extracted
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from the NCM111 hydroxide unit cell, leaving Co and Mn with a larger radius supporting the original
hexagonal crystal structure. The extraction of small radius Ni from the basal plane may be the reason
for the 5.8% increase in lattice parameter a. Comparably, the 2.8% decrease in c might be due to
the extraction of a hydroxide group from between the basal planes, which caused partial collapse
of this layer. The separation of Ni from the NCM111 hydroxide was also detected by EDS analysis,
as demonstrated in the next section.

At a discharged state, the 100 peak shifted back to 33.69˝ (Figure 5d), corresponding to a decrease
in a to 3.02 Å, which is smaller than observed in the charged state and the first plateau, but not fully
reverted to the fresh state before cycling. Compared to the decreases in a, the parameter c decreased less
during the discharge. The major changes in parameter a and the almost same changes in c indicate that
the reaction sites are majorly involved in the basal plane during the charging, causing an expansion in
the a–b planes and a slightly expansion in the c direction. During discharge, a and c recovered to 3.02 Å
and 13.85 Å, but did not achieve the values seen in the original fresh anode state. The extraction in
the c direction was insignificant after the initial charge, so that NCM111 hydroxide can still maintain
a hexagonal structure with Co and Mn supporting the basal planes.

3.3. Scanning Electron Microscopy/Energy Dispersive Spectroscopy Characterizations

As shown in Figure 6a, the diameter range of pristine NCM111 hydroxide particles varies from
several microns to as large as 30 µm. The surface of the NCM111 hydroxide particles is covered by
thin flakes vertical to the particle surface and approximately 100 nm thick with diameters around
500 nm. After cycling, the flakes change their orientation from perpendicular to the surface (Figure 6b)
to parallel with the surface (Figure 6d), indicating a regrowth of hydroxide during cycling.
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The EDS mappings of the NCM hydroxide anode before and after cycling are shown in Figure 7a,b,
respectively. The nickel, cobalt, and manganese are distributed evenly in the sample before cycling.
However, the nickel distribution of the NCM hydroxide anode after cycling differs from the distribution
of cobalt and manganese. The two areas are indicated by red and blue circles that show the differences
between Ni and Co/Mn after the cycling. This difference can be explained by the segregation of
Ni(OH)2 out of the hexagonal structure of NCM111 hydroxide material during the cycling, as observed
in the EDS map. This is in agreement with the XRD pattern, that the lattice constant a increases during
the charge process and decreases during discharge, while c less noticeable changes. This segregation
of Ni is the main cause for the capacity and utilization degradations discussed in Section 3.1. The Ni
segregation is more severe during slower rate discharges and needs to be controlled to sustain the
initial capacity. Approaches for such segregation-prevention may include implantation of grain growth
inhibitor [40], control of oxygen impurities [41], addition of elements with different solubilities among
phases [42], addition of rare earth elements [43], addition of other transition metals with larger ionic
radii, introduction of a pulse charge/discharge method to interrupt the formation of Ni(OH)2 isolated
grain, surface modification with surfactant to make it more difficult to precipitate into larger Ni(OH)2

grains, a new combination of alkali [44] and salt [45] used in the electrolyte, and improvements in the
co-precipitation process to evenly distribute the cation in the hydroxide.
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and (b) after cycling.

3.4. Transmission Electron Microscopy Characterizations

To locally study the distribution change of Ni, Co, and Mn after cycling, scanning TEM was
performed. As shown in Figure 8a, the EDS spectrum was collected from seven evenly distributed spots
along the line, with an electron beam spot size of 1 nm. The relative percent of these three elements
are plotted in Figure 8b. The plot clearly shows that while the distribution of Co is generally uniform,
Ni content is higher in the center of the particle, and Mn content is higher at the surface. Compared to
the uniform elemental distribution in fresh samples, such an elemental distribution change should be
attributed to micro-segregation that occurs during cycling.

Electron energy loss spectroscopy (EELS) data was also obtained by scanning the indicated region
in Figure 9a, which is consistent with EDS analysis results. The phase segregation with cycling in the
NCM111 hydroxide sample forms an isolated Ni(OH)2 region which is known to be electrochemically
inactive and deteriorates the discharge capacity.
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Figure 9. (a) TEM dark field image of a cross-section of a NCM111 hydroxide after 10 electrochemical
cycles and (b) electron energy loss spectroscopy (EELS) mappings of Ni, Co, and Ni in the rectangle
area highlighted in (a).

3.5. Discussion

In this work, NCM111 shows the highest degree of compositional disorder and also the highest
discharge capacity. However, the high cost of Co prevents the commercialization of this material unless
other strong incentives can be obtained. Considering the low voltage of the aqueous system compared
to the Li-ion rival using the NCM111 as the cathode, it will be tough for NCM111 Ni-Ni alkaline
battery to compete with Li-ion battery unless a capacity close to the theoretical value (ca. 580 mAh¨ g´1)
can be realized. When the Li-industries are moving from NCM111 to NCM424, NCM523, even
NCM811 [46,47] to reduce the cost and increase the capacity, such high-Ni precursor is certainly a good
candidate for Ni-Ni alkaline battery testing. Other inexpensive transition metals (Cr, Fe, Cu, and Zn) or
even non-transition metals (Li, Al, S, and Mg) should also be tested as components to further increase
the DOD and cycle stability.
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4. Conclusions

A novel ternary NCM111 hydroxide (NiCoMn(OH)6) material was demonstrated for the first
time to act as an anode material for alkaline rechargeable batteries. A capacity of 55.6 mAh¨g´1 was
achieved with a cycle life of 8, without further optimizing. Charge/discharge testing and CV testing
verified the existence of a two-step reaction. The chemical reactions have been preliminarily suggested
to be two-step reactions within which the Ni(OH)2 is reduced to NiOH at the first plateau and then
to Ni at the second plateau. During the cycling, Ni and Ni hydroxide aggregated, while Co and Mn
remained at the same location, which led to the loss of disorder in the NCM111 hydroxide structure
after cycling, as revealed by XRD, SEM, and TEM analysis. This reduction in DOD is considered to be
the major reason of capacity loss over the course of cycling and necessitates immediate attention for
future research.
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Abbreviations

TM Transition metal
Ni/MH Nickel/metal hydride
MH Metal hydride
EV Electric vehicle
DOD Degree of disorder
M–O Metal–oxygen
RANGE Robust Affordable Next Generation EV
CSTR Continuous stirring tank reactor
rpm Revolution per minute
PVDF Polyvinylidene fluoride
CV Cyclic voltammetry
XRD X-Ray diffraction
SEM Scanning electron microscopy
EDS X-Ray energy dispersive spectroscopy
DP Discharge peak
CP Charge peak
TEM Transmission electron microscopy
PDF Powder diffraction file
EELS Electron energy loss spectroscope
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